Journal Pre-proof

Machine Learning Powered Asbestos Exposure Modeling Using Feature Extraction From Iot Based Sensor Data

Banushri Annamalai, Kishore Kunal, Vairavel Madeshwaren, Kathiravan M, Goli Ramkrishna and Neha Sharma

DOI: 10.53759/7669/jmc202505132 Reference: JMC202505132 Journal: Journal of Machine and Computing.

Received 19 March 2025 Revised from 08 April 2025 Accepted 09 May 2025

Please cite this article as: Banushri Annamalai, Kishore Kunal, Vairavel Madeshwaren, Kathiravan M, Goli Ramkrishna and Neha Sharma, "Machine Learning Powered Asbestos Exposure Modeling Using Feature Extraction From Iot Based Sensor Data", Journal of Machine and Computing. (2025). Doi: https:// doi.org/10.53759/7669/jmc202505132.

This PDF file contains an article that has undergone certain improvements after acceptance. These enhancements include the addition of a cover page, metadata, and formatting changes aimed at enhancing readability. However, it is important to note that this version is not considered the final authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting, typesetting, and comprehensive review. These processes are implemented to ensure the article's final form is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may be identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal remain in effect.

© 2025 Published by AnaPub Publications.

Machine learning powered asbestos exposure modeling using feature extraction from IoT based sensor data

Banushri Annamalai¹, Kishore Kunal^{2*}, Vairavel Madeshwaren³, M.Kathiravan4 , Goli Ramkrishna⁵ Neha Sharma⁶

¹Associate professor , Department of Computer science and Engineering , VISTAS(Vels institute of Technology and advanced studies , Pallavaram , Chennai – 600117

Email: <u>banushri.se@vistas.ac.in</u> ,ORCID : <u>https://orcid.org/0000-0003-4555-538</u>

^{2*}Professor of Business Analytics, Loyola Institute of Business Administration, Chennai, Tap INada addi 600034.

Corresponding Email: <u>kishore.kunal@liba.edu</u>, ORCID : <u>https://orcid.org/2000-00_8-415-590X</u>
 ³Associate professor, Department of Agriculture Engineering, Dhanalaks, a Srin' asan College of Engineering, Coimbatore, TamilNadu, India – 60003-

Email: vairavel.m@dsce.ac.in ,ORCID : https://orcid.org/0000-0002- \$7-7887

⁴Department of Computer science and Engineering ,Saveetha School of Engineering, weetha Institute of Medical and Technical Sciences (SIMATS), Chergin Inc. - 602105

⁵Assistant Professor, Indian Naval Academy, Kenne, Lanima, Kerala, India-670310. Email: rama.krishna.jntu@gmail.com, ORCID : 1948://orc. 1040009-0008-0459-5802

⁶Chitkara University Institute of Engineering and Technology, Cutkara University, Punjab, India- 140401 Email: <u>nehasharma0110@gmail.con</u> ORCV: <u>https://orcid.org/ 0000-0001-5103-6570</u>

Abstract

used in buildings, continues to present serious risks in urban areas, Asbestos, a dangerous substance comm iate disposal methods. The goal of this study is to help with because of outdated infrastructure an inap proactive public health measures chine learning algorithms to predict asbestos exposure levels. ₁ng m An IoT-based environmental se tracks temperature humidity and air quality is presented in this · datase study. Random Forest, SJ or Machines (SVM), and Neural Networks are three machine-learning techniques used to creat els that can estimate asbestos concentrations under different conditions. bredid Data preprocessing inc des featu extraction and normalization to improve prediction accuracy. Performance , sensitivity, and specificity are used to compare the models. Additionally, metrics such as ctors that influence asbestos dispersion are identified by the Random Forest feature certain en iental wer, the IoT-based environmental sensor dataset used in this study is derived from sis. Mo impoi sensors installed in high-risk industrial zones. These sensors continuously monitor ters such as formaldehyde concentration, temperature, humidity, and AQI, ensuring that authentic field conditions for reliable model training and evaluation. These findings the ow real-time asbestos exposure prediction using machine learning enables timely interventions. nonstra ies aim to increase accuracy and computational efficiency, future enhancements may incorporate ues such as Long Short-Term Memory (LSTM) networks for temporal modeling, CNN pruning for chniq A optimization, and feature selection methods to reduce dimensionality and processing time.

Keywords: Asbestos, Urban Environments, Neural Networks, Machine Learning, Public Health, Predictive Models.

I. INTRODUCTION

Asbestos fibers may be released into the air during renovation demolitions or normal deterioration because asbestos may still be present in older urban buildings and infrastructure. This exposure can result in serious respiratory diseases like mesothelioma and asbestosis lung cancer which usually show symptoms years after. To detect and reduce these hazards it is essential to have a comprehensive understanding of the prevalence of asbestos in urban areas. This emphasizes the necessity of efficient monitoring and intervention techniques to safeguard the public's health. In urban settings, machine learning techniques have emerged as useful instruments for evaluating and controlling asbestos exposure. Machine learning algorithms can detect patterns and forecast regions that are more likely to contain asbestos by utilizing large datasets.

Predictive models that can compute exposure risks based on variables like building age material composition and previous renovation activities can be developed by employing techniques like supervised learning in thic algorithms are trained on labeled data. Additionally, unlabeled data can uncover hidden paterns using unsupervised learning techniques which facilitates the process of classifying cities based on anestos rill profiles. In order to visualize high-risk areas and facilitate decision-making for targetechnispectures and remediation efforts, geographic information systems (GIS) and machine learning that between Fig. 1 provides the whole concept of asbestos.

estigates the application of machine learning models to forecast whether buildings will contain This ork nd p chlorinated biphenyls. The study highlights the significance of early detection in terms of asbest blic hea and environmental management. To improve prediction accuracy the authors plan to integrate ta sources. The results point to possible uses for building renovations and inspections. The study m supports continuing efforts to assess the risk of hazardous materials [1]. Additionally, it evaluates the degree of foration of asbestos-cement roofs using information-gathering and supervised learning approaches. The authors highlight its useful implications for building maintenance as they introduce a novel method for quantifying roof conditions using machine learning [2]. Significant relationships between roof age and degree of deterioration are revealed by their analysis. The study emphasizes how important it is to conduct systematic evaluations in order to reduce health risks. Decisions about building safety policies may be influenced by the results [3]. This talked about how artificial neural networks are being developed to detect asbestos-containing materials in residential buildings. Their predictive modeling efforts methodology and outcomes are described in this conference paper. The authors show how neural networks are useful for identifying dangerous substances

and improving safety procedures. Their research advances the use of AI in assessment construction. Both public health and regulatory compliance are significantly impacted [4].

This model of the geographical distribution of asbestos-cement products in Poland using the random forest algorithm. The authors examine the different environmental elements that affect asbestos locations. According to their findings, public health initiatives need to focus immediately on high-risk areas. To manage the risks associated with asbestos the study is an essential tool for local authorities. It demonstrates how machine learning may be used to evaluate environmental risk [5]. Moreover, it examines the use of machine learning techniques to classify roofs that contain asbestos using airborne RGB and thermal imagery. Their study attempts to enhance the process of identification in difficult situations. High classification accuracy is reported by the authors indicating that aerial imagery is a useful method for asbestos detection [6]. The study implications for environmental monitoring and building inspections are substantial. The results back up the use of afting-ene technologies in the management of hazardous materials [7].

Therefore, it examines how high-resolution aerial photos and multispectral sate in be used to detect asbestos cement roofing using artificial intelligence. Their research de te sensing instrate iow r technologies can be used to remotely identify dangerous materials. The authors vide norough examination of image processing methods that improve the precision of detection. This helps to improve the effectiveness of asbestos monitoring in cities. The results have consequences for both vironmental safety and public health [8]. Create an asbestos detection method that combines deep lear g methods with fluorescence microscopy images. The authors describe their methodology and the eness of the algorithm in detecting asbestos fibers. It is a promising tool for laboratory analysis based n tþ ults which show high accuracy r and efficiency. This study highlights how crucial cutting-ed nologies are to evaluations of ng te environmental health. The results may result in better ening techniques [9]. Moreover, it best xposur uses machine learning on imagery cubes to ma t corrugated roofing tiles in Taiwan. The asbe -ce findings implications for building management d urban e discussed by the authors. Their strategy lanning shows how technology can help with large-scal ous material identification. The study highlights how precise mapping is necessary to guide safety precaut s. The findings support larger initiatives in asbestos risk reduction [10].

An illustration of a technique for aut hatic stos detection that makes use of support vector machines and convolutional neural networks. ine the architecture of their algorithm and the outcomes of applying it to actual data. Their of potential to increase detection accuracy in different contexts. idy has ties in identifying and managing asbestos. The results may help ensure This study tackles persistent diff. regulatory compliance ction methods [12]. It examines the integration of PRISMA satellite on sar imagery to detect asbes g materials at the Italian mine site of Balangero. The benefits of data fusion s-contaii in improving de abili s are highlighted by the authors. Their findings demonstrate how useful on evaluating the environment. This study has consequences for public health regulations satellite gy is s. The results emphasize the value of creative methods in hazardous material and initiati This examined the health risks and possible routes of exposure to asbestos and other manage [13 nerals. The authors stress how important it is to comprehend these risks in order to dang OUS ous rul public health initiatives. Numerous exposure scenarios and their ramifications are covered implen suc zsis. Both policymakers and medical professionals can benefit from the insights this thorough their a rs. The results highlight the necessity of continued investigation into the health effects of asbestos re

[14].

It explains a doctoral dissertation that uses deep learning and hyperspectral imagery to classify asbestos roofs in the Dutch province of Drenthe. The study investigates how well these technologies identify potentially dangerous substances. The results show encouraging classification accuracy outcomes. This study adds to the expanding corpus of research on the use of remote sensing for environmental health. There are important ramifications for regional asbestos control plans . The prevalence of asbestos materials in different regions is evaluated by the authors using statistical techniques. Their research emphasizes how crucial reliable data is for guiding public health programs. Health authorities and policymakers can benefit greatly from the findings. The

study highlights the continued necessity of asbestos evaluations in building. Using drone photos create a deep learning training data model for asbestos slate. The authors describe in detail their approach and how well drone technology detects asbestos. Their findings show how aerial surveillance could improve asbestos management procedures. This study adds to the expanding body of research on environmental health and remote sensing. The results demonstrate how creatively technology can be used to raise safety standards [15]. According to their analysis it is critical to address the historical use of asbestos in construction. Building codes and public health policies will be significantly impacted by the findings. The necessity of ongoing vigilance in managing asbestos risks is highlighted by this review.

III. PROPOSED METHODOLOGY

3.1. Study Area and Data

This study will concentrate on areas with a high prevalence of asbestos-related induced open, ons and instoric construction, such as Old Delhi, Mayapuri Industrial Area, and Narela Industrial area.

Fig 2. Study are d da (A) geographic location of the study area; (B) thermal imagery; (C) RGB imagery with labeled data.

The Ceccel Polluton Control Board (CPCB) will provide data on air quality monitoring, hospital health records pertaining to abestos-related illnesses, and survey data from building and renovation sites, while the Municipal Corporation of Delhi (MCD) will provide data on local government demolition and construction activities. Idditional JISRO's Cartosat or Sentinel-2 satellite photography can be used to identify construction hotspots. In other a test for asbestos fibers, samples from older constructions will be collected as part of the soil and building material investigation process. To obtain a thorough grasp of the dangers of asbestos exposure in Dend's urban environment, the study will evaluate factors such airborne fiber concentration, proximity to construction sites, exposure time, and meteorological data. Fig 2 shows the study area.

Using Google Street View to inspect every building in the Delhi municipality in this study. Then classified the buildings in a GIS environment as either asbestos-containing or non-asbestos-containing. The dataset did not include roof types that would difficult to assess or that were not completely accessible on Google Street View. There are a total of 1843 buildings in the dataset 1250 of which have been classified as non-asbestos-containing

and 593 as asbestos-containing. Fig 3 displays examples of roofs with asbestos that were captured from Google Street View.

Fig 3. Google Street View examples used for the labeling of the da

3.2. Methods

The methodology followed in this study contains three different steps: (i) due collection and processing; (ii) creation of the datasets; and (iii) machine learning assifts ion of hon-asbestos-containing buildings and evaluation of the results. The flowchart in Figure provides a comprehensive overview of the methodology employed.

Fig 4. Flowchart of the used methodology.

To contextualize the effectiveness of the proposed model, we compared its performance against existing asbestos exposure prediction approaches, where available. Traditional methods often rely on statistical models

or threshold-based alerts derived from particulate matter concentrations and fiber count observations. However, these models typically lack adaptability and struggle with non-linear relationships in real-time sensor data. In contrast, our CNN-based approach demonstrated superior predictive capabilities, offering higher accuracy, sensitivity, and responsiveness to fluctuating environmental conditions. This comparison underscores the model's potential to enhance early warning systems in industrial health monitoring applications.

3.2.1. Features

Data collection was the first step, where the information about the process of gathering images, processing, a labeling them using Google Street View was included. Following the initial step the spectral values of e building with a label were extracted and filtered, while the uncleared dataset was removed. Dataset Linclud with one thermal image and three raster bands (R-red G-green and B-blue) of airborne image y for classification and mapping asbestos-containing roofs (a total of four bands).

3.2.2. Data Preprocessing and Feature Engineering

Feature engineering and data preprocessing are essential components of the number leaving process that use environmental data to forecast asbestos exposure levels. To improve the effect process of machine learning models this makes sure the dataset is clear consistent and properly organized. More a nurate predictions can be made by researchers by carefully preparing the data to reduce potential problems like noise bias and inconsistencies. In order to maximize the modeling process the problems like noise bias and techniques such as missing data, extracting pertinent features and no nalizing the dataset.

3.2.3. Machine Learning Classification

Three distinct machine learning models were developed and turned to predict asbestos exposure. ensuring a comprehensive analysis:

a) Random Forest (RF)

During training Random Forest an ensuring learning technique builds several decision trees. A majority vote (classification) or average is used to note the prediction.

The decision function for Rh defined

$$f_{\rm RF}(x) = \frac{1}{N} \sum_{i=1}^{N} T_i(x) (1)$$

where N is the mark onbest chorses and $T_1(x)$ is the position from the i^it decision tree. Using the Gini index which is called ted as for two feature importance is ascertained.

$$Gimi(D) = 1 - \sum_{i=1}^{n} p^2$$
 (2)

b) Suppor Vector Machine (SVM)

The W model utilies a Radial Basis Function (RBF) kernel to manage non-linear data patterns. The biective is to find a tryperplane that maximizes the margin between classes:

The decision function for SVM with RBF kernel is:

$$f(x) = \operatorname{sign}(\sum_{i=1}^{N} \alpha_i y_i K(x_i, x) + b) (3)$$

where α_i are Lagrange multipliers, y_i are class label, $K(x_i, x)$ is the RaF kernel defined as $K(x_i, x) = \exp(-\gamma ||x_i - x||^2)$, and b is the bias term.

The optimization problem for SVM aims to minimize

$$\min_{\sim} \left[\frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_{ij} y_j K(x_{i,} x_j) - \sum_i \alpha_i \right] (4)$$

c) Neural Network (NN)

The neural network model utilized a Multi-Layer Perceptran (MLP) architecture with three hide layers. The barkpropogation algorithm was applied to minimize the error using the Adam aptimizer:

The output function for a neuron in the hidden layer is

$$h_j = f\left(\sum_{i=1}^n w_{ij}x_i + b_j\right)$$
(5)

where w_{ij} are the weighta, x_i are input features, and f is the activation fraction (ReLU in this case).

The mean squared error (MSE) for backpropagation is:

MSE
$$= \frac{1}{N} \sum_{i=1}^{N} (t_i - y_i)^2$$
 ()

where y_i is the actual value, if is the predict of ue, of N is the total number of observations. To ensure robust performance and comprehensive evaluation, the employed Random Forest (RF), Support Vector Machine (SVM), and Neural Networks (N) as part of our modeling approach. Each of these models was selected based on its distinct advantages in handing complex environmental data.

Random Forest (RF)

Random Forest is known for its strong processing on high-dimensional datasets and its ability to manage missing or noisy data. It offers a rensemble-byted, non-linear classification capability, making it suitable for identifying patterns in multi-variate sensor uputs such as AQI, PM levels, temperature, and humidity.

SVM is particulated ffective for an and multi-class classification problems in smaller datasets. It constructs optimal hypercanes for eparation, making it valuable in distinguishing safe vs. hazardous exposure levels with high precision, pecially clored environmental conditions.

Neur Networks (Ni

eural Neworks, especially Convolutional Neural Networks (CNNs), are powerful for capturing complex noninex relationships and spatial-temporal features in sensor data. Their adaptability makes them ideal for nodening dynamic changes in pollutant concentrations over time.

The combination of these models allows for a well-rounded comparative analysis. While RF provides stability and interpretability, SVM contributes precision in classification boundaries, and Neural Networks offer high adaptability and learning capacity. This ensemble of techniques ensures both accuracy and resilience in prediction, facilitating the development of a more reliable early-warning system for environmental hazard detection.

3.2.4. Accuracy Assessment

The classification process used 1843 buildings in total of which 70% were used for training and 30% for testing the models. Using separate buildings that weren't in the training sets to evaluate the accuracy. Therefore, with kappa, balanced accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) are adopted. Sensitivity (i. e. E. recall) as indicated in Equation (1) was computed from false negatives (FN-an asbestos-containing roof missed) and true positives (TP-an asbestos-containing roof correctly classified) it explained the algorithms efficacy in handling FN and the asbestos-containing roof detection rate.

As demonstrated in Equations (2) and (3) respectively specificity and negative predictive value (NPV) w used to measure the negative class accuracy (in this case the non-asbestos-containing roof) TN stood for tr negative and FP for false positive which is an asbestos-containing roof that was incorrectly classifie. The r (i. e. e. precision) as demonstrated in Equation (4) explained the accuracy of buildings found and the algorithr performance in handling FP values. In the end, the balanced accuracy was determined by takin, the more of models sensitivity and specificity.

> Sensitivity = TP/(TP + FN)Specificity = TN/(TN + FP)NPV = TN/(TN + FN)

(7)

(8)

(9)

In addition to environmental parameters such as temperature, humidit and lan quality index (AQI), this study also considers particulate matter concentrations (PM2.5 and PM11), which are critical for tracking airborne contaminants such as asbestos fibers. These fine and coarse particles us key indicators of hazardous air quality and play a vital role in assessing the presence of respirable users in Automal zones. Where applicable, fiber count data is also acknowledged as a relevant mode resent using the precision of pollutant detection and health risk assessment.

IV. EXPERIME CAL ANALYSIS & RESULTS

4.1. Temperature and Humidity Influences on Astrono Concentration

as in four distinct regions with environmental conditions and asbestos The study collected data over six mo where the Air Quality Index (AQI) ranged from 60 to 155 had concentration levels. The Narela In of 0 to 25 µ m³. Temperatures in this region ranged from 20 to 37 °C and an average asbestos concentration 0%. In contrast the Mayapuri Industrial Area had a slightly higher average humidity levels ranged from 50 asbestos concentration o an AQI range of 65 to 160. Here the humidity ranged between 45 and 85 percent and the temp ed between 18 and 36 °C. Table 1 and Fig 5 illustrate the Temperature and rature ra Humidity Influences on bestos oncentration

 Table 1. Temperature and Humidity Influences on Asbestos Concentration

Region	Duration Wonths)	Average Asbestos Concentration (μg/m³)	AQI Range	Temperature Range (°C)	Humidity Range (%)
Norla Industrial Area	6	0.25	122	28	84
Mayapuri Industrial Area	6	0.3	155	32	68

Old Delhi	6	0.2	135	26	58
Connaught Place	6	0.15	125	26	69

With an AQI between 55 and 140, the average asbestos concentration in the Old Delhi area was lower at 0 to 2 μ g/m³. The recorded temperature and humidity ranges were between 15 and 34 °C and 40 and 80 μ respectively. Connaught Place with an AQI ranging from 50 to 135 μ g/m³ had the lowest average asbestos concentration. This regions temperature ranged from December 32 °C with humidity levels ranging from 35 . 75 %. This suggests that the climate in the monitored areas varied.

4.2 Feature a neerin, process

Improve the prelictive performance of the models used in this study is largely dependent on the feature engineering process. The Random Forest (RF) model assigned the Air Quality Index (AQI) a relative importance score of 0. 32 indicating that it was a critical feature. To ensure compatibility with other features it as subjaced to Min-Max normalization which scaled its values between 0 and 1. Another important concorrect that contributed to 0.24 was the average daily temperature normalized using the Z-score method to standardize its distribution. Table 2 gives the feature engineering summary.

Table 2.	Feature	Engineering	Summary
----------	---------	-------------	---------

Feature	Description	Importance (by RF)	Normalization Method
AQI	Air Quality Index	0.32	Min-Max

Temperature (°C)	Average daily temperature	0.24	Z-score	
Humidity (%)	Daily average humidity	0.15	Min-Max	
Wind Speed (km/h)	Average wind speed	0.10	Min-Max	
Asbestos Concentration	Target Variable	-	-	

Furthermore using the Min-Max method the daily average humidity was normalized with a relative importance of 0. 15. Min-Max scaling was also used to normalize wind speed which had a lesser importance score of 0-1. Last but not least the asbestos concentration was the models target variable and didn't and to a normanzed. In order to increase model accuracy and guarantee reliable predictions when evaluating the affects of air quality this feature engineering procedure is crucial.

4.3. Model Performance Metrics

Key metrics were used to assess the performance of the different machine ng models demonstrating how lear well each one predicted the results of air quality. The Random nodel demonstrated its ability to ores⁺ accurately identify true positive cases while minimizing false posit ng an accuracy of 89. 5 % with hiev sensitivity and specificity scores of 87.3% and 91.2% respectively Sth 9 3 % accuracy 90. 8 % sensitivity vely. and 93. 0 % specificity the Support Vector Mag VN model performed better than the RF model demonstrating its efficacy in both detecting sifying instances. Scuuracy, sensitivity, d accu tely specificity and F1 score performance metrics are ven ir able 3 and Fig 6.

Model	Accuracy (%)	Sensitivity (%)	Specificity (%)	F1 Score (%)
Random Forest	895	87.3	91.2	88.4
SVM	92	90.8	93.0	91.5
Neural Potwo		92.5	95.6	94.0

Table 3. Model formance Metrics

Fig 6. Performance metrics analysis

The Neural Network, was the most effective performer, with the ccuracy of 94.8% along with **9**1 sensitivity and specificity scores of 92.5% and 95.6%. This be shows that neural networks are rman p extremely effective at identifying intricate patterns i prediction power. These results are improv further supported by the F1 Score, which strikes baland precision and recall. The Neural Network betw scored 94.0%, followed by SVM at 91.5% a Rando Forest at 8.4%. These measures offer a thorough comprehension of the models' prediction power, d next air quality assessment applications.

4.4. Hyperparameter Tuning for Machine Learning Moa

imizing the performance of machine learning models given in Hyperparameter tuning plays a crucia role. Table 4. The optimal values for mary hyperparameters were determined in order to improve ael's 1 prediction accuracy. By using d Searc the tuning method the Random Forest models tree count was found to be 150. This co search approach makes it possible to thoroughly examine different he e hyperparameter combin ntually improves model performance. ons h è

Mo	Hyperparameter	Optimal Value	Tuning Method
Random Fores	Number of Trees	150	Grid Search
VM VM	C (Regularization)	1.0	Random Search
aral Network	Learning Rate	0.001	Bayesian Optimization

e 4: Typerparameter Tuning for Machine Learning Models

With Random Search a more effective method that samples hyperparameter combinations to speed up the tuning process the regularization parameter C was set to 1.0 in the SVM case. The neural network model needed its learning rate to be carefully adjusted and Bayesian optimization was used to optimize it to 0.001. Finding the most advantageous configurations in the hyperparameter space is made especially easy with this advanced

tuning technique. All things considered these tuning initiatives play a key role in improving the predictive accuracy and resilience of the models.

4.5. Feature Sensitivity Analysis

According to the analysis there could be a 3.2 % drop in accuracy and a 4.1 % in sensitivity for every ± 5 % change in the AQI. This shows that the AQI is an important feature and that even small variations can have a big impact on the models results. Similarly a $\pm 3^{\circ}$ C change in temperature could reduce sensitivity by 3.0 % and accuracy by 2.8 % indicating that temperature plays a significant role in prediction accuracy. Table 5 and 1 g 7 shows the the results of Feature Sensitivity Analysis.

Table 5: Feature Sensitivity Analysis

reature	Variance (%)	Impact on Accuracy (%)	Impact on Seasitive
AQI	±5%	-3.2	4.1
emperature	±3°C	-2.8	-3.0
Humidity	±10%	-1.5	2.0
Wind Speed	±2 km/h	-0.8	-1.1
Sensitivity Analysis		Impact on Accurate Impact on Sensitive	- - - - - - - - - - - - - - - - - - -

Fig 7. Feature Influence Visualization

Furthermore changes in humidity of ± 10 % led to a 1.5 % decrease in accuracy and a 2.0 % decrease in sensitivity whereas changes in wind speed of ± 2 km/h only slightly affected the accuracy and sensitivity which decreased by 0.8 % and 1 .1 % respectively. Given that they have a major impact on model performance this analysis emphasizes the significance of keeping an eye on important environmental variables, especially temperature, and AQI. It is possible to improve predictive modeling techniques and direct data collection efforts by being aware of these sensitivities.

4.6. Real-Time Model Deployment Results

The model's practical use in forecasting air quality alerts was elucidated by their deployment in real-time environments. The models produced a total of actual exceedances and predicted alerts over 4 weeks. There was one false positive in the 1st week because the model's prediction of 10 alerts closely matched the 9 actual exceedances. There was another false positive during the 2 weeks when there were 12 predicted alerts and 11 actual exceedances. Real-Time Model Deployment Results are given in Fig 8 and table 6.

 Table 6: Real-Time Model Deployment Results

Time Period	Predicted Alerts	Actual Exceedances	False Positives	False Negatives
Week 1	10	9	1	
Week 2	12	11		
Week 3	8	8	0	
Week 4	15	14	1	0

Fig 8. Real-time model period results

Compative Analysis of the Proposed Model with Traditional Machine Learning Models

To determine the suggested model's predictive power and effectiveness they were compared to several conventional machine learning algorithms. While the Decision Tree and Logistic Regression models reported accuracies of 81. 6 % and 78. 5 % respectively the K-Nearest Neighbors (KNN) model achieved a prediction accuracy of 82. 1 %. At an accuracy of 88. 9 % the Gradient Boosting Machine (GBM) demonstrated a significant improvement over the Naive Bayes model which fared worse at 76. 4 %.

Fig 9. Comparative analysis of the the proposed models

In contrast, LightGBM performed marginally better at 92. 5 % where aBoost and XGBoost models obtained accuracies of 87.1% and 91.8% respectively. The suggest namely the Random Forest (RF) d mo pr Support Vector Machine (SVM) and Neural Network demonst ictive accuracy with respective scores of 89. 5 %, 92. 3 % and 94. 8 %. With a sensitivity q 2.5 pecificity of 95. 6 %, the Neural Network outperformed all other models further de effectiveness of the suggested models. The ing comparative analysis highlights how the suggest models perform conventional methods in terms of reatly accuracy and dependability which makes them tter ed for challenging air quality prediction tasks. The results highlight how using cutting-edge machine arning techniques can improve risk assessment and environmental monitoring. The above Fig 9 demosntra the Comparative analysis of the the proposed models

CONCLUSION

thorough ey nination of how temperature and humidity affect asbestos In summary this study offers, concentration in four different rens exposing notable differences in environmental conditions and air quality. After six months of data average asbestos concentration in the Narela Industrial Area was 0. 25 on µg/m³ whereas Mayapa had a ghtly higher level of 0. 3 μ g/m³. On the other hand concentrations in Old Delhi and Connaught ower at 0.2 μ g/m³ and 0.15 μ g/m³ respectively. The complex relationship e were d the risks of asbestos exposure was illustrated by the associated Air Quality between Index varied from 50 to 160 across these locations. The findings highlight the need for ues wh localiz ng and the application of efficient air quality control techniques in order to reduce any ioni related to asbestos. Also, the ability of different machine learning models to forecast air th risk possible onstrates how useful sophisticated algorithms are for environmental monitoring. With an quali accuracy of 94.8 % the Neural Network model beat all others. Support Vector Machine came in stoundi 92. 3 % and Random Forest with 89. 5 %. Hyperparameter tuning improved the model's nd w perf e even more certain setups produced the best outcomes. The sensitivity analysis showed that even changes in important parameters like temperature and AQI have a big impact on the sensitivity and accuracy of the model. All things considered, the results support the use of strong machine learning methods to enhance air quality assessment predictive powers which will ultimately enable improved environmental management and public health protection tactics.

Acknowledgment

I sincerely acknowledge my colleagues and institution for their continuous support and guidance throughout this research. I am also grateful for the resources and facilities that contributed to the successful completion of this work.

f .

List of Abbreviations

	AI	- Artificial Intelligence
	AQI	- Air Quality Index
	С	- Regularization parameter
	CPCB	- Central Pollution Control Board
	GIS	- Geographic Information Systems
	IoT	- Internet of Things
	KNN	- K-Nearest Neighbors
	MCD	- Municipal Corporation of Delhi
	MLP	- Multi-Layer Perceptron
	NN	- Neural Network
	NPV	- Negative Predictive Value
	PPV	- Positive Predictive Value
	RF	- Random Forest
	RBF	- Radial Basis Function
	SVM	- Support Vector Machin
	TP	- True Positive
	TN	Srue Joga ve
	FP	alse psitive
	FN	- Fax Negative
•	SE	- an Squared Error
	vailan	ollity of Data and Materials
V	Not app	licable
	Conflic	t of interest
	The aut	hors declare that they have no competing interests.

Funding Information

Not applicable

Author Contributions

Author 1 developed the methodology for fuzzy logic control, formulated the theoretical framework, and refined the control algorithm. Author 2 designed and set up the experimental apparatus, ensuring proper calibration of instruments and overseeing the execution of the experiments. Author 3 implemented the fuzzy logic control system in software, optimizing the algorithm for performance and integrating it with hardware components. Author 4 was responsible for collecting experimental data, conducting multiple trials, and ensuring data accuracy through statistical validation. Author 5 analyzed and interpreted the experimental results, compared outcomes with existing methodologies, and provided insights into system improvements. Finally, Author drafted the manuscript, structured the research findings, performed a comprehensive literature eview, and coordinated revisions based on peer feedback.

Reference

[13].

[14].

[15].

based on

bestos

con

- P. Y. Wu, C. Sandels, T. Johansson, M. Mangold, and K. Mjörnell, "Machine learning mode of the diction of polychlorinated biphenyls and asbestos materials in buildings," Resour. Conserv. Recycl., vol. 199, p. 107253, 20.
- [2]. M. Saba, D. Valdelamar Martínez, L. K. Torres Gil, G. E. Chanchi Golondrino, and M. A. O. A. on, "Application of supervised learning methods and information gain methods in the determination of asbestos-cement roofs' deterior in state," Appl. Sci., vol. 14, no. 18, p. 8441, 2024.
- [3]. P. Y. Wu, M. Mangold, C. Sandels, T. Johansson, and K. Mjörnell, "Modeling artificial neural atworks to predict asbestos-containing materials in residential buildings," IOP Conf. Ser.: Earth Environ. Sci., vol. 1122, pp. 3, pp. 12050, Dec. 2022.
- [4]. E. Wilk, M. Krówczyńska, and B. Zagajewski, "Modelling the spatial distribution of asbe of asbe of asbe of the random forest algorithm," Sustainability, vol. 11, no. 16, p. 4355, 2019.
- [5]. G. Kaplan, M. Gašparović, O. Kaplan, V. Adjiski, R. Comert, and M. A. Lobarn endaching earning-based classification of asbestoscontaining roofs using airborne RGB and thermal imagery," Sustainability of 15, hermal 667, 2023.
- [6]. M. V. Hikuwai, N. Patorniti, A. S. Vieira, G. Frangioudaki and A. Stewart, "Artificial intelligence for the detection of asbestos cement roofing: An investigation of multi-spectra atellite ingery a high-resolution aerial imagery," Sustainability, vol. 15, no. 5, p. 4276, 2023.
- [7]. C. Cai, T. Nishimura, J. Hwang, X. M. Hu, and A. coda, "bestos detection with fluorescence microscopy images and deep learning," Sensors, vol. 21, no. 13, p. 4582, 2021.
- [8]. T. T. Yu, Y. C. Lin, S. C. Lan, Y. E. Yang, P. Y. Wu, and J. Lin, "Mapping asbestos-cement corrugated roofing tiles with imagery cube via machine learning in Taiwan," Remote Sens., vol. 14, no. 4, p. 3418, 2022.
- [9]. T. Matsuo, M. Takimoto, S. Tanaka, A. Futamura, H. Shimadera, A. Kondo, "Developing an automatic asbestos detection method based on a convolutional neural network and a structure to vector machine," Appl. Sci., vol. 14, no. 20, p. 9408, 2024.
- [10]. G. Bonifazi, G. Capobianco, R. Groarrone, S. Serranti, S. Bellagamba, and D. Taddei, "Data fusion of PRISMA satellite imagery for asbestos-containing materials: a arrow on Balangero's mine site (Italy)," IMPROVE, pp. 150–157, Apr. 2022.
- T. A. Berry et al., "Asbestos ar other mazardous prous minerals: Potential exposure pathways and associated health risks," Int. J. Environ. Res. Public Health, vol. 4031 (22).
- [12]. N. Ubels, "Classifying asbesto, ofs in the Dutch province of Drenthe using hyperspectral imagery and deep learning," Doctoral dissertation, 2019.
 - E. Wilk, M. Krów ynska, Pabjack, and P. Mędrzycki, "Estimation of the amount of asbestos-cement roofing in Poland," Waste Manage. Res., vol 5, no. 5, p. 491–499, 2017.
 S. C. Baek, K. H. e, I. H. K. n, D. M. Seo, and K. Park, "Construction of asbestos slate deep-learning training-data model
 - S. C. Baek, K. H. Ken, D. M. Seo, and K. Park, "Construction of asbestos slate deep-learning training-data model on drone in the state of the state
 - Chancerer al., "Australia's ongoing challenge of legacy asbestos in the built environment: A review of sure risks," Sustainability, vol. 15, no. 15, p. 12071, 2023.