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Abstract 

Modern technology requires cloud computing. Allocating resources and scheduling tasks are 

crucial components of cloud computing. Nondeterministic polynomial completeness (NP) of 

cloud systems makes job scheduling one of the most challenging aspects of cloud 

communications. This research proposes novel technique in advancements in hybrid model for 

task scheduling and resource allocation using meta-heuristic machine learning model in cloud 

computing networks. Here the cloud network is deployed with numbers of users and clients 

with virtual machines. The task scheduling model for this deployed network is carried out using 

convolutional transfer graph proximal policy-based firefly harmony search cat optimization. 

Then the resource allocation is carried out using software defined virtual machine-based 

reinforcement markov model. the experimental analysis is carried out in terms of resource 

utilization, network efficiency, throughput, latency, QoS. For a particular collection of jobs, 

our primary contribution is to decrease processing time as well as boost speed and efficiency. 

The proposed technique attained resource utilization of 45%, network efficiency of 96%, 

throughput of 97%, latency of 95%, QoS of 98%. 

Keywords: task scheduling, resource allocation, meta-heuristics, machine learning model, 

cloud computing networks 

1. Introduction 

One of the most prevalent paradigms for large-scale data systems is cloud computing. Because 

it provides a vast quantity of storage as well as resources to many businesses and organisations, 

which can access these resources with appropriate administration, regulation, and security, 

cloud computing has become a highly regarded technology worldwide [1]. Given client 

requirements, many cloud applications need the short-term enhancement of processing power. 

Increasing available resources would seem to be a straightforward solution to this problem but 

is not a practical one because of prohibitive costs. Other suggestions are to improve job 

scheduling algorithms for maximised resource usage, perform online and offline tasks for 

optimal resource usage, and apply load balancing algorithms to increase utilisation rate. Task 

scheduling is defined as practice of arranging incoming requests (tasks) in a certain order to 

accommodate maximum possible usage from the available resources. The customers of service 

have to submit their requests on the web because cloud computing is essentially the technology 

for providing services over the Internet. Large queues of customers can generate many requests 

(or tasks) concurrently. Contrarily, wait for jobs may be very high in systems that do not have 

any form of scheduling. Additionally, with waiting, short jobs could actually die [2].  

The scheduler shall have to consider certain constraints in scheduling process such as 

nature and size of the job, time for execution, resources available, task queuing, and resource 
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loading. Scheduling tasks are one of the key problems in cloud computing. Resource allocation 

as well as task scheduling are thus the two sides of a coin. Each conditions the other. Platform-

as-a-service and core programming are defined in proper wiring programming as a 

combination. Everybody has a different general business idea. Whatever model it paid for, 

allocated computing will satisfy the intended customers. Since cloud computing and 

networking are the two basic architectures around which the cloud is built, Internet access and 

infrastructure become necessary. That is how institutions often make use of CC and many 

others.  

Although such amounts of data are spread over servers and computers, the currently 

emerging network is all able to access them with the help of these virtual networks [4]. 

Accordingly, more application service providers are using infrastructural leasing from 

infrastructure providers and gap is visible between actual use and operation of equipment 

needed. For instance, Force Square has abused excellent service of the Amazon EC2 Analytics 

by billions of days, which brings costs down to about 53% and becomes first cloud resource 

for denoting measurable requirements.  

Many heuristic methods are developed to solve above. These include fair scheduling, 

sample packing techniques, and first fit, among others. Some intricate meta-heuristic 

algorithms, such as ant colony and genetic algorithms, exist [5]. The success of these heuristic 

algorithms depends on manual testing and calibration, besides being influenced by resource 

demand behavior. This means that it has nothing much to quickly act with further changes in 

the environment. Areas that rely heavily on machine learning (ML) are computer vision, pattern 

recognition, and bioinformatics. With the advent of machine learning techniques, large 

computing systems have been growing. 

 Google has recently published a report on its efforts to optimize electricity use, 

minimize costs, and maximize productivity. Machine learning (ML) has revealed to be quite a 

promising approach to dynamic resource scaling which one can regard as a potential technique 

for providing a workload forecast of high accuracy and speed-from data-driven approaches 

with the future insight in application scheduling. Makespan, cost, and resource usage become 

additional elements of consideration when scheduling. Various researchers have suggested a 

number of methods of handling load balancing in both a homogeneous as well as a 

heterogeneous environment. The overall goal of load balancing is the optimized allocation of 

tasks amongst available resources and reduction in system processing time [6]. 

1.1 Research objectives 

• to suggest a new method for job scheduling as well as resource allocation in cloud 

computing networks utilising a meta-heuristic machine learning model.  

• In this case, a large number of users and clients with virtual machines are connected to 

the cloud network.  

• Firefly harmony search cat optimisation based on convolutional transfer graph proximal 

policy is used to implement the task scheduling model for this deployed network.  

• Then, a software-defined virtual machine-based reinforcement markov model is used 

to allocate the resources.  

The organization of this paper is as follows, section 2 explains literature review, proposed 

model is shown in section 3, section 4 explains resource allocation in proposed model, the 

experimental results are added in section 5 and section 6 concludes the paper with future scope. 

2. Literature review 
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Many researchers are interested in the task scheduling problem. The strategies can mainly be 

classified into two broad categories depending on the approach followed in job scheduling: one 

is the classical path, which includes meta-heuristics and heuristics; in this approach, Work [7] 

proposed a modified round-robin resource allocation method to minimize waiting times and 

meet customer requirements. The DGLB [8] reduces energy consumption in data centers by 

devising energy-efficient as well as regionally load-balanced methods for data center networks. 

In this all-inclusive scheme, the newer elements of the smart grid like energy storage units are 

included for handling renewables, incentive pricing mechanisms serve as the design tool, 

workload and power balancing schemes are set up in network. This is in the endeavor to 

improve QoS criteria in a geographically dispersed cloud environment- author [9] suggested a 

linear programming method to solve the web service composition issue named "LP-WSC," 

which chooses the most effective service for each request. Based on control monitor-analyze-

plan-execute (MAPE) loop paradigm, an autonomic resource provisioning methodology has 

been suggested by [10].  

Work [11] defined the problem of energy & performance-efficient resource management as 

a Markov decision process and suggested a unique dimensionality reduction technique. These 

[12] authors elaborated the PSO-COGENT algorithm; it is much similar to the functioning of 

the particle swarm algorithm and optimizes time and cost of execution while reducing energy 

consumption of cloud data centres. To control search procedure against premature as well as 

divergence issues of PSO, APSO-VI technique offers the nonlinear ideal average velocity. The 

scheduling method AIRL developed by the authors in [13] is for time-sensitive applications in 

the cloud through reinforcement learning. The primary objectives are reducing response times 

and increasing ratios of user requests that the system can satisfy.  

The results for AIRL are then compared to several other schedulers including DQN, RR, 

earliest and random, and according to simulation results, AIRL consistently outperforms these 

baseline techniques. Scheduling metrics under consideration include response time, success 

rate, costs of virtual machines, and QoS characteristics for the scheduling paradigm as 

presented in [14]; this is run in the DQN model based on reinforcement learning. Results from 

simulation experiments indicate that DQNs do perform better in the respect of the 

aforementioned parameters than the algorithms cited. The entire experiment was carried out on 

a live cloud and compared against random, round-robin (RR), and earliest eligible schedulers. 

[15] The scheduling architecture developed in this framework shortens task execution and 

waiting times. The authors applied CDDQLS, a reinforcement-learning technique used in 

machine learning. The whole simulation was run under CloudSim with resource and time 

constraints. Post simulation, CDDQLS was compared with Random, Time-Sharing, and Space-

Sharing algorithms that tend to show a significant effect against the aforementioned algorithms.  

A task scheduling model that seeks to minimize the makespan was presented in [16]. It uses 

a machine-learning approach, DQN, which makes use of a reinforcement-learning approach to 

schedule activities. The simulations were performed in MATLAB for comparison with the 

HEFT and CPOP methods. Obtained results show a very substantial reduction in makespan as 

compared to the baseline methods in question. An algorithm for load-balancing and decision-

making that disregarded job sizes was suggested in this paper by the authors [17]. While 

completing queries, the authors did consider the refreshes on the servers. Work [18] presents 

the first report on task scheduling based on a vacation queuing model. This approach does not 

show the way to utilize resources well.  

Task scheduling proposed in [19] considers bandwidth as an entity that can be treated as a 

resource. Nonlinear programming method is developed for allocation of resources to tasks. 

Rolling horizon scheduling method [20] was invented in real time scheduling for works. The 
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authors have shown connection between task scheduling as well as energy conservation using 

resource allocation. Scheduling for concurrent workloads was proposed by Work [21]. In 

presence of resources, the authors have executed jobs following the FCFS line. The technique 

of proposed is not primarily concerned with starvation or termination of jobs. [22] suggested a 

method to rely on Max-Min based scheduling for job execution time forecasting and cloud load 

balancing. Then jobs were allocated to the VM using the suggested Max-Min approach.  

A decrease in response time for the VM and an increase in resource usage followed. Then 

came the Enhanced Load balanced Min-Min (ELBMM) method for scheduling the static tasks, 

which was proposed in Work [23]. Tasks were allocated to VMs according to execution time 

and rescheduled for the purpose of alleviating idle resources. For minimizing makespan and 

cost combinations for tasks (MCTE) in smart grid-cloud systems, a smart task scheduling is 

proposed. Such work scheduling in grid-cloud was then mathematically modeled. It was a two-

step process. First, choose the largest virtual machine with the highest share of computational 

resources. The second step is to assign remaining works to VM that can execute them in the 

shortest possible time. Results showed that RALBA was able to minimize makespan. 

 

3. Hybrid model for task scheduling and resource allocation 

The cloud resource scheduling frame based on proposed model in this research is shown in 

Figure 1. A diverse collection of servers is modeled in private data centers: some feature a low 

CPU frequency, and are thus more energy efficient, in contrast with rather fast systems 

consuming considerably higher resources, and so on. In public cloud services, use the container 

orchestration technologies provided by CSPs, such as Microsoft Azure Containers and AWS 

Elastic Container Services (ECS). This provides a user with the ability to scale down to zero 

and dynamically provision without having any costs incurred. Our efforts are directed towards 

automating the workload shifting process in order to optimise renewable energy usage and 

public cloud expenditures, with the promise of satisfying very high-quality service (QoS) 

requirements (deadline). Achieving this goal by strategically allocating tasks to various servers 

in accordance with energy availability and time restrictions. Deploying a public cloud service 

provider in a dynamically on-demand provided manner to meet the QoS goal in the absence of 

sufficient computing or renewable energy capacity. The proposed model is as shown in Figure 

1. 
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Figure 1. Proposed Hybrid Model for Task Scheduling and Resource Allocation 

Task scheduling and server selection are the two types of scheduling in Cloud 

Computing. Purpose of task scheduling optimization is to give importance to different types of 

performance measures like cost, execution time, make span, latency, and bandwidth utilization. 

The objective functions of optimization issues differ from each other based on application and 

organizational goals-such as optimizing data transfer, minimizing job completion time, 

makespan, or total service cost. Thus, the objective function and its constraints will vary 

mathematically depending on type of cloud computing system and objective of organization. 

Task scheduling algorithms are meant to assign virtual machines (VMs) based on VMs' state 

and user service requirements.  

According to equation (1), the cloud system (CS) is made up of PMs, and each machine is 

made up of virtual machines (VMs). 

𝐶𝑆 = [𝑃𝑀1, 𝑃𝑀2, … , 𝑃𝑀𝑖, … , 𝑃𝑀𝑁𝑝𝑚]                                     (1) 

The following is an expression of the cloud's PM performance by eqn (2) 

𝑃𝑀 = [𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑘, … , 𝑉𝑀𝑁𝑣𝑤]                               (2) 

When k is between 1 and Nvm, the kth VM is represented as VMk. Nvm is number of VMs, 

and VMk is kth device of a cloud virtual machine. The following formula is used to determine 

the VMk features by eqn (3) 

𝑉𝑀 = [𝑆𝐼𝐷𝑉𝑘, 𝑚𝑖𝑝𝑠𝑘]                                                 (3) 

SIDTi represents the ith task's identity number, and task-lengthi represents the task's length. 

Time ECTi is the ith task's completion time, while LIi represents the task preference in terms 

of the number of tasks Ntsk. 

 

3.1 Convolutional transfer graph proximal policy-based firefly harmony search cat 

optimization (CTGPP-FHSCO) 

A number of parameters from various service providers, including user request, task 

type, task dependency, etc., are used to optimise task scheduling process. User request, which 

comprises of 1 to N task units, is first set up. Task type, which consists of 1 to t tasks, is then 

defined. Total number of tasks in task unit is denoted by term tmax. 

Convolutional Layer There is a convolutional layer in one of the CNN core layers. These layers 

contain filters and are smaller, but they change to encompass the full image. By computing dot 

product between filter and image, convolutional mechanism operates. The filter region 

summarises the dot products between the image and filter by eqn (4) 

𝑎𝑘
𝑚 = 𝜆(𝑦𝑗

𝑚−1 × 𝑥𝑗𝑘
(1)𝑚

+ 𝑐𝑘
(1)𝑚

)                                        (4) 

Pooling Layer Down sampling was used by the pooling layer. There are various classes 

of pooling function. Maximum pooling functions are the most often used. The maximum values 

for each subregion were obtained using the maximal pooling filters. The size feature 4 × 4 × 1 

produced a 2 × 2 × 1 size feature if the 2 × 2 × 1 maximal pooling filters were applied. 

Fully Connected Layer Each neurone in completely connected layer is connected to neurones 

in preceding layer. Then, it is said as follows (5): 

𝑧𝑘
𝑛 = 𝜆(𝑎𝑗

𝑚−1 × 𝑥𝑗𝑘
(2)𝑤

+ 𝑐𝑘
(2)𝑚

)                                          (5) 
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Softmax Function Layer The softmax function layer is utilized to evaluate probability 

distributions of the event with different events. The following formula (6) is used to calculate 

and express how the softmax layer operates: 

𝑄(𝑧𝑘
𝑚) =

exp⁡(𝑧𝑘
𝑚)

∑  !
𝑘=1  exp⁡(𝑧𝑘

𝑚)
                                                (6) 

Device-generated load often adheres to specific guidelines. End device has several tasks 

km(t) at start of each time slice, data size of km(t) follows a uniform distribution. A randomly 

selected value between 0 and 1 that is no greater than task arrival probability is then multiplied 

by this data size. Table I displays task arrival probability in environment as well as task size 

range, λ i m(t). 

Table I. Parameter Settings. 

Parameter  Value  

𝒇𝒎
finvice ,𝒎∈𝑴

 2.5GH 

𝒇𝒏
𝒅/𝒔𝒔 , 𝒏 ∈ 𝑵 41.8GH 

Mobile end device core  C4 

𝝀𝒎
𝒊 (𝒕),𝒎 ∈ 𝑴, 𝒊 ∈ 𝑰, 𝒕 ∈ 𝑻 3.0,3.1, … ,10.0 Mbit  

𝒓𝒎𝚫,𝒎 ∈ 𝑴 14 Mbits   

𝒓𝒏𝚫,𝒏 ∈ 𝑵 41.8 Mbits  

𝝆𝒎,𝒎,𝒎 0.297 gigacycles per Mbit  

𝝆𝒏,𝒏, 𝒏 ∈ 𝑵 0.297 gigacycles per Mbits  

𝝉𝒎,𝒎∈𝑴,𝒊∈𝑰
𝒊 𝒎 100 time slots (10 s) 

Task arrival probability  0.3 

 

Every task k i m(t) has unique information, including its number and task size λ i m(t). The 

jobs initially arrive at the end device's processing queue. It should be noted that both 

computation and transmission completion are included in completion of processing step 

described here by eqn (7) 

∅𝑚
𝑓
(𝑡) = [ max

𝑟′∈{0,1,𝑡−1}
 𝑃𝑚,𝑗
𝑐 (𝑡′) − 𝑡 + 1]                             (7) 

The completion time of job k i m(t 0) is indicated by P c m,i (t 0). Determine P c m,i (t 0), c ∈ 

2 ∗ C before the end device is placed in the computing queue x because it observes the state of 

the queue, including the quantity of jobs and their sizes by eqn (8) 

𝑃𝑚,𝑗
𝑐 (𝑡) = min {𝑡 + 𝜓𝑚

𝑗
(𝑡) + |𝑥𝑚

𝑖 (𝑡) − 1| ⌈
𝜆𝑚
𝑖 (𝑡)

𝑓𝑚
𝑚Δ/𝜌𝑚

⌉ + 𝑥𝑚
𝑖 (𝑡) ∗ ⌈

𝜆𝑚
𝑖 (𝑡)

𝑟𝑚Δ
⌉ − 1, 𝑡 + 𝜏𝑚

𝑖 − 1}     (8) 

The index of the task's last scheduling destination edge node is used by edge node to determine 

whether to process or send job. Graph representation agent uses normalisation to determine a 

"attention coefficient” by eqn (9) 

𝑎𝑖𝑗 =
exp⁡(LeakyReLU(𝑎𝑇[𝑊𝑈𝑖‖𝑊𝑈𝑗‖𝐿𝑖,𝑗]))

∑  𝑘∈𝑁𝑖
 exp⁡(LeakyReLU(𝑎𝑇[𝑊𝑈𝑖‖𝑊𝑈𝑘‖𝐿𝑖,𝑘]))

                            (9) 
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In the formula above, k stands for concatenation operation, which splices properties of 

nodes I and J as well as linkages between them. αij is "attention coefficient" between nodes I 

and J, indicating relevance of node j to node I. Attention coefficient then updates new features 

Fi of node I by eqn (10) 

𝐹𝑖 = 𝜎(∑  𝑗∈𝑁𝑖
 𝛼𝑖𝑗
𝑘𝑊ℎ𝑈𝑗)                              (10) 

3.2 Proximal Policy (PP) 

PP optimizes policies over continuous action spaces. This deep learning method 

provides for smooth and effective policy updates without causing major, disruptive changes. A 

built-in characteristic of the method also enables fair resource allocation for jobs with real-time 

fluctuating workloads. By adjusting the criteria for resource and workload allocation in an 

optimal sense, PPO improves the model, assuring that no edge or cloud node is overcommitted 

or underutilized in its workload. The PPO procedure is depicted in Figure 2. Then the complete 

work follows. 

 

Figure 2. Proximal policy model 

• Representation of policy: The policy πθπθ(a|s) determines the probability of acting in a 

given condition. 

• Collection of statistics: Combine experiences by putting current policy into practice and 

storing results in a buffer. 

• Estimation benefits: Determine advantage function. A^(s,a) Evaluate each activity's 

relative efficacy in proportion to the expected result using Equation (11). 

Â(𝑠, a) = [𝑟 + Ψ𝑉Φ(𝑠̇) − 𝑉Φ(𝑠)]                   (11) 

• Update policy: Use the reduced aim to optimise the policy and prevent over-updating 

with Eq.(12) 

𝐿𝑃𝑃𝑂(£𝑃) = 𝐸[min(𝑟𝑡(£𝑃)𝐴(𝑠𝑡, 𝑎𝑡), clip(𝑟𝑡(£𝑃), 1 − ℰ, 1 + ℰ)𝐴(𝑠𝑡, 𝑎𝑡))]                  (12) 
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• Update Value Function: To improve precision of future reward prediction using Eq., 

refine the value function by eqn (13) 

LV(Φ) = Et[(VΦ(st) − Rt]
,                        (13) 

3.3 Firefly harmony search cat optimization 

To address job scheduling issue in cloud scenarios, technique to be used is called 

optimization by firefly. These fireflies can be attracted to another firefly depending on how 

brilliant it is. Obviously, they are attracted to the flies' opposite sex. The intensity of the 

headlights, which is the mode of communication, determines the sex of the fly. Generally, the 

following conditions are kept in view for firefly optimization technique: (1) Assumed all are to 

a single sex of flies, and they are attracted regardless of sex. (2) Brightness is equal to attraction, 

which means a less bright firefly will attract to a brighter one. (3) A fly goes at random if its 

brightness is greater than that of any other fly in the search space. Because appeal is directly 

correlated with brightness, the distance between flies increases if their light is less strong, or 

brighter. Therefore, compute the brightness—that is, the intensity and attractiveness—in order 

to move further with this strategy. 

Initially, Equation (14) can be used to determine a firefly's intensity. 

𝐼𝑛𝑡(𝑠) =
𝐼𝑛𝑡(𝑟)

𝑠2
                                         (14) 

The brightness and the way light is absorbed determine how attractive something is. 

Consequently, there is a relationship between the brightness intensity and the light absorption 

coefficient. This is what Equation (15) shows. 

𝐼𝑛𝑡 = 𝐼𝑛𝑡0 ⋅ 𝑐
−𝑠2                                     (15) 

First determine the distance between two flies after determining their intensity. Equation (16) 

is utilised in the computation. 

𝑠 = |𝑥𝑡 − 𝑥𝑑| =
1

𝑟
√∑  𝑟

𝑖=1   (𝑥
(0)2 − 𝑥(𝑡2))2                                   (16) 

Determined the population of fireflies and scattered them after calculating the distance. 

Movement of a firefly 𝑖i that is attracted to 𝑗j, a firefly that is brighter than 𝑖i, for the number 

of iterations denoted by 𝑢u. Equation (17) is used to compute the firefly's movement. 

𝑥𝑢+1
𝑑 = 𝑥‖

𝑑 + 𝑟0 ⋅ 𝑒
− {

𝑠2

𝑑2
} (𝑥𝑢

𝑑 − 𝑥𝑢
𝑑) + 𝛾𝐸𝑈𝑅𝑡                             (17) 

Step 1: Setting up In optimisation algorithms, initialising the number of solutions is a crucial 

step. Here, set parameter for this harmony search method to its initial value. This approach uses 

a number of parameters, including Pitch Adjusting Rate (PAR); ∈[0,1], Harmony Memory Size 

(HMS), Harmony Memory considering Rate (HMCR), and HMCR; ∈[0,1]. 

Step 2: Set up Harmony Memory (HM) initially. In this case, harmony memory HM, which is 

provided by Eq. (18), is produced arbitrarily. 

⁡𝐻𝑀 = [

𝐻𝑀1
1 𝐻𝑀2

1 … 𝐻𝑀𝑛
1

𝐻𝑀1
2 𝐻𝑀2

2 … 𝐻𝑀𝑛
2

𝐻𝑀1
𝐻𝑀𝑆 𝐻𝑀2

𝐻𝑀𝑆 ⋯ …

]                                      (18) 

Step 3: Create a brand-new harmony. Three rules, such as memory, pitch change, and random 

selection, are taken into consideration when creating a new harmony vector. Creating a new 

harmony is what improvisation is all about. Any of qualities in preset (HM_1^1-HM_1^HMS) 
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range can be used to estimate the major choice variable HM1 1 for the new vector in the 

memory consideration by eqn (19) 

𝐻𝑀𝑖
New = {

𝐻𝑀𝑖
New ∈ {𝐻𝑀𝑖

1, 𝐻𝑀𝑖
2…H𝑀𝑖

HMS  with probability 𝐻𝑀𝐶𝑅

𝐻𝑀𝑖
New ∈ 𝐻𝑀 with probability (1 − 𝐻𝑀𝐶𝑅)

         (19) 

Pitch adjustment is given in Eq. (20) as follows:  

𝐻𝑀𝑖
New = {

 Adjusting pitch with probability 𝑦
 Doing nothing with probability (1 − 𝑃𝐴𝑅)

                           (20) 

In the event that HMNew i's pitch adjustment decision is YES, HMNew i is changed as follows 

(21): 

𝐻𝑀𝑖
New = 𝐻𝑀𝑖

𝑁𝑒𝑤 ± 𝑟𝑎𝑛𝑑 × 𝑏                                   (21) 

Step 4: In order for this to occur, all cats are first split into two groups, namely seeking and 

active modes, and then they are randomly initialised by developing swarm. A fitness value must 

be determined for each iteration for each cat that is in active mode. Equation (22) below is used 

to determine the velocity for each cat after they have been initialised. 

v𝑒𝑑
𝑞(𝑡 + 1) = 𝑠 ∗ 𝑣𝑒𝑑

𝑑(𝑡) + 𝑏 ∗ 𝑢 ∗ (𝑥ded 
𝑑 − 𝑥𝑞

𝑑)                            (22) 

where x d best is the best solution for that iteration, u is a random value between 0 and 1, b is 

a constant, and ve q d (t) is velocity of qth cat at the tth iteration. Until all iterations have been 

finished, the velocity and location updates of the cats must be calculated. 

Algorithm of CTGPP-FHSCO 

1. Input: State of device 𝑚 in time slot 𝑡,𝑚 ∈ 𝑀: 𝑆𝑚(𝑡) =
𝐸𝑚(𝑡), 𝑈(𝑡), 𝐻(𝑡), Link(𝑡) 

2. Output: Action chosen for every task;  

3. Obtain 𝐻′(𝑡) by passing 𝐻(𝑡) in each GRU; 

4. Obtain 𝐹𝑚(𝑡) by passing 𝑈𝑚
′ (𝑡) and Link(𝑡) in graph represent agent; 

5. Forward 𝐹𝑚(𝑡), 𝐸𝑚(𝑡), 𝐻(𝑡) to scheduling agent;  

6. Obtain 𝐻′(𝑡) by passing 𝐻(𝑡) in GRUs of te scheduling agent; 

7. for Every task 𝐸𝑚,𝑖(𝑡) do  

8. Obtain 𝐸𝑚,𝑖
′ (𝑡) by concatenating 𝐸𝑚,𝑖(𝑡),𝐻

′(𝑡) and 𝐹𝑚(𝑡);  

9. Evaluate state value 𝑉𝑚,𝑖(𝑡) and advantage_value 𝐴𝑚,𝑖(𝑡);  

10. Evaluate 𝑄−value 𝑒𝑚,𝑖
sche ;  

11. Obtain 𝑎𝑚
𝑖 =  Softmax (𝑄 value ⁡𝑚,𝑖

sche ) 

12. end for 

13. ∀𝑘, 𝑖,𝑚: 𝛾𝑖𝑘𝑚 = 0.  

14. ∀𝑗,𝑚,𝑚′, 𝑖, 𝑘: 𝛿
𝑗(𝑚,𝑚′)

𝑘(𝑖,𝑖+1)
= 0.  

15. for 𝑘 ∈ 𝐾 do  

16. for 𝑖 ∈ 𝐼𝑘 do  

17. if 𝑖 is the first subtask in 𝐼𝑘 then  

18. 𝑚′ = arg⁡min
𝑥
 𝑂𝐶𝑖𝑘𝑥. 

19. Else 

20. 𝑚′ = arg⁡min
𝑥
 [𝑂𝐶𝑖𝑘𝑥 + 𝐿𝐶𝑗(𝑚,𝑥)] 

21. 𝛿
𝑗(𝑚,𝑚′)

𝑘(𝑖,𝑖+1)
= 1 

22. end if  
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23. 𝛾𝑖𝑘𝑚′ = 1 

24. 𝑚:= 𝑚′ 

25. end for 

26. end for  

 

4. Software defined virtual machine based reinforcement markov (SDVM-RM) 

model 

Through centralized control and adaptive dynamic behavior on the network, Software 

Defined Networking (SDN) enhances cloud network resource allocation by enabling efficient 

virtual machine (VM) provisioning and management. This means that the operation of network 

infrastructure can be done using software rather than hardware-based setup, thus giving VMs 

in a cloud environment flexibility and responsiveness in resource allocation. The system model 

being considered is for cooperative virtual machine and bandwidth allocation in the cloud 

service provider and ISPs. Users will submit demand requests for virtual machine provisioning 

to a central controller. One significant service paradigm that allows cloud providers to give 

cloud users access to enormous computing capabilities via the Internet is Infrastructure as a 

Service (IaaS). This issue is further compounded by price fluctuations, demand uncertainties, 

and other issues. Therefore, the VM allocation method needs to be optimised to fulfil resource 

utilisation requirements and minimise user charges. This issue is known as VM allocation 

optimisation, and Figure 3 illustrates it. 

 

Figure 3. VM resource allocation in cloud computing 

Controller then procures required bandwidth virtually through ISPs and the required 

VMs from cloud providers. ISPs can deploy their SDN through OpenFlow-enabled switches 

so that the centralized controller can allocate bandwidth and route traffic through virtual 

routers. Model the decision-making process with respect to a single controller but would ideally 

work with many controllers, thus managing networks and providers. In the reservation phase, 

bandwidth and VM are reserved well ahead of time-in most cases, a year-before their real 

requirement becomes clear. The second phase occurs when the real demand of the users—such 

as the daily demand-is realized at actual use. Utilisation and on-demand phases are the two 

divisions of the second stage. The necessary, reserved resources are used during the utilisation 

phase, typically at a little cost. The algorithm moves into on-demand phase if real demand 

exceeds resources that have been reserved. To meet any unmet demand during on-demand 
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phase, more resources may be provisioned at a higher cost. Since the first stage is far less 

expensive than the second but less flexible because of the lengthy reserve period, it is crucial 

that it be decided as best as possible.  

R = {1,...,R}, where R is the total number of routers, represents the collection of virtualised 

routers that an ISP oversees. While all expenses are known ahead of time, the demand for 

virtual machines is unknown. Thus, the collection of all potential VM demand values are 

provided by eqn (23) 

𝒟 = ∏  𝑉𝑖∈𝒱
 𝒟𝑖 = 𝒟1 × 𝒟2 ×⋯× 𝒟|𝜈|                              (23) 

The total bandwidth required at the time of reservation is also unknown due to the erratic 

demand for virtual machines. The set of potential bandwidth requirements for class Vi can be 

obtained using d(b) i, (1), since each VM class has a fixed external bandwidth demand. The 

following defines the range of potential bandwidth needs for VM class Vi by eqn (24) 

ℬ𝑖 = 𝒟𝑖 ⋅ 𝑑𝑖
(𝑏)

                                            (24) 

The collection of potential external bandwidth needs for each virtual machine class is thus 

represented as follows by eqn (25) 

ℬ = ∏  𝑉𝑖∈𝒱
 𝒟𝑖 ⋅ 𝑑𝑖

(𝑏)
                            (25) 

Finding a policy π that increases total reward R when method transitions between states 

following specific MDP stages T is aim of solving this MDP. Equation (1) determines the total 

reward R, where ri represents reward of every time step i and γ is discount factor (0 < γ < 1, in 

this article set to 0.9) that prevents the total reward from reaching infinite by eqn (26) 

𝑅 = ∑  𝑇
𝑖=1  𝛾

𝑖−1𝑟𝑖                             (26) 

The predicted total reward for an agent beginning in state s with policy π is then represented 

by value function of every state V π (s), which is defined in Equation (2). V π (s) thus shows 

how favourable state s is for an agent to remain in. There is an ideal policy π ∗ among all the 

others that maximises V π (s), as indicated by Equation (27). 

𝑉∗(𝑠) = 𝐸 [∑  

𝑇

𝑖=1

 𝛾𝑖−1𝑟𝑖] 

                 𝜋∗ = arg⁡max
∗

𝜋
 𝑉∗(𝑠)                                  (27) 

Then, for simplicity's sake, define V (s) as abbreviated form of V π (s). In reinforcement 

learning, the agent must test every policy π, which includes every conceivable combination of 

state-action pairings (s, a), in order to obtain the optimal V (s). Thus, for all conceivable actions 

a's, maximum value of Q(s, a) (Q∗ (s, a)) equals maximum value of V (s) (V ∗ (s)) (Equation 

(28)).  

𝑉∗(𝑠) = 𝑄∗(𝑠, 𝑎) = max𝑄(𝑠, 𝑎)                                  (28) 

𝑄∗(𝑠, 𝑎) = ∑  𝑠′ 𝑃(𝑠
′ ∣ 𝑠, 𝑎)𝑟(𝑠, 𝑎, 𝑠′) + 𝛾 ∑  𝑠′ 𝑃(𝑠

′ ∣ 𝑠, 𝑎)𝑉∗(𝑠′)                         (29) 

 

Thus, for every feasible state s 0 that transits from state s taking action a, derive 

Equation (6) using Equations (4) and (5). Positive or negative rewards are kept in the replay 

memory. It should use equation 21 to update its state space to the following state after 

considering incentives. This process keeps on until the final state space, or task, is reached as 

depicted in Figure 4. 
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Figure 4. flowchart for SDVM-RM 

5. Results and Discussion 

A cloudlet simulator is used to replicate the suggested model, and test outcomes are assessed 

to gauge how well it performs. A number of parameters, including resource utilisation, 

acquisition speed, execution time, energy management, are examined in light of the data 

produced. Build a cloud data centre with continuous PM measurements. Additionally, it begins 

using resource agents to create data canters. Every data centre began with several data hosts 

and related virtual machines. The hardware and simulation settings are displayed in Tables II 

and Table III. 

Table II. Hardware Specifications. 

Required Component Specification 

Processor Intel ⁡®  Pentium ⁡®  CPU G2030@ @3.00GHZ 

RAM 4 GB 

Hard Disk 1 TB 

Operating System Windows (X86 ullimate) 64-bit OS 

System 64 Bit OS System 
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Table III. Simulation Settings. 

Component Specification Values 

Cloudlets Length of task 

No of tasks 

1600-3400 

30-300 

Virtual Machine Host 4 

Memory 540 

Physical Machine Bandwidth 25,00,00 

Storage 500 GB 

 

Assessing performance of proposed method entails specifications such as power 

consumption, data centre resource utilization, acceptance rate and time to implement. 

Implement technology for official site visits using block processing approach. Jobs arrive at t 

= 0, then provide a distribution system that passes it through. Our framework work planning 

idea prioritizes jobs. In particular, resource agents that will allocate resources from the resource 

table get priority. Tasks assigned to virtual machines employ the space-sharing strategy that 

maximizes resource utilization in method. Performed ten iterations of each experimental 

evaluation for various QoS parameters to ensure the reliability of our results, recorded the mean 

outcomes to remove any inconsistencies. Because each simulation ran for 30 minutes, 

performance data could be thoroughly analysed. 

5.1 Parameters for VMs, datacentres  

This architecture setup three various types of data centers-fog data centers, cloud data 

centers, and hybrid data centers. Each of these data centers consists of numerous servers and 

varies with Fog nodes and virtual machines. The space-sharing policy, maximising system 

resource usage, is employed to assign workloads to virtual machines. To ensure the results' 

reliability, each case with varied QoS parameters was tried ten times, and the means were taken 

to eliminate discrepancies. Each run was scheduled for 30 minutes of simulation execution, so 

performance data could be scrutinized in depth.  

 

Table IV presents the detailed infrastructure and configuration of the data centers. The 

three data centers have a total of twelve hosts- which means a perfect fit to house a grand total 

of sixty users. Each of the hosts has been designed with a capacity of 64 GB RAM, 10 TB of 

storage to meet the requirements of even the most demanding applications. This would be 

connected by a network with extremely high bandwidth of 150 GB/s, enabling very fast data 

transfers, and making space-sharing based on dynamic assignment possible in real-time for 

flexible resource management according to demand. Each server capability consists of twenty 

CPU cores and has a network latency of less than three milliseconds. Hence multiple concurrent 

loads can be effectively handled with a minimum processing delay.  
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Table IV. Data center and host configuration 

Cloud 

Entity 

Characteristic Value 

Data Center Number of Data 

Centers 

3 

Number of Users 60 

Number of Hosts 12 

Host Storage Capacity 10 TB 

Shared Policy Space Shared with Dynamic 

Allocation 

Bandwidth (BW) 150 GB/s 

RAM 64 GB 

CPU Cores 20 Cores 

Virtualization 

Technology 

KVM 

Power Consumption 1.2 kW 

Network Latency 3 ms 

 

Figure 5 (a)-(e) shows a graphic representation of resource utilization, network 

efficiency, throughput, latency, QoS. Of these, the memory and a particular work processor 

are some resources' utilization. Whenever the other two methods are combined, will result in 

increased users using a particular method. The amount of resources utilized with the 

application of different resource allocation strategies. It expresses that the resource utilization 

percentage of the proposed method reaches its peak for a range of working sizes; being, it is 

functioning like that of smart city systems. 

The proposed scenario agrees with real-time situations in which failures of the server 

or network congestion could lead to baited changes in resource availability. In this situation, 

there are 6,000 jobs, with all jobs being 100 (MI) in length. In a cloud system, the amount of 

disparity in the workload assigned to each computing resource is referred to as the degree of 

imbalance. Less imbalance in an algorithm ensures better fair work distribution across 

resources such that none is overworked relative to others being underutilised. This aspect 

becomes imperative in cloud computing since it is a great influencer of the model's efficacy 

and performance. Until more than 400 episodes of training, not very great optimising takes 

place; after that, the curve started converging slowly in the forward direction. The above 

graph shows average task time, the variations in work duration, and the energy consumption 

under weight settings (0.8, 0.6, 0.4, and 0.2). In this way, the proposed algorithm can 

successfully balance task makespan and energy consumption by varying the weights of 

different goal reward functions, as evidenced by the curve in the image. In general, with task 

makespan in consideration, the system would adopt a strategy of opening more servers or 

increasing demand on the server to reduce wait time for tasks. 
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resource utilization 

 

network efficiency 

 

throughput 

 

latency 

 

QoS 

Figure-5 (a)-(e) graphic representation of (a) resource utilization, (b) network efficiency, (c) 

throughput, (d) latency, (e) QoS for proposed and existing technique 

The energy consumption of the system would increase as a result of overburdened and 

wasted server resources. In contrast, if the optimization target were minimal energy consumed, 

then the technique would adjust the resource utilization of the server to optimal utilization for 

minimizing global energy consumption. Response time, in essence, is the time elapsed by the 

system while considering a particular request. It can also be stated that the availability of 

resources directly affects reaction time. There are task scheduling methods to allocate 
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resources. If task scheduling is done appropriately, response times can be reduced since 

resources would inherently be available earlier or before deadlines. The majority of existing 

systems do not consider bandwidth, which is considered a critical resource. Bandwidth happens 

to be one of the three considerations of cloud computing data centres that advocate for in this 

paper. In this particular case, consider a set of nine different tasks from a Google task events 

dataset to feed them into five different scheduling algorithms and thus concretely illustrate how 

effective the new method is. Every task is identical to the one already used. 

 For reinforcement learning, the average service latency is essentially governed by how 

well the learning agent knows its environment. Positive results would be produced through 

better exploitation of resources and examination: these two must coexist. The ε value 

determines preference on using exploration or exploitation. Therefore, choose to exploit ε=0.5 

for our method. The proposed algorithm has ε value-configured actions. A random value from 

the q-table is selected whenever a randomly chosen integer is less than ε (0.5) to determine the 

q-value. The algorithm's performance would be lessened by not selecting an action that is 

highly rewarded; that is, an optimal action. The delay in the other processes queued behind it 

means that the task is being assigned to a slower virtual machine. This explains why a high 

value for ε would yield a delay. Conversely, lower values of ε would also imply a lower 

probability that the random number would be less than ε. When applying Equation 2, this aids 

the learning agent in selecting the maximum q-value. This reduces service latency and enables 

the best possible use of virtual machines. Nevertheless, the learning agent is limited in its ability 

to explore the environment and is compelled to execute Equation 2 in each iteration when the 

ε value is 0. This gets rid of exploration, which leads to bad virtual machine selection and VM 

queue congestion. Therefore, selecting an ε value that can lead to effective management 

between exploration and exploitation is crucial. Because of this, naturally decided to choose ε 

= 0.5 for our strategy. 

6. Conclusion 

Using a meta-heuristic machine learning model, this study suggests a new method for task 

scheduling as well as resource allocation in cloud computing networks. Numerous users and 

clients with virtual machines are utilising the cloud network in this instance. This deployed 

network's task scheduling model is implemented utilising firefly harmony search cat 

optimisation based on convolutional transfer graph proximal policy. Next, a reinforcement 

markov model based on software-defined virtual machines is used to allocate resources.  Multi-

tenancy makes scheduling in the cloud model an extremely dynamic scenario because different 

workloads need resources according to the processing capacity for demands. The proposed 

heuristic strategy effectively distributes the resources of high value taking into consideration 

resource utilization. On the metrics of optimal deployments of computational resources: CPU, 

memory and bandwidth could be determined. Throughput of 97%, latency of 95%, QoS of 

98%, network efficiency of 96%, and resource utilisation of 45% were all achieved using the 

suggested method. Proposed system adds a resource-bandwidth for performance assessment as 

opposed to most existing systems that consider workloads on CPU and memory resource usage. 

Future research in this area will focus mainly on developing more efficient scheduling methods 

that will improve response and turnaround times. 
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