Journal Pre-proof

DI-CVD Tri-Layer CX Classifier for Secure loT-Enabled Risk Prediction
Model " Journ S |
.| Machine and Gomputing
\l}n‘iﬁm 01, Issue 01:;;“;;_‘2'0 i/
Thumilvannan S and Balamanigandan R {f

DOI: 10.53759/7669/jmc202505124
Reference: JIMC202505124

Journal: Journal of Machine and Computing.

Received 12 February 2025
Revised form 22 April 2025
Accepted 28 May 2025

Please cite this article as: Thumilvannan S and Balamanigandan R, “DI-CVD Tri-Layer CX Classifier for

Secure loT-Enabled Risk Prediction Model”, Journal of Machine and Computing. (2025). Doi: https://
doi.org/10.53759/7669/jmc202505124.

This PDF file contains an article that has undergone certain improvements after acceptance. These
enhancements include the addition of a cover page, metadata, and formatting changes aimed at
enhancing readability. However, it is important to note that this version is not considered the final

authoritative version of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,
typesetting, and comprehensive review. These processes are implemented to ensure the article's final
form is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's

content to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may
be identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal

remain in effect.

© 2025 Published by AnaPub Publications.

@ AnaPub



DI-CVD Tri-Layer CX Classifier for Secure loT-Enabled Risk Prediction Model

S. Thumilvannan', R. Balamanigandan®”

L2pepartment of Computer Science and Engineering, Saveetha School of Engineering,
Saveetha University, SIMATS, Chennai, Tamilnadu, India.

Istvvannan@gmail.com, “balamanigandanr.sse@saveetha.com
Corresponding Author: R. Balamanigandan
ABSTRACT
This paper introduces a novel Di-CVD Tri-Layer CX Classifier, an loT-integigid a ne
ia (DB) and
re loT-based data
ing (DDH); a feature

extraction (FE) phase leveraging (IGO) Information Gain Ray nt‘ease- pecific ranking and

learning (ML)-driven framework, to predict the individual and joi

heart disease (HD). The proposed model comprises three pha

collection using Enhanced BGV encryption with Dynamic Distributed

a three-step classifier—Cm-Ro (FS) feature selection, hi GBoost classification, and

synergistic prioritized risk scoring. By integrating ml@-att tures, rule-free optimization,

and enhanced interoperability, the model kcal challenges such as heterogeneous

data formats, poor feature relevance, 8 interoperability in previous studies. When
compared to conventional classifiers such SVM and standard XGBoost, experimental
evaluation on the NHANES datas ows imprd¥ed performance in terms of accuracy (ACC),

recall (R), precision (P), and E outcomes validate the framework’s effectiveness in

early, secure, and indivi rediction, offering substantial support for timely

interventions and enh

all deaths were caused by this CVD and DB [1].Ninety percent of diseases can be
vor®d with early detection (ED), according to a global survey. Patients must be regularly
diagnosed, and their risk factors for disease must be examined. 10T has been created for that
reason. In a number of ways, I0T improves patient care. loT-connected sensors in medical

devices, pressure sensors, and hospital wristbands are some of the efficient uses of this




technology. [2] [3]. Health professionals can monitor patient data in a real-time (RT)
environment on display due to these sensors' ability to gather and transmit data to the server.

As a result, less manual data entry and collection is needed. lIoT-enabled devices can also be used

by healthcare facilities to continually monitor vital signs such as blood pressure (BP), bod
temperature, glucose levels, and heart rates (HR) [4]. The health worker will be able to detery a

whether a medical emergency is present at the appropriate moment if this informationg

and provided in real-time (RT). Death rates will drop as a result. Nonetheless, thesq
often quite heterogeneous, generating vast quantities of fitness and health dagllin a of

[5] [6].All of these
A massive volumes of
(ata. Interoperability
is the only way to allow systems to communicate with of and exchange data with as
many organisations as feasible. Hence, achieving hi - y in loT-based medical data
transfer (DT) is necessary.
Because of the increase in the amount oT%@ta bad) collected and the need to boost the system's
g the medical industry [7] [8]. A ML model

will be t

intelligence, ML techniques are being used

comprising multiple medical dat ained utilising a variety of health care data

pertaining to disease. Both pay althcare professionals will be associated with all of
those data. Personalised tr ent havioural modification, drug manufacturing and the
identification of noveig at lead to new medications and treatments, clinical trial

research, and smart ( ronic health records are all areas in which ML can be useful.

owever, these rules lack confidence levels, and the increase in rules, in turn,
ses the time for building a classifier.[14]

ious risk prediction models considered a number of factors such as BMI, BP
Cholesterol, etc.; but they failed to consider its activity barrier such as fear of reactions

from hypoglycemia.[15]
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Considering DB and HD risk prediction, most of the models do not indicate risk
prediction (RP) of any particular disease but did it for overall disease; hence, individual

disease RP is required.[16]

X/
°e

Previous DB prediction models had difficulty predicting diabetes from the specified ning
attributes; also, they were permitted for optimal feature selection (FS) by mapy
therefore, still, it remains a tedious task to identify the most accurate FS pro
ML.

In heart disease prediction, the classification was fed with categori

X/
°e

al d@gNas i ce
re@ilted in the

they failed to be a multi-relational classification mode
elimination of memory bound for future risk prediction.
% 10T machine learning models previously used for secure commur¥getion between patients
and predictors, these models in the network fﬁente with respect to
communication formats; this made it difficult for d ommunicate and limited the

lack of interoperability.

Therefore, for predicting the risk score

@ leaseSNVIL. is used as a risk prediction tool.
Q¥ proven risk factors like age, smoking, high BP,

cholesterol, and DB to predict future risk.

Prior DB and HD risk prediction algorithm
ajority of risk prediction algorithms have

identified etiological connection een these risk factors and HD and DB features. Missing

values (MV) in the dataset argfe r dwback that resulted in features that directly affect the

g (

% ar® some individuals who are not at risk receive unnecessary
Q

gProvement in these risk prediction tools is necessary.

accuracy of the decision-m tool. Many people who are at danger are still not
recognised by these

preventative carggalh

2. LIT ES EY

Ma e [9
bents high risk. Data on CHD patients from the eight cycles of the Health and Nutrition

ucted a study for the prediction of cardiovascular disease patients and diabetes

Xa n Survey (NHANES) were gathered for this retrospective cohort analysis. Using
a ratios (HRs) and 95% confidence intervals (Cls), competing risk models were created to
assess the relationship between HR and CV death. Among CHD patients, an increased risk of

CV death was linked to an HR of <70 or >80 bpm. However, this study considered pulse rate as




heart rate, which was measured only once; also, this study does not represent any inter/intra

reliability with pulse measurement; hence, the result of this study remains unsatisfactory.

Chen et al [10] presented a regression model (RM)-based Energy-adjusted score calculation.
This score was computed using 24-hour food recall data; sex-specific thresholds were defineg
low muscle mass and strength, and the knee extensor kinetic strength (peak force) was asse
using this value. The NHANES 1999-2002 dataset was utilised in this cross-sectiog
assess performance. Regression model results were inconsistent because a nungger

were used in this model to find the score; this resulted in low accuracy.

The possibility of detecting Type-Il DB just by using age, body maS c¥BMI), and glycated
haemoglobin (HbA1c) was confirmed by Thamaraimanalan et al. [1Xgasing a method based
on K-means clustering (KMC). Based on age, BMI, and Hb thA S dataset has been
assigned to pre-established subgroups. 10-fold cross-vali \/) was used to analyse the
three variables' classification performances, and log@tic n (LR) and Cox regression

odel's effectiveness was reduced by

risk. Th®10-year risk of CVD among individuals was

dietary fibre intake and long-term

predicted using the atherosclergti@&C re, which took into account the participants’ age, sex,
status, and smoking status. The data's normality was

est (SWT). However, due to a lack of data, this study does not

analysing them, it first thought that the event CVD was incident ischaemic HD and
stroke. The extent to which healthy lifestyle factors were linked to lowering the risks of CVD,
cancer, and mortality in individuals with prediabetes was not demonstrated by this model, which

exhibits ambiguous results.




3. PROPOSED METHODOLOGY

The proposed Di-CVD Tri-Layer CX Classifier framework is designed to provide secure,
accurate, and individualized risk prediction for both diabetes (DB) and heart disease (HD) by

leveraging loT-based health data and machine learning techniques. This methodolog
structured into three integrated phases: secure data acquisition, feature engineering and ran Q

and a multi-stage classification model. Figure 1 shows the proposed block diagram.
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3.1. T-B Data Collection
In the f ase@pthe Di-CVD Tri-Layer CX Classifier framework, a network of loT-enabled

rs such as glucose monitors, heart rate sensors, blood pressure cuffs, and
vity trackers is employed to gather real-time physiological and behavioral health
patients. These devices continuously capture multi-dimensional data including blood
pressure (BP), heart rate (HR), glucose levels, and physical activity metrics, all of which are
crucial indicators for early detection of diabetes and cardiovascular disease. The primary

challenge in this phase is not only the reliable acquisition of data but also ensuring the



confidentiality, integrity, and authenticity of the transmitted data, particularly in an environment
susceptible to security threats and privacy violations.

To achieve end-to-end confidentiality, the collected data is encrypted using an Enhanced
Brakerski-Gentry-Vaikuntanathan (BGV) encryption scheme, which is a variant of homomorphi
encryption. Homomorphic encryption allows computations to be performed on cipher

enabling analysis without revealing the underlying data. The standard BGV encryptigg

operates over polynomials and allows additive and multiplicative operations to be ¢ in
the encrypted domain. The encryption of a message m under a secret key skqica a
ciphertext c, such that:

c=Eg(m)=m+e mod q (1)

where:
« misthe plaintext, ,
e e isasmall error term (to ensure semantic security
e g isalarge modulus.

The enhanced BGV used in this model i

mod 2 at the final ciphertext layer. Thi
levels, increasing the resistance against brute-

can be represented as:

This step ensures thg ' ext remains indistinguishable even under known-ciphertext
attacks, especially in environments such as wearable 10T systems.

Once encQti ( the data undergoes Dynamic Distributed Hashing (DDH) to ensure

integri re in®xing. The DDH process involves the generation of unique hash values

fore ta packet, such that:
h; = H(cillt;) ©)

erey
e h; is the hash value for the ith encrypted data packet,
o ¢ is the final encrypted data,

e t; is the timestamp, and




e H(-) is asecure one-way hash function like SHA-256.
This timestamp concatenation provides temporal traceability and eliminates replay attacks, while

the hashing ensures data tamper resistance.

The encrypted and hashed data packets are then securely transmitted over a medical-g
communication network to a central server or cloud platform, where health practitioners per

the decryption and validation process. Upon reception, the system verifies the hash

packet by recomputing it from the received ciphertext and timestamp. If hfeceive

the data is accepted as authentic and unaltered.

Decryption of the ciphertext ¢’ is then performed using the pri sk, extracting the

original message: ,

=Dy (') =m @

Only if the hash verification passes is the dgta i ate e patient’s health record for

; oatl data remains confidential, authentic,
use in predictive analytics.

and Di-CVD-Specific Ranking

Once the encrypted health data cgfiec om loT devices is securely transmitted and decrypted

further analysis. This secure pipeline en

and unaltered from the moment of collecti8

3.2. Data Preprocessing, Feature Engineeri

in the central server eny@nm second phase begins with comprehensive data

preprocessing and featuggse ring. This phase aims to transform raw heterogeneous clinical

data into a high-qual

@ red@ format suitable for machine learning analysis. The first step
IOl P licate records, typically using hash-based or row-wise comparison

, missing values in key attributes such as glucose level, blood pressure

involves
technigyes.

(BP), a index (BMI) are imputed.

er cles@eing, the data undergoes normalization to reduce feature value skewness and scale all
nu ttributes into a consistent range, typically [0, 1]. Once normalized, the dataset is
through a feature selection pipeline based on Information Gain Ratio (IGR), which
quantifies the relevance of each feature with respect to the class label—either No Risk (0) or
Risk (1). IGR improves upon the traditional information gain by penalizing attributes with a

large number of distinct values and is computed as:




IGR(A) = % Where 1G(A) = H(T) — H(T|4) (5)

Here,

o H(T) is the entropy of the target class:

H(T) = = XiZ1pilogz p;
e where p; is the probability of class i,

e H(T | A) is the conditional entropy given attribute A,

e H(A) is the intrinsic information of attribute A.
The IGR score of each feature allows for quantitative ranking wit
enabling automated selection of features that reduce classification rer

predefined rule sets,
y. The output is a

feature matrix where rows represent patients and columns to highly ranked attributes.

Key features considered for diabetes (DB) risk pregiftion family history, age, gender,
race and ethnicity, height, weight, blood g HbAlc levels. A novel and domain-
specific attribute, termed the Hypoglyce (HF), Ts also integrated into the model. HF
accounts for the risk associated with excessivaggsulin intake or diabetes medication, which may

lower glucose levels to dangerous olds. A safnple formula for estimating HF could be:

osJi X Medication Sensitivity Factor (7)

cose Baseline Level

This factor improve % roqp of DB risk classification by incorporating behavioral and

pharmacological risk gts.

For he i yn addition to standard features such as cholesterol, BP, BMI, and ECG
dology introduces a Di-CVD Priority Ranking Score (DPRS) to emphasize
evels, as inactivity is a leading contributor to cardiovascular conditions. The
s higher weights to features with stronger empirical associations to HD using a

function:

DPRS; = a.f; + B.9; 8)

Where:




e f; = physical activity relevance index for feature i,
e g, = statistical significance of feature i from prior clinical studies,

e «aand f =empirically tuned weights based on correlation analysis.

classification using optimized learning models.

3.3. Tri-Step Classification Using Cm-Ro Optimized Hierz?ﬂ GBoost for Risk

Scoring
In the final phase of the Di-CVD Tri-Layer CX Classifie k, the focus is on accurate,
interpretable, and secure risk prediction using.a I T Classification Strategy. This

ion and decision-making strategies,

Misease risk scores. The phase is composed of

three tightly coupled steps: feature optimizatiS@hierarchical classification, and prioritized risk

scoring.
Step 1: Centroid Mutationgf€scut Optighization (Cm-Ro) Based Feature Selection

The first step begi izing the feature set using a Centroid Mutation—Rescue

Optimization (Cm-R ue. Cm-Ro is inspired by population-based metaheuristics and
aims to s [ that best represent the discriminative nature of the disease classes.
y computing the centroid vector € of the feature matrix X € R™™ in
er of patients and m is the number of features):

C =23, X (9)

n

aCWreature vector is evaluated by its Euclidean distance from the centroid to measure its
contribution to class separation. Mutation operations are then applied to introduce new
combinations, followed by a rescue strategy that reintroduces high-impact features lost during

mutation. This step ensures a multi-relational and multi-attribute configuration, meaning that




cross-feature interactions (e.g., age x glucose, activity x BMI) are explicitly formed for more

expressive 11odelling.

Step 2: Synergistic Hierarchical XGBoost Classification

The optimized feature set is then passed to a Synergistic Hierarchical XGBoost Classifier,
builds multiple tree-based learners in a layered decision process. The synergy here

weighted prioritization of features like age, physical activity score, and disease le
years). These features are empirically found to have dominant predictiy e\ are e ned
higher gain-based importance values in the model’s objective functj
XGBoost's regularized loss function is given by:
L() = 211 (v 987) + Zhoo Q) , (10)
where:
o 1 (yi,fzi“)) is a differentiable conv ction (e.g., logistic loss),

« 9" is the prediction of the ith patient al@osting round t,

e N(fi) =yT+ %/1 lwl?j regularization term that penalizes tree complexity.

The hierarchy is achieved b inin equence of classifiers, each refining its decisions based

s layer. Features are ranked and weighted dynamically using

1[ G, _Gk _(GL+GR)2]_ (11)
2 lHL+A HR+A Hp+Hg+A

ere:

o and H are the first and second-order gradients of the loss function (w.r.t. predictions),
e L, R denote left and right splits of a node,

e Aand y are regularization terms.



This ensures that the trees grow in a manner that reflects both discriminative strength and

generalization, mitigating overfitting especially across loT-derived noisy datasets.

Step 3: Synergistic Prioritized Risk Scoring

In the final step, the predicted outputs are post-processed to generate disease-specific risk sg

weighting. For each patient, the final risk score R is computed using a li

fusion of features:

s = ;-nzl a)]xj (12)

where: ,

« x; is the value of the jthj{th}jth selected featu

« wj isthe priority weight derived fig -spaQ@fic ranking (e.g., Di-CVD Rank),

o m' c mis the reduced set of high-im%g& features after Cm-Ro and XGBoost.

Patients are thus not only classifi “At Risk” (1) or “No Risk” (0), but are also assigned an

rity and source (DB or HD) of the health threat. This

interpretable risk score that r
final output is transmitted Sgurel medical professionals, preserving data privacy while

enhancing actionable ly intervention. Overall, the proposed model will be giving

accurate individual ric Jn a secure manner without affecting the privacy of patients.
4. EX

4.1 Se

D

d HEWased attribute values presented dataset is given below.

catalog.data.gov/dataset/national-health-and-nutrition-examination-survey-nhanes

Interviews and physical examinations are also included in this dataset, which is NHANES. Every

year, a nationally representative sample of roughly 5,000 people is examined by the survey.


https://catalog.data.gov/dataset/national-health-and-nutrition-examination-survey-nhanes

These individuals are spread around the nation, with 15 of those counties receiving annual visits.
Questions about diet, health, socioeconomic status, and demographics are all part of the
NHANES interview. In addition to laboratory tests conducted by highly qualified medical
professionals, the examination component includes medical, dental, and physiologica
assessments. CDC’s Division for HD and Stroke Prevention (DHDSP) experts have calcu
signs from this data source. The information has been stratified by age group
race/ethnicity and shown as trends.

4.2 HARDWARE REQUIREMENT

The following machine configuration will be used with the sugg @ D ayer CX
Classifier Based Risk Prediction Model in the MATLAB working plat (version R2019b):
Processor: Intel core i3 ,
CPU Speed: 2.20 GHz
OS: Windows 7
RAM: 4GB
4.3 SOFTWARE REQUIREMENT
The MATLAB (matrix laboratory) wor nvironment will be used to implement the

suggested Di-CVD Tri-Layer CX Classifier B RP Model. MATLAB is a fourth-generation

programming language and m radigm numerical computation environment. This was

created especially for 1/0O agr anggsimple scientific computations. MathWorks created
MATLAB, a proprietar rammiing language. User interface development, matrix

manipulation, functig : isualisation, algorithm implementation, and interface with

pon presents a comprehensively experimental validation of the proposed Di-
Tri-Yyer CX Classifier risk prediction model is provided using the NHANES database.

he es are investigated with different attributes embedded into the dataset. This new
esech has encouraging findings for the medical field, which raises hopes that these individuals
may receive an early and effective diagnosis. In addition to classification accuracy (ACC), the

classifier is evaluated using the average results for the classifiers and a few statistical metrics




provided in the equation. SVM and XG BOOST are compared with the suggested Di-CVD Tri-
Layer CX Classifier.

The ratio of accurately detected p”siti’e observations to all predicted positive observations is
known as precision (P).
P = TP/TP+FP

The ratio of accurately identified positive observations to the total number of obsery @ e

actual class is known as sensitivity or Recall (R).

R =TP/TP+FN (14)
The weighted average of P and R is known as the F1 score. Con ntly, FP and FN are
required. ,
F1 Score =2*(R*P) /(R +P, (15)
The following is how ACC is determined in terms of Q@Siti nddeegatives:
ACC = (TP+FP)/ F ) (16)

Where TP- True Positive
FP- False Positive
TN- True Negative
FN- False Negative

SVM, XGBOOST, ang ed Di-CVSTLC are the 4 ML techniques that are compared in
nt criteria of ACC, P, R and F-Measure.Among the three, the
Support
81.479

recall

) approach shows the lowest performance, with an F-Measure of
f 83.54%, indicating limited effectiveness in balancing precision and
performs better, achieving 93.59% Precision, 87.25% Recall, and an
ipprov
S Hogyever, the proposed Di-CVSTLC model outperforms both existing methods across all
ics. Its greatest P (93.83%), R (89.68%), F-Measure (87.68%), and ACC (89.68%) show that

it can accurately detect and classify cases more consistently. The Di-CVSTLC technique is a

ure of 84.57%, demonstrating a more reliable classification performance than

better option for the specified classification problem because of these results, which demonstrate

its efficacy and resilience.




Table 1: Comparative Analysis of the suggested and current methods using various

metrics
Methods P (%) R (%) F-Measure (%) ACC (%)
SVM 89.74 83.54 81.47 83.54
XGBOOST 93.59 87.25 84.57 87.25
Di-CVSTLC 93.83 89.68 87.68 92.18
m XGBOOST

<93

Di-CVSTLC

Figure 2: Comparison oyt he suggested DI-CVSTLC technique and current

ethods by P

Figure 2 shows the

accuracy of SV ' and the suggested Di-CVSTLC model in accurately identifying

he proposed Di-CVSTLC model achieves the highest precision at 93.83%, showing
ts SWperior capability to make highly accurate positive predictions. The small but noticeable
improvement over XGBOOST suggests that Di-CVSTLC is more refined in its decision-making

process, making fewer errors when identifying positive cases. The increasing precision values




across the three models highlight the gradual improvement in predictive accuracy, with Di-
CVSTLC emerging as the most reliable approach in terms of precision.

mSVM m XGBOOST m Di-CVSTLC

call(%0)

XGBOOS Di-CVSTLC
TECH

Figure 3 shows the recall_graph illUates how effectively each model—SVM,
XGBOOST, and the proposed

dataset. Among the three,

—identifies all relevant positive instances from the

ates the lowest recall at 83.54%, indicating that it
misses a significant NUZEe
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Figure 4: Comparison outcomes of the sugge L C method and current

approac -N@Qasure

Figure 4 shows the F-Measure (or F1-Sc > which Combines P and R into a single metric
to provide an accurate representation of eac

SVM records the lowest F-Mea at 81.47

odel's performance. Among the three models,
indicating weaker overall performance in
TP and avoiding FP or FN. XGBOOST shows a

e of 84.57%, reflecting a better equilibrium between

maintaining a balance amon

precision and recall. roposed Di-CVSTLC model achieves the highest F-Measure
at 87.68%, demonst uperior ability to maintain both high precision and high recall
easure score highlights Di-CVSTLC’s consistency and robustness
king it more effective at delivering reliable results under varying data
easing trend in the F-Measure values from SVM to XGBOOST to Di-
earty shows the progressive improvement in the overall quality of predictions, with

offering the best performance.




mSVM m XGBOOST m Di-CVSTLC

Accuracy(%)

XGBOOST

METHOD

Figure 5: Comparison outcomes of thass L C method and current

Figure 5 shows the proposed DI-CVSTLC b
classifier. SVM, XGBOOST, and thessuggested MRCVSTLC are the three models whose overall
prediction ACC is compared in graph. SVM demonstrates the lowest accuracy at
83.54%, indicating that it
the other models. XG

| classifiers give more accuracy than the existing

ctly es a lower proportion of total instances compared to

ws a significant improvement with an accuracy of 87.25%,

fo make correct predictions across both positive and negative

accuracy from SVM to XGBOOST to Di-CVSTLC highlights the overall
in model performance, with Di-CVSTLC demonstrating the most reliable and

ate classification results among the three approaches.

6. CONCLUSION
In this study, a Di-CVD Tri-Layer CX Classifier-based framework was proposed for

precise and secure risk prediction of diabetes and cardiovascular diseases in an IoT environment.




Unlike existing models, the proposed method integrates enhanced encryption techniques,
intelligent feature ranking and physical activity factors, and a multi-phase classification strategy
to ensure individual disease risk profiling. By leveraging the synergistic capabilities of the Cm-
Ro optimized feature selection and hierarchical XGBoost model, the system improves bot

classification reliability and interoperability across heterogeneous loT devices. Experimg
evaluation on the NHANES dataset demonstrates high efficiency in terms of ACC (9
(89.68%), P (93.83%), and F1-score (87.68%) when compared with traditional cI

SVM and standard XGBoost. Future work will focus on expanding the mod a
prediction systems with real-time deployment and federated learning ‘ meworks.
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