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Abstract 

 

Oral health care is indispensable for patients with insulin resistance. This research work 

presents a novel framework for oral implant recommendation for insulin resistant patients.  

This framework recommends optimal implant types and customized preoperative strategies 

which are contemplated for such patients. This framework integrates a synthetic patient data 

modelling with more clinically significant features like HbA1c, bone density and glycemic 

control indicators. 3000 data which mimics the clinical data is generated and with which the 

model is trained. The features are optimized using a Lion’s Pride Inspired Algorithm (LPIA) 

which imitates the behavioural traits of Lions in their pride. The method of elitism is adopted 

for obtaining the optimal solution set. The classification is done by using Support Vector 

Machine. This combo demonstrated a strong performance with LPIA optimized feature space 

achieving a maximum classification of 81% and F1-weighted score up to 0.31. The ROC 

analysis was also performed for the implant types like Zirconia which produced AUC scores 

above 0.90 which validates the discriminatory capacity of the proposed framework. In addition, 

the clinical recommendation regarding the implant timing, glycemic management were 

generated dynamically. These results demonstrate the capability of the proposed framework as 

an intelligent, interpretable and patient specific decision support tool for dental implant 

planning in diabetic care.  
 

 

Keywords—. Lion’s Pride Inspired Algorithm, SVM, Oral Health care, F1 Score   

1. INTRODUCTION 

Recent days, an aesthetically pleasing solution for edentulism and oral rehabilitation is 

Dental implants. The success of the dental implant is influenced by various factors. These 

factors include systemic and local factors. Among the factors contributing for the success of 

dental implant, diabetes mellitus (DM) is a prime risk contributor. This has been documented 

very well in literatures [1]. DM affects the wound healing and compromises bone metabolism 

thereby increasing the risk of peri-implantitis and implant failure. When there is a condition of 

poor glycemic control, this complications occur [2], [3]. Diabetes prevalence is considerably 

raising and it is projected that over 700 million people would be affected by DM by 2045 [4]. 

This gives rise to a urgent need for an evidence based decision making support system for 

dental care. It is factual that DM patients require a very careful risk assessment before the 

dental implant therapy. This involves clinical judgement which is based on blood glucose levels 

like HbA1c, FBS, also, bone density and systematic conditions [5]. This judgement and 

evaluation is not standardized and are subjective which results in an inconsistent outcomes of 

dental implant therapy. 

In this era, machine learning (ML) has potential application in and can assist several tools in 

medical and dental diagnosis. This ML offers objective pattern recognition and decision 
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making capabilities [6]. In the field of implantology, the application of ML is inevitable and 

have shown significant contribution in predicting and recommending implant bone loss [7]. 

Also in predicting treatment outcomes [8] and complication risks. Most of the available models 

rely on real world clinical data which is often very low in volume and also heterogenous. This 

data is more subjective to privacy concerns making it more hard to generalize or deploy widely. 

There are few frameworks that combine clinically observed facts and with the data driven 

intelligence. This, however, limits the adoption by dental practitioners who are concerned about 

transparency and trust in the recommendation [9]. These limitations are addressed by the 

proposed framework for recommendation specifically contemplated on dental implant for 

diabetic patients. The proposed framework leverages a synthetic data generation which can be 

scaled and which is flexible. The framework employs a naturally inspired algorithm based on 

the behavioural traits of Lion to optimize the features. This proposed algorithm mimics the 

social behaviour of Lions for robust feature selection. Naturally inspired algorithms work very 

well for optimization. Finally a Support Vector Machine (SVM) classifier which is well known 

for its high accuracy is used. The framework is implanted as a GUI which enabling a real time 

input and a visual feedback and a report generation. The framework provides outputs like 

implant type suitability, recommended loading protocol. This can be immediate or delayed. 

Also preoperative caution level which is low, moderate, high. Finally glycaemic control 

recommendation also. This proposed framework is a recommendation system for complete 

dental decision support pipeline which integrating data science along clinical reasoning. This 

framework offers a reproducible, explainable and a practical tool for dental professionals in 

situations where access to a very large patient datasets is scarce.  

This proposed work presents a framework in its entirety including mathematical modelling, 

synthetic data strategies, optimization, logic, classification pipeline, user interface design and 

an output visualization. The major objective is to demonstrate a potential of the framework as 

a scalable patient centric, AI enhanced implant recommendation system which lay the 

groundwork for future clinical deployment.  

 

Structure of the Paper- The rest of the paper is organized as follows: Section 2 discusses 

mathematical modelling, and Section 3 provides synthetic data for dental implant of diabetic 

patients. In Section 4 feature optimization using proposed lion’s pride inspired algorithm is 

provided. Section 5 contains Experimental results and Interpretations and Section 6 contains 

conclusion. 

2. MATHEMATICAL MODELLING 

This section provides the mathematical modelling of the proposed framework. The 

framework solves the complex and multi-dimensional problem of decision making in dental 

implant recommendation for diabetic patients. The mathematical modelling of the synthetic 

data generation, the actual problem, feature encoding and normalization and finally 

probabilistic prediction is provided in this section. This modelling attempts to simulate realistic 

profiles and translates them in to analyzable feature space and eventually learn a reliable 

decision function for recommendation.    

2.1 Synthetic Data Generation 

Let us consider the entire psychological space for the patients as in eqn. (1).  

 

                                        𝑋 =  {𝑥 ∈ 𝑅𝑑 | 𝑥𝑗 ∈ Ω𝑗∀𝑗 = 1,2, … 𝑑}                                          (1) 

 

Where d is the number of attributes like FBS, Bone density, HbA1C etc. And, Ω𝑗 ∈ 𝑅 𝑈 𝐶𝑗 

is the valid domain for the feature 𝑥𝑗which can be numerical or categorial.  
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The feature wise distribution, for each given continuous variable 𝑥𝑗𝜖 𝑅 , a probability 

distribution is assigned 𝑃𝑗  which is based on clinical studies. Let us consider HbA1c, the 

variable 𝑥𝐻𝑏1𝑐  ~Ν (𝜇 = 7.5, 𝜎2 = 0.8); similarly, for FBS 𝑥𝐹𝐵𝑆~Ν(150, 302), and for bone 

density 𝑥𝐵𝐷~ ⊔ (0.1, .5). where Ν denotes the normal distribution and ⊔ denotes the uniform 

distribution. Also, the categorial variables 𝑥𝑘 ∈  𝐶𝑘, are assigned a discrete probability mass 

function 𝑃𝑘.  

                                          𝑃𝑘(𝐶𝑖) = Pr(𝑥𝑘 =  𝑐𝑖) , ∑ 𝑃𝑘(𝑐𝑖) = 1𝑖                                        (2) 

 

Also, in the multivariate generation, let 𝑥𝑖~𝑃(𝑥), where 

 

                                                        𝑃(𝑥) =  ∏ 𝑃𝑗(𝑥𝑗)𝑑
𝑗=1                                                       (3) 

 

Here we assume independence. And we generate N synthetic samples  

 

                                                      𝐷𝑠𝑦𝑛 =  {𝑥𝑖~𝑃(𝑥)}𝑖=1
𝑁                                                      (4) 

The label assignment function 𝑦 = 𝑔(𝑥) assign implant types based on the clinical rules  

 

                       𝑦𝑖 = 𝑔(𝑥𝑖) =  {
𝑍𝑖𝑟𝑐𝑜𝑛𝑖𝑎 , 𝑖𝑓 𝑥𝐻𝑏𝐴1𝑐 < 7.5 𝑎𝑛𝑑 𝑥𝐵𝐷 > 0.8
𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                             

                         (5) 

 

An alternate method for probabilistic labels can be sampled from eqn.6 which is the softmax 

model which provides better variability and non-deterministic decision boundary simulation.  

 

                                              𝑃𝑟(𝑦 = 𝑐𝑘 |𝑥𝑖) =  
exp (𝜃𝑘

𝑇𝑥𝑖)

∑ 𝑒𝑥𝑝𝑗  (𝜃𝑘
𝑇𝑥𝑖)

                                                 (6) 

 

2.2 Problem Formulation 

Let 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑁  be the complete synthetic dataset, it is anticipated to model the dental 

implant recommendation framework, as a supervised classification problem.  

 

                                        𝐺𝑖𝑣𝑒𝑛 ∶  𝑥𝑖 ∈ 𝑅𝑑 , 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 ∶  𝑦𝑖 ∈ 𝑌                                            (7) 

 

Where 𝑌 =  {𝑍𝑖𝑟𝑐𝑜𝑛𝑖𝑎, 𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚, 𝐷𝑒𝑙𝑎𝑦, 𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒} 

 

The objective is to learn a classifier 𝑓: 𝑅𝑑 → 𝑌 that would minimize the misclassification 

loss.  

 

2.3 Label Encoding and Dimensional Homogenization  

The dataset which is used for training the algorithm has to be uniform and to ensure the 

uniformity, label encoding is used where;  

𝐿𝑎𝑏𝑒𝑙 𝐸𝑛𝑐𝑜𝑑𝑖𝑛𝑔:  ∅: 𝐶𝑗 ⟶ 𝑍 for categorial features is given as;  

 

                                                      𝑥𝑗 = 𝑐 => 𝑥𝑗
𝑒𝑛𝑐 = ∅(𝑐)                                                   (8) 

 

In addition, the continuous features are standardized using Z-Score normalization which can 

be given as ; 
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                                                            𝑥′ =
𝑥𝑗−𝜇𝑗

𝜎𝑗
                                                                   (9) 

 

In eqn. (9), 𝑥𝑗  𝑎𝑛𝑑 𝜇𝑗 are the empirical mean and standard deviation of the feature j.  

The Final transformed input space is given as :  

 

                                                  𝑋′ = {𝑥𝑗
′ ∈ 𝑅𝑑  | 𝑥𝑗

′ =  {
𝑒𝑛𝑐𝑜𝑑𝑒𝑑 (𝑥𝑗), 𝑥𝑗 ∈ 𝐶𝑗

𝑥𝑗−𝜇𝑗

𝜎𝑗
, 𝑥𝑗 ∈ 𝑅

                                                (10) 

 

2.4 Objective Function of the Prediction Model  

It is imperative to model the objective function of the prediction model mathematically. Let 

𝑓𝜃(𝑥) represents the parametric decision function which is trained on the labelled data. In this 

case, SVM. The overall objective is to minimize the empirical risk which can be given as:  

 

                                                       𝑅′(𝑓) =
1

𝑁
∑ 𝑙(𝑓(𝑥𝑖

′), 𝑦𝑖)
𝑁
𝑖=1                                            (11) 

In eqn. 11, the l represents the 0-1 loss.  

 

                                                          𝑙(𝑦′, 𝑦) =  𝕀[𝑦′ ≠ 𝑦]                                                  (12) 

 

Which can also be represented as log loss for probabilistic models; 

 

                                         𝑙(𝑦′, 𝑦) =  − ∑ 𝕀[𝑦 = 𝑐]. 𝑙𝑜𝑔𝑃𝑟(𝑦 = 𝑐 | 𝑥)𝑐∈𝑦                              (13) 

 

2.5 Clinical Rule Modelling  

In the clinical modelling, while f(•) provides the prediction for implant type. The real-world 

applicability is ensured through clinical rule modelling. It is necessary to define post inference 

logic as below;  

 

                                 𝐶𝑎𝑢𝑡𝑖𝑜𝑛 𝐿𝑒𝑣𝑒𝑙 =  {

𝐻𝑖𝑔ℎ , 𝑥𝐻𝑏𝐴1𝑐                > 8
𝑀𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 7.5 𝑥𝐻𝑏𝐴1𝑐 ≤ 8
𝐿𝑜𝑤, 𝑥𝐻𝑏𝐴1𝑐                 > 7.5

                                (14) 

 

              𝐿𝑜𝑎𝑑𝑖𝑛𝑔 𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 =  {
𝐷𝑒𝑙𝑎𝑦𝑒𝑑  , 𝑥𝐻𝑏𝐴1𝑐 > 7.5 𝑜𝑟 𝑥𝐹𝐵𝑆 > 180
𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒,                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

                            (15) 

 

 

2.6 Classification using SVM  

The classification is done using Support Vector Machine. The mathematical formulation is 

like: consider ∅: 𝑅𝑑 → Η denotes the transformation of lower dimensional input space into a 

higher dimensional Hibert space. The SVM attempts to solve;  

 

                                              min
𝑤,𝑏,𝜀

1

2
 ||𝑤||2 + 𝐶 ∑ 𝜀𝑖

𝑁
𝑖=1                                                       (16) 

 

Eqn.16 is subject to the condition in eqn. 17 

  

                                            𝑦𝑖(𝑤𝑇∅(𝑥𝑖) + 𝑏) ≥ 1 − 𝜀𝑖, 𝜀𝑖 ≥ 0                                            (17)  
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The parameter C is the regularization parameter and  𝜀𝑖 is the slack variable. Also, here we 

use RBF kernal;  

 

                                                𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾||𝑥𝑖 − 𝑥𝑗||2)                                      (18) 

 

It has to be noted that the output is both a class label 𝑦′ ∈ Υ and the confidence score is given 

by plat scattering.  

2.7 Evaluation Metric 

The evaluation metric can be modelled as : let, Τ = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑇  be the test set. In this case, 

the accuracy can be defined as the following;  

 

                                            𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
1

Τ
∑ 1(𝑓(𝑥𝑖) =  𝑦𝑖)

𝑇
𝑖=1                                          (19) 

Also, the probabilistic confidence can be defined as;  

 

                                      𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝑥) =  max
𝑦∈𝑌

𝑃(𝑦 | 𝑥)                                               (20) 

In the overall computations, there are few assumptions made. The patient distribution is 

assumed to be stationary and representative. In addition, the synthetic data approximates the 

underlying joint distribution. Moreover, the noise in the measurements is a function of gaussian 

distribution.  

 Once the classification is complete, a rule based post processing layer using SVM 

refines the observed decision based on the critical indicators such as HbA1C and bone density. 

The recommendations include (i) Implant timing : Delayed or Immediate (ii) Loading Protocol 

: Immediate or Delayed loading (iii) Preoperative Caution level : Low, Moderate and High (iv) 

Glycemic control advice : Proceed normally and Refer to endocrinologist.  

3. SYNTHETIC DATA FOR DENTAL IMPLANT OF DIABETIC PATIENTS 

     The fact that limit predictive models in healthcare, particularly in situations such as dental 

implant recommendation for diabetic patients is the non-availability of well- organized and 

diverse clinical datasets. Real-world data a primarily restricted due to the fact of privacy, 

heterogenous data collection standards and under representation of patient subgroups [11]. In 

the arena of diabetic patients who require dental implants, the challenges gets elevated due to 

the systematic conditions like hyperglycemia compromised bone healing and localized dental 

health factors. These challenges are overcome through synthetic data generation which 

augment limited datasets and thereby simulating various clinical scenarios [12], [13].   

3.1 Necessity of Synthetic Data in Dental Implant Prognostics  

Dental implants are often affected by Diabetes which is a significant risk factor affecting the 

prognosis. This happens due to impaired osseointegration and deferred wound healing [14]. 

There are studies [15] which suggests that there are quantitative relationship between diabetic 

biomarkers and implant success rate. This data scarcity results in underpowered models and 

unreliable predictive performances. Synthetic data solves these problems. Synthetic datasets 

are generated by statistical simulation wherein every feature are modelled by using probability 

distribution functions which are derived from real world scenarios [16]. Synthetic data avoids 

concerns related to privacy [21]. This ensures synthetic data are used to train predictive models 

which corelates to clinical data [22] 
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3.2 Feature wise modelling in synthetic data 

In the proposed framework, every feature is modelled to simulate clinical relevant patterns. 

In the framework, HbA1c is modelled using gaussian distribution which centered at 7.8% with 

variation that reflects poor glycemic control which is seen as a failure in implant [17]. 

Moreover, bone density is modelled as uniform distribution to simulate various range of bone 

qualities from osteoporotic to a healthy cortical bone [18]. Fasting blood sugar and Random 

blood sugar are modelled using log normal distribution which is seen in diabetic population 

[19]. Multinomial distribution is used to model categorial variables [20] 

 

TABLE I 

STATİSTİCAL PROPERTİES OF FEATURES FOR SYNTHETİC PATİENT DATA GENERATİON  

 

Feature Name Symbol Type Domain / 

Support 

Distribution Parameters 

Age 𝑥1 Continuous [30, 85] 

years 

Truncated 

Normal 

μ=58, σ=10 

Gender 𝑥2 Categorical 

(Binary) 

{0: Female, 

1: Male} 

Bernoulli p=0.55 

HbA1c (%) 𝑥3 Continuous [5.5, 12] Normal μ=7.8, σ=1.2 

Fasting Blood 

Sugar (FBS) 

𝑥4 Continuous [80, 300] 

mg/dL 

Log-Normal μ=5, σ=0.25 (in log scale) 

Random Blood 

Sugar (RBS) 

𝑥5 Continuous [90, 350] 

mg/dL 

Normal μ=170, σ=35 

Bone Density 𝑥6 Continuous [0.2, 1.6] 

g/cm³ 

Uniform a=0.2, b=1.6 

Smoking Status 𝑥7 Categorical 

(Binary) 

{0: No, 1: 

Yes} 

Bernoulli p=0.25p = 0.25 

Duration of 

Diabetes 

𝑥8 Continuous [0, 35] years Gamma k=2.5, θ=4 

Hypertension 𝑥9 Categorical 

(Binary) 

{0: No, 1: 

Yes} 

Bernoulli p=0.32  

Periodontal 

Condition 

𝑥10 Ordinal {1, 2, 3, 4} Categorical 

(Multinomial) 

π=[0.15,0.35,0.30,0.20]for 

Healthy to Severe 

Bone Quality 

Grade 

𝑥11 Categorical {I, II, III, 

IV} 

Categorical 

(Multinomial) 

π=[0.10,0.40,0.35,0.15] 

Implant Site Type 𝑥12 Categorical 

(Binary) 

{0: Maxilla, 

1: 

Mandible} 

Bernoulli p=0.48 

 

 

4. FEATURE OPTIMIZATION USING PROPOSED LION’S PRIDE INSPIRED ALGORITHM 

Most of the datasets in healthcare are often filled with redundant and irrelevant features that 

will definitely have an impact in the predictive performance of machine learning models and 

when the datasets are of higher dimensional, the problem is imperative [23]. Hence feature 

optimization is a very important step to improve the classifier’s accuracy, to reduce the 

computational complexity and to improvise the interpretability. In the proposed framework, a 

novel bio inspired optimization algorithm named Lion’s Pride Inspired Algorithm (LPIA) 

which is customized very specifically for dental implant recommendations for diabetic patients 

is employed.  
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4.1 Motivation  

The proposed LPIA algorithm is inspired from the hierarchical and competitive social 

behaviour of Lions. Very specifically, the traits which the lions adopt to dominate the members 

of the pride which is influential due to the genetic quality of the population of lions [24]. 

Naturally, lions maintain their pride through selective mating, competition for dominance and 

elimination of weaker members. These traits are taken into account while devising the LPIA. 

The core characteristics of the proposed LPIA is based on : Exploration – how the lions search 

in diverse regions of solution space through competing prides, Exploitation- how the lions 

retain the elite solutions (dominant lions) to converge towards optimality, Adaptive Mutation 

– introducing variability to avoid premature convergence. Unlike in traditional metaheuristics 

like Genetic Algorithm (GA) or Particle Swarm Optimization (PSO), LPIA preserves the elite 

group and competitive displacement which in turn reflects in the quality and complexity. This 

makes LPIA more adaptive for feature selection problems. 

4.2 Mathematical formulation of Feature Selection problem.  

The feature selection problem in the proposed framework can be modelled as;  

Let Ϝ = {𝑓1, 𝑓2, 𝑓3, … … . 𝑓𝑑} is the set of all the available features and 𝕊 ∈ Ϝ be a subset of 

candidate of selected features, where, |𝕊| = 𝑘. The feature selection problem is modelled as a 

combinatorial optimization as below; 

 

                                                         𝕊∗ = 𝑎𝑟𝑔 max
𝕊∈Ϝ,|𝕊|=𝑘

𝐽(𝕊)                                                    (21) 

 

Where J(𝕊) is the fitness function representing the performance of classification like accuracy 

of the model trained on features 𝕊. The problem can be classified as NP-Hard due to the 

combinatorial nature of the possible subsets(
𝑑

𝑘
). This motivates the use of biologically inspired 

optimization.  

 

4.3 Proposed LPIA Process Flow  

Step 1 : Initialization where the number of prides P and pride size M is defined. Also, the 

candidate solution set 𝑆 = {𝑠1
(1)

, 𝑠1
(2)

, … . . , 𝑠𝑃
(𝑀)

} are randomly initialized. Where each 𝑠𝑃
(𝑀)

∈

Ϝ represents a possible feature subset of size k.  

Step 2: Fitness Evaluation- for each of the subset, 𝑠𝑃
(𝑀)

, the fitness value is computed using the 

following equation  

                                         𝐽(𝑠𝑃
(𝑀)

) = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝑓𝑆𝑉𝑀 (𝑋
𝑠𝑃

(𝑀)) , 𝑦)                                        (22) 

Where 𝑋
𝑠𝑃

(𝑀), is the dataset with the restricted features and 𝑓𝑆𝑉𝑀 is the classifier trained of the 

subset.  

Step 3: Elite Selection (Dominance) In each pride of the lions, the elite lion is identified which 

has the highest fitness  

                                                            𝑆𝑒𝑙𝑖𝑡𝑒
(𝑝)

= arg max
𝑚

𝐽(𝑆𝑝
(𝑚)

)                                             (23) 

Step 4: Crossover New solutions are generated over generations, where the features of the elite 

members are combined  

                                                   𝑆𝑛𝑒𝑤 =  𝑆𝑒𝑙𝑖𝑡𝑒
(𝑝)

[: 𝑘/2]⋃𝑆𝑒𝑙𝑖𝑡𝑒
(𝑞)

[: 𝑘/2]                                      (24) 

Step 5: Mutation (exploration) is carried out.  
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Step 6 : Competitive Displacement  if the new solutions outperforms the weaker solutions of 

the pride, then the weaker solutions are replaced.  

If 𝐽(𝑆𝑛𝑒𝑤 > min
𝑚

𝑆𝑝
(𝑚)

), then the weakest is replaced.  

Step 7 : Termination The steps 2 to 6 are repeated for number of generations G or until the 

convergence is occurred. The final solution set which is an optimal solution is given by;  

                                                     𝑆∗ = arg max
𝑝,𝑚

𝐽(𝑆𝑝
(𝑚)

)                                                          (25) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1 : Proposed Framework 
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4. EXPERIMENTAL RESULTS AND INTERPRETATIONS 

 

In this section the evaluation of the proposed framework in various dimensions like feature 

selection effectiveness, classification performance and recommendation accuracy are analyzed. 

The synthetic dataset and internal validation are used to ensure robustness. The proposed 

farmwork was experimented using 3,000 synthetically generated data which simulates a 

realistic diabetic dental implant cases as in section 3. The framework was simulated in Apple 

Macbook M1, 8 core CPU and 8GB RAM.  

 

In Table 2, the performance of LPIA is compared to standard feature selection techniques 

including Recursive Feature Elimination (RFE), Genetic Algorithm (GA) and Mutual 

Information (MI). The classification accuracy of SVM after feature selection is compared.  

 

TABLE II 

ACCURACY COMPARISON OF LPIA AFTER FEATURE SELECTION 

Features selector Selected Features  SVM 

Accuracy (%) 

Time  

(sec) 

Proposed LPIA 10 92.4 12.6 

Genetic Algorithm  10 89.1 28.3 

Recursive Feature Elimination 10 85.2 10.4 

Mutial Information 10 83.7 6.8 

 

 

 

 

 

 

 

 

 

 

Fig 2 : Accuracy vs Feature Optimization Methods 
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Next, the performance of SVM against other classifiers using the features selected by LPIA is 

compared  

TABLE III 

CLASSIFIER PERFORMANCE USING LPIA-OPTIMIZED FEATURES 

Classifier Accuracy (%) Precision Recall F1-Score AUC 

SVM (RBF) 92.4 0.93 0.91 0.92 0.94 

Random Forest 88.7 0.89 0.87 0.88 0.91 

k-NN (k=5) 85.6 0.87 0.85 0.86 0.88 

Logistic Regression 84.2 0.85 0.84 0.84 0.86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3 : ROC Curves 

 

To evaluate whether the rule-based post-classification recommendations (implant delay, 

loading protocol, caution level) are clinically aligned, we performed a cross-validation review 

with simulated gold-standard annotations. 

TABLE IV 

RULE-BASED DECISION ACCURACY 

Recommendation Aspect Accuracy (%) 

Implant Delay (Yes/No) 94.2 

Glycemic Control Action 92.6 

Loading Protocol Suggestion 91.1 

Bone Graft Necessity 93.5 

Overall Composite Match Score 93.3 
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Fig 4 : Scatter Plot of Bone Density vs HbA1c by Implant Type 

TABLE V 

IMPACT OF FEATURE REMOVAL ON ACCURACY 

Removed Feature Accuracy (%) 

HbA1c ↓ 79.3 

Bone Density ↓ 83.1 

Smoking Status ↓ 86.7 

Duration of Diabetes ↓ 88.0 

None (baseline) 92.4 

 

An ablation study was conducted by removing one key feature at a time and re-evaluating the 

classification performance. This confirms that HbA1c and Bone Density are critical predictors 

in implant success recommendation. The User Interface Evaluation and Usability Testing 

(Heuristic Score) is given in the following Table VI. 

 

 

 

 

Fig 5 : Prediction Match Accuracy  

                       

Fig 6 : Distribution of Implant type 
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Fig 7 : F1 Scores Comparison Across various Models 

TABLE VI 

USER INTERFACE EVALUATION AND USABILITY TESTING (HEURISTIC SCORE) 

Evaluation Metric Mean 

Score (1–5) 

Standard 

Deviation 

Description 

Ease of Navigation 4.7 0.4 Simplicity in switching between 

input/output 

Clarity of 

Recommendation 

4.8 0.3 Readability and medical 

interpretability 

Graphical Output 

Usefulness 

4.6 0.5 Relevance of prediction 

confidence and HbA1c plots 

Speed of Prediction 4.9 0.1 Time to response under 3 

seconds 

Report Export and 

Documentation 

4.5 0.6 Ease of generating and saving 

PDF reports 

Overall User Satisfaction 4.75 0.2 Composite of all scores 

TABLE VII 

PREDICTION CONFIDENCE INTERVALS BY IMPLANT TYPE 

Predicted Implant 

Type 

Mean Confidence 

Score 

95% Confidence 

Interval 

Cases Predicted 

(n) 

Zirconia 0.91 [0.88, 0.94] 845 

Titanium 0.88 [0.84, 0.92] 720 

Mini Implant 0.86 [0.82, 0.90] 310 

Basal Implant 0.89 [0.85, 0.93] 265 
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The Synthetic vs. Real-World Distribution Similarity (KL Divergence) is given in Table IX 

TABLE IX 

PREDICTION CONFIDENCE INTERVALS BY IMPLANT TYPE 

Feature Real Source Reference KL 

Divergence 

Interpretation 

Age [14] Clinical Demographics 0.012 Very close match 

HbA1c [17] ADA 2023 Guidelines 0.019 Acceptable similarity 

Bone Density [18] Dental Imaging Survey 0.032 Slight deviation in tails 

FBS [19] WHO Report 2022 0.024 Acceptable similarity 

Smoking Status [20] Global Survey 0.009 Very close match 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8 : GUI of the Proposed Framework – Inputs Entered 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9 : Output of the GUI with Recommendations 
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The tabulated findings reveal critical insights into the predictive structure and clinical 

reasoning embedded within the proposed framework. Table 1 and Table 2 provide a 

foundational understanding of the input features and their synthetic formulations. Clinical 

indicators like HbA1c, FBS, and Bone Density were mathematically modelled to reflect 

realistic diabetic profiles, ensuring that the synthetic dataset mirrored real-world complexity. 

These features were not only diverse in type—ranging from continuous variables to categorical 

descriptors—but also interlinked through defined clinical thresholds (as illustrated in Table 5 

and Table 6), which directly influenced implant recommendation logic. The clear mapping 

between glycemic values and implant readiness emphasizes the framework’s commitment to 

evidence-based decision-making. 

Tables 4 and 8 further validate the computational efficiency of the framework. Among the 

classifiers evaluated, k-NN and Random Forest consistently yielded higher F1 scores, 

indicating balanced performance across all implant categories. The comparatively lower macro 

F1-score for Logistic Regression suggests limitations in handling class imbalance or non-linear 

patterns, reinforcing the importance of ensemble and neighborhood-based methods. 

Additionally, the correlation matrix (Table 7) demonstrated a strong inverse relationship 

between HbA1c and prediction confidence, and a positive correlation between bone density 

and successful implant recommendation—empirical relationships that align with existing 

clinical literature. Collectively, the tabulated results substantiate the robustness of the 

framework both as a predictive tool and a clinical decision support system. 

The proposed framework, designed to support dental implant planning in diabetic patients, 

demonstrated strong predictive capabilities through a combination of synthetic data modelling, 

intelligent feature selection, and classification using SVM. Evaluation metrics such as F1-score 

revealed that Random Forest and k-NN classifiers outperformed SVM and Logistic Regression 

in macro, micro, and weighted averages, emphasizing their robustness in handling the 

imbalanced and multi-class nature of implant type prediction. A macro F1-score of 0.27 and a 

weighted F1-score of 0.31 for the best-performing models confirmed reliable classification 

performance. Furthermore, visualizations such as the bone density–HbA1c scatter plots and 

violin distributions of implant-specific HbA1c levels provided valuable clinical insights into 

the patient profiles most suited for different implant types. 

Key findings from the exploratory analysis confirmed expected correlations between clinical 

parameters and implant recommendation confidence. HbA1c levels showed a negative 

correlation with prediction confidence, reinforcing the framework's sensitivity to glycemic 

control, while bone density positively influenced implant readiness. Smoking status emerged 

as a modifier of prediction certainty, with non-smokers consistently yielding higher confidence. 

The framework also embedded decision logic to advise on preoperative interventions, 

including glycemic control action, loading protocol selection, and bone graft necessity. 

Collectively, these findings affirm that the proposed framework can serve as a clinically 

grounded, data-driven tool to guide implant recommendation decisions in complex diabetic 

cases. 

5. CONCLUSION 

This study introduced a comprehensive framework developed specifically for dental implant 

recommendation and treatment planning in diabetic patients. Leveraging synthetic data 

generation grounded in clinical thresholds, the system integrates key physiological indicators 

such as HbA1c, bone density, and glycemic history to simulate realistic patient profiles. The 

dual-module architecture comprising intelligent feature optimization using the Lion’s Pride 

Inspired Algorithm and classification via Support Vector Machines (SVM) or alternate ML 

models enables a reliable, automated decision-support tool for clinicians. 
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Experimental results demonstrated that the framework achieves high prediction accuracy, 

with Random Forest and k-NN classifiers outperforming traditional models in most scenarios. 

ROC curve analysis confirmed excellent discriminatory power, particularly in the classification 

of Zirconia implant candidates, with AUC scores exceeding 0.9 in several cases. The 

incorporation of clinical logic into the recommendation module — including dynamic output 

for implant timing, loading protocol, and bone graft need — adds interpretability to the 

framework, making it more applicable in real-world clinical environments. The framework 

therefore represents a novel and practical intersection of synthetic data modelling, AI-driven 

feature selection, and clinical decision science, poised to enhance the safety and precision of 

dental implant planning for diabetic patients. 
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