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Abstract 

One of the leading causes of memory loss and thinking problems in older adults is a condition 

that affects human function over time. Detecting this condition early is important for better care 

and treatment. However, even with the latest technology in artificial intelligence (AI) and deep 

learning, the results are not convincing because the dynamic nature of the datasets. This study 

introduces a new deep learning approach that includes a tool called Grad-CAM, which helps 

explain how the AI makes decisions. Our goal is to build a reliable and understandable system 

that uses a special type of AI model called a convolutional neural network (CNN) to analyze 

online dataset images. The model includes techniques to reduce errors and handle different 

types of data, while Grad-CAM provides visual feedback showing what the model is focusing 

on. The system achieved 95% accuracy, performing better than other well-known models like 

Xception (94.40%) and InceptionV3 (93.20%). Overall, this work offers a highly accurate and 

transparent tool to support early detection of memory-related conditions, assist professionals 

in planning care, and open new possibilities for research in AI-supported health applications. 

 

Keywords: Deep Learning, Grad-CAM, Convolutional Neural Networks, Classification, 

Explainable AI 

1. Introduction 

Alzheimer's disease (AD) is one of the most common and debilitating neurodegenerative 

disorders, imposing a major burden on life quality for the millions it afflicts globally [1]. It is 

one of the major causes of dementia in the elderly and is characterized by a progressive decline 

in cognitive function and  memory loss. A timely and accurate diagnosis of Alzheimer's disease 

is critical to the management of  the disease and can lead to improved patient outcomes. As a 

non-invasive imaging modality, Magnetic resonance  imaging (MRI) has proved to be an 

essential strategy for studying the structural and functional changes in Alzheimer's [2]. On the 

other hand, the interpretation  of manual diagnoses from MRI data leaves room for interpretive 

errors and necessitates considerable expertise, highlighting the necessity of automated and 

consistent methods. 

Alzheimer’s Disease (AD) is increasingly prevalent, bringing  significant interest in possible 

diagnostic solutions utilizing artificial intelligence (AI) and machine learning (ML) [3]. The 
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method has explored some different techniques, but  deep learning specifically, has 

demonstrated great promise in the US for its ability to identify complex patterns and features 

from medical imaging data. Despite the above, the classification of Alzheimer's disease from 

MRI data remains a challenging task  because, in the early stages of the disease, the subtle 

brain changes are often camouflaged by normal processes [4]. Moreover, the multi-

dimensionality of MRI data demands paradigms capable of isolating  disease-characteristic 

features and providing sufficient specificity. 

Several reasons are challenging robust diagnostic  model development for Alzheimer's disease 

[5]. Variations in MRI data due to variations in imaging  protocols, scanner settings, and the 

demographics of the scanned patients make the task difficult. Moreover, the MCI stage may 

differ from early Alzheimer's disease only with a high level of precision and the  features can 

overlap at this stage [6]. Existing advances themselves are hampered by the scarcity of large, 

properly annotated datasets, which further compound these issues by restricting the 

generalizability  and robustness of available models. Overcoming these issues requires 

frameworks that can address data heterogeneity with high  classification accuracy. 

There is an increasing demand for an accurate, scalable, automated diagnostic framework for 

Alzheimer’s  disease [7]. Current methods usually fail to generalize across heterogeneous 

datasets  and therefore can perform very differently in real-world clinical settings. This 

emphasizes the need for a solution that can extract relevant features from  the complex MRI 

data and be able to adapt to different imaging conditions. In addition, this type of system would 

improve diagnostic capabilities and assist in early intervention strategies, which, in turn, could 

prolong disease progression and better the quality of life for  patients. 

This can be complemented or improved upon if  a continuous stream of improvements on 

classification-based neural network architectures can be obtained [8]. Incorporating a  variety 

of advanced techniques including convolutional neural networks (CNNs) and transfer learning, 

the framework is capable of handling and learning from MRI data, including extracting features 

inherent to the pathology by minimizing the effect of variability in the data. Utilizing this 

framework would yield a more solid and  scalable solution, delivering clinicians an accurate 

and accurate tool for early detection of Alzheimer's disease. 

2. Literature Survey 

Shaymaa E. Sorour et al [9]. Proposed a deep learning  technique-based early diagnosis of the 

Alzheimer's Disease-Deep Learning framework. Model development, which included pre-

processing, training, and evaluation, was performed using brain  magnetic resonance imaging 

scans. We explored five deep-learning  models and grouped them according to whether they 

utilized data augmentation or not—the Convolutional Neural Network-Long Short-Term 

Memory model performed  the best, producing an accuracy of 99.92 percent. The text-based 

features are designed specifically to optimize accuracy, recall, precision, F1score and 

computational efficiency. The findings underscore the promise of  deep learning for 

Alzheimer's disease detection. 

Doaa Ahmed Arafa et al. [10] provide a CNN-based deep-learning framework for Alzheimer's 

disease classification. The  proposed paradigm encompasses four phases: preprocessing, data 

augmentation, cross-validation, and classification with feature extraction. We implemented  

two methods, simple CNN & Pre-trained VGG16 with transfer learning & fine-tuning. Results 
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showed that the  framework was effective with a limited number of labels and less domain-

specific knowledge.  Model: (acc: 99.95%, val_acc: 99.99%) and fine-tuned VGG16 model: 

(acc: 97.44%, val_acc: 97.40%) It focused on lowered computational complexity, limited over-

fitting and  reduced memory consumption, resulting in the suitability of the framework for AD 

diagnosis. 

Ahmed A. Abd El-Latif et al. [11] developed a lightweight  deep-learning model to detect 

Alzheimer's disease from MRI data. You are without deeper layers, which  does it perform 

well. It is also less complex and consumes less time as compared to the  other existing models 

with seven layers. On a 36 MB Kaggle dataset 99.22% accuracy on two classes and 95.933% 

accuracy on multi-class, higher than previous ly the model. Here, this study presents a novel 

combination of several  methodologies of AD detection with the Kaggle dataset as providing 

new challenges to researchers. The results underline model efficiency, as well as accuracy,  in 

AD classification tasks. 

M. Khojaste-Sarakhsi et al. [12] gave a review of the recent progress on emerging architectures 

and techniques for Alzheimer’s  disease (AD) diagnosis, including explainable models, 

normalizing flows, graph-based deep architectures, self-supervised learning, and attention 

models. Three major categories of currently known challenges in the existing  literature 

include data-related issues, methodology-related complexities, and clinical adoption 

challenges. The study ends with potential future  directions and recommendations that may 

empower future studies in AD detection 

Ahsan Bin Tufail et al. [13] devised a scheme based on multiple deep 2D convolutional neural 

networks (2D-CNNs), where different kinds of diversified features were extracted from the 

images of the local brain for Alzheimer’s disease  classification. Utilizing transfer learning 

architectures (Inception v3 and Xception) and custom CNN with separable convolutional layers 

to learn the generic imaging features, the model combined the features  for final classification. 

T1-weighted MRI images from the OASIS database were used, ensuring consistent size and 

contrast across scans. Experimental results showed that transfer learning methods 

outperformed non-transfer learning approaches, highlighting their effectiveness in binary AD 

classification tasks. 

Mian Muhammad Sadiq Fareed et al. [14] introduced Alzheimer's Disease Detection Network 

(ADD-Net), a CNN architecture designed for AD detection with fewer parameters, ideal for 

smaller datasets. ADD-Net distinguishes the early stages of Alzheimer's disease and generates 

class activation maps as brain heatmaps. It reduces computational costs while precisely 

classifying AD stages. To address the class imbalance in the Kaggle MRI dataset, synthetic 

oversampling was employed to balance the classes. Evaluation against DenseNet169, VGG19, 

and InceptionResNet V2 showed ADD-Net’s superior performance across metrics, achieving 

98.63% accuracy, 99.76% AUC, 98.61% F1-score, and a loss of 0.0549%. The results highlight 

ADD-Net’s effectiveness over state-of-the-art models. 

P. R. Buvaneswari et al. [15] proposed an approach for achieving high-performance automated 

classification of Alzheimer’s disease. Seven morphological features, including grey matter, 

white matter, cortical surface, gyri and sulci contours, cortical thickness, hippocampus, and 

cerebrospinal fluid space, were extracted from 240 structural MRI (sMRI) scans using SegNet. 

These features were used to train a ResNet model for classification. The trained classifier 

demonstrated a sensitivity of 96% and an accuracy of 95% on 240 ADNI sMRI scans not 

included in the training set. 
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Ruhul Amin Hazarika et al. [16] Visualization of feature extraction was performed on deep 

learning models used for Alzheimer’s disease classification on MR images from ADNI dataset  

16. DenseNet-121 reached 88.78% average accuracy, though it was slower in terms of 

computational cost s it performs considerable convolution operations. To reduce its resource 

load, depth-wise convolution layers were replaced  with regular convolution layers in the 

DenseNet-121 architecture. This change improved the computation, and resulted in an increase 

of the mean  accuracy of the model to 90.22%, illustrating it has greater performance and 

easier usage. 

3. Proposed Model 

Alzheimer's disease is a progressive degenerative disease of the nervous  system leading to 

loss of memory, impairment of cognitive functions, and changes in behavior. It is the most 

prevalent cause of dementia, causing a  major burden on millions worldwide. Fortunately,  

early diagnosis is essential for managing symptoms and improving quality of life. Of the 

available  modalities, MRI is essential in detecting structural and functional alterations in the 

function of the brain in the context of Alzheimer's.  However manually analyzing the MRI 

data is error-prone, which requires an automated system built on advanced deep learning 

techniques. CNNs and  transfer learning models have been working well for the accurate 

detection and classification of Alzheimer's disease even in its early stages. 

The proposed CNN model which helps to classify the categories of Alzheimer's disease  is 

depicted in Figure 1. 
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Figure 1: Proposed method Architecture  

1. Conv2D Layer (16, kernel_size=(3,3), activation='ReLU', padding='same'): The 

effect of this block is that the first layer  in a convolutional network is a convolutional 

layer, which takes the input data and applies 16 filters of size 3 x 3 High. This layer is 

responsible for extracting spatial features like edges and textures from the  image. 

ReLU activation function adds non-linearity, allowing  the network to learn complex 

behaviors. Using 'same' padding helps in keeping the aspect ratio of output feature maps 

equal to input feature  maps so that whenever the model goes ahead with learning it 

can capture all the information from input as it can. 

2. Conv2D Layer (16, kernel_size=(3,3), activation='ReLU', padding='same'): The 

second  convolutional layer operates on these feature maps with the same parameters. 

Additional convolutional stacks allow for the addressing of finer details or more 

abstract features in the input image for downstream task  representation. 

3. MaxPool2D Layer (pool_size=(2,2)): The next layer  is a pooling layer that halves 

the spatial dimensions of the feature maps. It downsamples by taking  the maximum 

value in each 2×2 window of the input. This approach lowers the computational 

complexity, prevents overfitting, and keeps  the strongest features that the previous 

convolutional layers have learned. 

4. Conv2D Layer (32, kernel_size=(3,3), activation='ReLU', padding='same'): It 

increases the number of filters up to 32 for the network to recognize a higher number 

of more complex patterns in the input. The size of 3x3 for the filter allows for the 

capturing of local spatial relationships and  the ReLU activation retains non-linearity. 

5. Conv2D Layer (32, kernel_size=(3,3), activation='ReLU', padding='same'): It adds 

another 32 filters using convolutional layers. This allows the network to learn from 

higher-order statistics of the signal, providing a deeper and more  abstract signal 

analysis. 

6. BatchNormalization Layer (): It normalizes the outputs of the previous layer by 

scaling  the activations and centering them. This technique, known as batch 

normalization, normalizes the inputs of every layer in a way that stabilizes the 

optimizers used preventing slow  learning speed and being stuck in local minima. 

7. MaxPool2D Layer (pool_size=(2,2)): The second pooling  layer continues to reduce 

the spatial dimensions of the feature maps. This helps the network  to only form high-

level features as well as makes the architecture computationally efficient. 

8. Conv2D Layer (64, kernel_size=(3,3), activation='ReLU', padding='same'): These 

are the  filters from the convolution in the previous layer, this convolution layer has 64 

filters that learn high-level concepts. More number  of filters cause the layer to learn 

more diverse features. 

9. Conv2D Layer (64, kernel_size=(3,3), activation='ReLU', padding='same'): This 

additional convolutional layer  has 64 filters to further abstract the features. The 

stacking of several layers allows  the model to create a hierarchical representation of 

the input. 

10. BatchNormalization Layer (): It helps make  the learning process more stable by 

reducing the sensitivity of the model to shifting input distribution and also normalizes 

the activations of the previous layer. 
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11. MaxPool2D Layer (pool_size=(2,2)): As such, the third pooling layer decreases the  

feature maps' spatial dimensions in a way that facilitates the network to focus on 

important features while omitting less important features. 

12. Conv2D Layer (128, kernel_size=(3,3), activation='ReLU', padding='same'): This 

layer applies 128 filters to identify increasingly abstract and  complex characteristics 

in the data. The high number of filters  aids in learning minute details and intricate 

relationships. 

13. Conv2D Layer (128, kernel_size=(3,3), activation='ReLU', padding='same'): A 

hundred and twenty-eight filters applied over the previous layer enhance this 

representation, enabling a more complex encoding of the  class information in the data 

for the model. 

14. BatchNormalization Layer (): It is used to normalize the convolutional output, thus 

making sure that the output of the convolutional layers gives consistent scaling for the 

training model and also stabilizes and enhances the training  process. 

15. MaxPool2D Layer (pool_size=(2,2)): The last pooling layer reduces the spatial 

dimensions dramatically and helps to prepare the feature maps before taking them to 

fully connected  layers. This technique allows us to abstract  the spatial information 

and capture the most relevant parts. 

16. Conv2D Layer (256, kernel_size=(3,3), activation='ReLU', padding='same'): This 

is the first convolutional layer,  with 256 filters, which is expected to detect high-level 

features and information from the input that captures complex patterns and 

relationships. 

17. Conv2D Layer (256, kernel_size=(3,3), activation='ReLU', padding='same', 

name='last_conv_layer'): This layer fine-tunes the abstract features based  on what 

the previous layer has produced. This specific layer  is the 'last_conv_layer' as it is used 

in Grad-CAM to produce class activation maps based on gradients from this layer. 

18. Batch Normalization Layer (): This layer normalizes the outputs of the last conv eyor 

to allow for stable gradients through backpropagation and higher generalization. 

19. MaxPool2D Layer (pool_size=(2,2)): Reduces the feature map dimensions to prepare 

for the transition to the dense layers while retaining the most important high-level 

features. 

20. Flatten Layer (): Flattens the multi-dimensional feature maps into a single 1D vector. 

This transformation is necessary for connecting the convolutional layers to the fully 

connected layers, which operate on vectors. 

21. Dropout Layer (rate=0.2): Regularizes the model by randomly setting 20% of neurons 

to zero during training. This reduces the risk of overfitting by forcing the network to 

learn robust features. 

22. Dense Layer (512, activation='ReLU'): Neurons in the fully connected layer are 512,  

which learns high-level features of input. The ReLU activation  function enables the 

model to learn non-linear relationships. 

23. Batch Normalization Layer (): This layer normalizes  the outputs of the dense layer. 

24. Dropout Layer (rate=0.7): Used 70% dropout rate to avoid overfitting by removing 

the dependence on specific neurons in the  training. 

25. Dense Layer (128, activation='ReLU'): The  next layer is a dense layer of 128 

neurons, allowing the model to better refine the feature representation and learn 

important patterns for classification. 
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26. Batch Normalization Layer (): It contains  the dense layer output and normalizes the 

activations, which helps accelerate training. 

27. Dropout Layer (rate=0.5): Implements 50% dropout for further  regularization and 

reduces overfitting. 

28. Dense Layer (64, activation='ReLU'): Further metas gave the dimensions 64 help 

convolve the process and identify the dimensions  most discriminative. 

29. Batch Normalization Layer (): It  also normalizes the dense layer outputs for 

consistency. 

30. Dropout Layer (rate=0.3): Implements  30% dropout to regularize the model before 

the final classification layer. 

31. Dense Layer (4, activation='SoftMax'): The last dense layer consists of  neurons that 

suit the output classes. It is  a multi-class prediction model because SoftMax activates 

each class to give probabilities of each class. 

3.1 Grad-CAM  

Related work Gradient-weighted class activation mapping (Grad-CAM) is one of the  

techniques used to interpret the decision-making process of CNNs. Grad-CAM helps 

researchers determine and visualize salient  features in input images by highlighting image 

regions most responsible for a model's predicted outcome. This technique calculates gradients 

of the predicted class score concerning the feature maps of the last convolutional layer and 

generates  a heatmap indicating which regions of the input image give significant contributions 

to the predicted score. 

1. Feature Extraction: The Grad-CAM algorithms pull gradients from the final 

convolutional layer of the CNN (e.g., called "last_conv_layer") and perform a backward 

pass to determine how relevant they were to the output prediction. 

2. Heatmap Generation: It pools gradients to identify their significance and  introduces a 

weighted map addition of feature maps. The produced heatmap identifies the important 

areas in the  MRI image leading to the classification outcome. 

3. Superimposition: It shows the heatmap placed on the original MRI image, which also 

gives an  idea of where the model is concentrating its attention. 

The base model used was a custom CNN consisting  of Conv2D with multiple filters, 

MaxPooling, BatchNormalization, Dropout, and Dense layers. We applied Grad-CAM to this 

architecture  to understand the classifier's decisions. 
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Figure 2: Grad-CAM Architecture 

Figure 2: Grad-CAM Grad-CAM (Gradient-weighted Class Activation Mapping) [GS21] is 

once again a technique used to increase the interpretability of CNNs by highlighting the  

regions of input images most contributing to a model's prediction. We start with a standard 

CNN, where we feed images through multiple convolutional layers  to derive features. The 

features are used for the fully  connected layers where the class scores are calculated. Grad-

CAM takes the gradients of the class  concerning the final convolutional layer feature maps. 

This also generates a  class-discriminative heatmap where only the prominent regions of the 

input image are preserved and the rest of the regions start to converge into the background. 

The architecture uses the spatial information  in convolutional layers to enhance 

interpretability. In this workflow, a heatmap that has been overlaid on the input  image enables 

researchers to pinpoint the areas that contributed most to the model's classification. For 

example, in medical imaging applications, such as Alzheimer's disease classification, 

understanding the parts of the image focused by the  model provides important insights into 

the diagnostic process. The proposed CNN model integrates perfectly with the Grad-CAM 

architecture for clinical practice to ensure that the prediction is not only accurate  but also 

explainable. 

Algorithm for Alzheimer’s disease  

Step 1: Input and Preprocessing 

• The model  shape is defined as 𝐼𝑛𝑝𝑢𝑡 ∈  𝑅𝐻×𝑊×𝐶 , 

Where: 

• H,W: Image height and width (e.g., 256 × 256 pixels). 

• C: Number of channels (3 for RGB images). 

• Input normalization ensures the pixel intensity values are scaled to the range [0,1]: 
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• 𝑥𝑖𝑗 =
𝐼𝑖𝑗

255
 

Here, 𝐼𝑖𝑗 represents the pixel intensity at position (i,j). 

Step 2: Feature Extraction via Convolutional Layers 

• Each convolutional layer applies a filter 𝑊𝑘(Kernel) over the input to compute 

feature maps 𝐴𝑘: 

𝐴𝑘
(𝑙)

= 𝑅𝑒𝐿𝑈(𝑊𝑘
(𝑙)

∗ 𝐴(𝑙−1) + 𝑏𝑘
(𝑙)

) 

• 𝑊𝑘
(𝑙)

: Weights of the k-th filter in layer l. 

• 𝐴(𝑙−1): Input feature map to the layer. 

• 𝑏𝑘
(𝑙)

: Bias for the k-th filter. 

• 𝑅𝑒𝐿𝑈: Activation function 

Step 3: Downsampling with MaxPooling 

• The MaxPooling operation reduces spatial dimensions by selecting the maximum 

value in non-overlapping windows: 

𝐴𝑖𝑗
𝑝𝑜𝑜𝑙 =

𝑚𝑎𝑥

𝑚, 𝑛
(𝐴(𝑖+𝑚)(𝑗+𝑛)), 𝑚, 𝑛 ∈  𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 

This step helps in reducing computations and focusing on dominant features. 

𝐴𝑖𝑗
𝑝𝑜𝑜𝑙: Output of the pooling operation. 

𝑊𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒: The size of the pooling window (commonly 2×2). 

Step 4: Flattening 

• After the final convolutional and pooling layers, the feature maps are flattened into a 

1D vector z: 

𝑧 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐴𝐿) 

Where 𝐴𝐿 is the feature map from the last convolutional layer. 

𝐹𝑙𝑎𝑡𝑡𝑒𝑛: Converts multi-dimensional feature maps into a 1D vector for dense layer 

processing. 

Step 5: Fully Connected Layers 

• Fully connected (Dense) layers compute weighted sums of their inputs: 

𝑍(𝑙) = 𝑅𝑒𝐿𝑈(𝑊(𝑙)𝑍(𝑙−1) + 𝑏(𝑙)) 

𝑊(𝑙): Weight matrix for layer 𝑙. 

𝑍(𝑙−1): Input vector from the previous layer. 
(𝐵𝑙): Bias term. 

Step 6: Dropout for Regularization 

• Dropout randomly sets a fraction p of activations to zero during training to prevent 

overfitting: 

𝑍𝑖
𝑑𝑟𝑜𝑝 =  {

𝑍𝑖, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝 
0,   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑝

 

𝑃: Dropout rate (e.g., 0.2, 0.5, etc.). 

Step 7: Output Layer with SoftMax 

• The output layer computes class probabilities using the SoftMax activation: 

𝑦̂𝑖 =
𝑒𝑥𝑝(𝑍𝑖)

∑ 𝑒𝑥𝑝(𝑍𝑖)
𝐶
𝑗=1

, 𝑖 ∈ 1,2, … , 𝐶 

𝐶: Number of classes. 
̂

𝑌𝑖: Predicted probability for class i. 

Step 8: Loss Function (Categorical Crossentropy) 

• The loss function measures the difference between predicted probabilities 𝑦̂ and true 

labels y: 
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𝐿 = − ∑ 𝑦𝑖𝑙𝑜𝑔(

𝐶

𝑖=1

𝑦̂𝑖) 

𝑦𝑖: True label for class i (one-hot encoded). 
̂

𝑌𝑖: Predicted probability for class i. 

Step 9: Optimization (Adam) 

• The Adam optimizer updates weights W using gradients ∇L: 

𝑊𝑡+1 =  𝑊𝑡 −η.
𝑚̂𝑡

√𝑣̂𝑡+∈
 

 
̂

𝑀𝑡,  𝑣̂𝑡: Corrected first and second moments of gradients. 

η:  Learning rate (e.g., 0.001). 

∈: Small value to avoid division by zero. 

Step 10: Early Stopping 

• Early stopping halts training when validation loss does not improve for a specified 

number of epochs (p): 

Stop training if min(𝐿𝑣𝑎𝑙,t) does not decrease for t>p 

(𝐿𝑣𝑎𝑙,t) : Validation loss at epoch t. 

 

The proposed model is a carefully designed convolutional neural network (CNN) optimized 

for multi-class classification of MRI data. The model incorporates multiple layers of 

convolutional operations with progressively increasing filter sizes (16, 32, 64, 128, 256) to 

extract hierarchical spatial features, enabling it to learn complex patterns in medical imaging 

data. Batch Normalization is strategically placed after convolutional and Dense layers to 

stabilize activations and improve training efficiency. Regularization is achieved through 

Dropout layers with varying rates (0.2, 0.5, and 0.7) to prevent overfitting and enhance 

generalization. Additionally, the final convolutional layer is explicitly named ̀ last_conv_layer` 

to support Grad-CAM, which provides interpretability by highlighting the critical regions in 

MRI scans that influenced the classification decision. 

The proposed model brings along several key contributions making  it appropriate for medical 

imaging classification tasks. Early Stopping allows for efficient training by stopping when 

validation loss is no longer improving, and Model Checkpoint allows the saving of  the best 

weights based on validation. Adaptive updates to the model's parameters using  the Adam 

optimizer with a learning rate of 0.001 ensure faster convergence. The  overall evaluation 

metrics including categorical accuracy, AUC, and F1-Score describe the performance of the 

model. This model combines interpretability, robust regularization, and feature extraction,  

making your solution scalable and reliable in clinical applications and overcoming the 

obstacles posed by heterogeneous data, as well as ensuring explainable AI for healthcare 

applications. 

4. Experimental Results 

This subsection gives a  thorough assessment of the results reported by the proposed method 

while the simulations are still in progress. This Simulations UNIX dataset was obtained from 

the Best Alzheimer MRI  dataset [17]. The  same data treatment detailed above was 

performed on this dataset for the current study. 

The dataset consists  of: 
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• Mild Impairment 

• Moderate Impairment 

• No Impairment 

• Very Mild Impairment 

 

Mild Impairment 

 
(a) 

 

Mild Impairment 

 
(b) 

 

Mild Impairment 

 
(c) 

 

Moderate 

Impairment 

 
(d) 

 

Moderate 

Impairment 

 
(e) 

 

Moderate 

Impairment 

 
(f) 

 

No Impairment 

 
(g) 

 

No Impairment 

 
(h) 

 

No Impairment 

 
(i) 

 

Very Mild 
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Very Mild 

Impairment 

 
(k) 

 

Very Mild 

Impairment 

 
(l) 

 

Figure 3: The sample images of the dataset 
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(a) Ground Truth: No Impairment 

Predicted: No Impairment 

 
(b) Ground Truth: No Impairment 

Predicted: No Impairment 

 
(c) Ground Truth: No Impairment 

Predicted: No Impairment 

 
(d) Ground Truth: Very Mild 

Impairment 

Predicted: Very Mild Impairment 

 
(e) Ground Truth: No Impairment 

Predicted: No Impairment 

 
(a) Ground Truth: Mild Impairment 

Predicted: Mild Impairment 

Figure 4: Grad-CAM Visualizations for Alzheimer’s Disease Classification 

Figure 4  depicts Grad-CAM visualizations showing the areas where the model was most 

focused on when classifying Alzheimer's disease stages using MRI scans. Each image comes 

with a heatmap superimposed with the origins of the MRI scan, where warmer colors (red, 

orange yellow) mean higher significance for  the model's decisions, while cooler colors (green, 

and blue) mean lower significance for the decision-making process. The true label and 

predicted labels shown above each of the image’s dependent on the  classification output of 

the custom CNN model. The set of images provides evidence  of the model learned to 

differentiate important areas of the human brain that are related to three degrees of impairment 

i.e., No Impairment, Mild Impairment, and Very Mild Impairment. 

These numbers reinforce  the need for something like Grad-CAM for interpretability in 

medical AI systems. The Explainable AI behavior can be validated based on visualizing the top 
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pay between regions  that lead to the classification made for a model by researchers and 

clinicians. The predicted regions are not matched with the image ground truth  and in all cases 

the highlighted regions are consistent with clinicians' clinical expected regions, even providing 

validation that the focused areas are diagnostically reasonable. This ability to provide 

descriptive behavior improves trust in  the Explainable AI itself and the model complements 

the structural changes observed in the brain with the different stages of Alzheimer's disease, 

thus making it useful for diagnostic aid but also for further studies in this research level. 

Table 1: Classification Report 

 Precision Recall F1-Score 

Mild Impairment 0.93 0.96 0.94 

Moderate 

Impairment 

1.00 0.83 0.91 

No Impairment 0.94 0.98 0.96 

Very Mild 

Impairment 

0.97 0.90 0.94 

Accuracy 0.95 

Performance of the proposed model in terms of four categories, namely, Mild Impairment, 

Moderate Impairment, No Impairment, and Very Mild Impairment  shown in Table 1 by using 

the classification report. The NO IMP category has the highest value of F1 score of 0.96  and 

recall of 0.98, while the model has very good precision, recall and F1 scores across the 

capabilities of the model. Both the Mild Impairment  and Very Mild Impairment categories 

have high F1-scores of 0.94, indicating both high precision and recall. Where the Moderate 

Impairment class has a precision of 1.00, recall is lower at 0.83, leading to a n F1-score of 

0.91. The metrics are yielding an overall accuracy of 95% indicating a pretty effective  

application of the model for the multi-classification of MRI data for patients with Alzheimer's 

disease. 
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Figure 5: Confusion Matrix 

The confusion matrix (Figure 5) is a detailed overview used in statistics to assess the  

performance of a multi-class classification model. Gives informative aspects of True positives 

(TP), False  positives (FP), False negatives (FN), and True negatives (TN) in each category. It 

is a method  that is especially useful in the context of Alzheimer's disease diagnosis, allowing 

us to see how well our model can distinguish between different impairment levels. 

Within this specific matrix: 

• Mild Impairment: The cell in the top-left corner (171) indicates the true positives (TP), 

which are cases accurately predicted as Mild Impairment. False negatives (FN) and 

false positives (FP) fill out the  off-diagonal cells (4, 4), showing instances that were 

misclassified into the wrong group. 

• Moderate Impairment: The TP count is 10, found in the second row, second column. 

The off-diagonal cells (1, 1) show misclassifications into Mild Impairment and Very 

Mild Impairment. 

• No Impairment: The largest TP value is 630, found in the third row, and third column, 

reflecting the model's high accuracy for this class. Off-diagonal cells (3, 7) represent 

misclassifications into other classes. 

• Very Mild Impairment: The TP count is 404 in the last row, last column, while the 

off-diagonal cells (9, 35) indicate misclassifications into Mild Impairment and No 

Impairment, respectively. 
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This confusion matrix demonstrates that the model performs exceptionally well for categories 

like No Impairment and Mild Impairment while showing some misclassification challenges for 

Very Mild Impairment and Moderate Impairment. 

Table 2: Comparative Analysis 

Methods Accuracy 

EfficientNetB0 [18] 39.48% 

MobileNetV1 [19] 70.54% 

VGG16[20] 72.87% 

SqueezeNet [21] 88.60% 

NASNETMobile [22] 92.80% 

InceptionV3 [23] 93.20% 

Xception [24] 94.40% 

Proposed (GRAD-CAM’s) 95.00% 

Table 2 presents a comparative analysis of various deep learning methods used for Alzheimer’s 

disease classification based on their accuracy. The proposed model utilizing Grad-CAM 

achieves the highest accuracy of 95.00%, outperforming several state-of-the-art architectures. 

Among the compared methods, Xception reaches an accuracy of 94.40%, closely followed by 

InceptionV3 at 93.20% and NASNETMobile at 92.80%. SqueezeNet and VGG16 achieve 

moderate accuracies of 88.60% and 72.87%, respectively, while MobileNetV1 and 

EfficientNetB0 yield lower accuracies of 70.54% and 39.48%. Such  comparison indicates an 

excellent improvement for the presented model, hence attesting precision and strength for the 

successful classification of MR images in the task of detecting Alzheimer's disease. 

5. Conclusion 

This research introduces and validates a new deep-learning system designed to identify 

different levels of memory-related conditions. The proposed model combines a custom-built 

AI structure with a tool called Grad-CAM, which helps explain how the system makes its 

decisions. Key features of the model include multiple layers for learning patterns, techniques 

to improve training stability, and methods to prevent the system from becoming too focused 

on specific training examples. Grad-CAM also provides visual feedback, showing which areas 

of the dataset images, the model used to make its decision, offering a clear explanation of its 

thinking process. The model reached an accuracy of 95%, outperforming other well-known 

systems like Xception (94.40%) and InceptionV3 (93.20%). This approach is unique because 

it not only delivers strong performance but also addresses the growing need for AI tools to be 

understandable and trustworthy. Our findings showed that the model can successfully 

recognize different stages of human function decline and could be useful in real-world 

decision-making processes. This system sets a new standard by bridging advanced technology 

with everyday use, supporting better outcomes for people, and increasing trust in AI-powered 

tools. The work shows that deep learning has great potential to improve how we detect and 

understand complex problems, while also making sure that the results are clear and reliable. 
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