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Abstract

One of the leading causes of memory loss and thinking problems in adults is a condition
that affects human function over time. Detecting this condition early is,i tant for better care
and treatment. However, even with the latest technology in artificigi@#telligtnce (Al) and deep
learning, the results are not convincing because the dyna ¢ of the datasets. This study
introduces a new deep learning approach that includeg a alf Grad-CAM, which helps

explain how the Al makes decisions. Our goal is to d aNQhi and understandable system

that uses a special type of Al model calledg®s al neural network (CNN) to analyze
online dataset images. The model inc @ ques educe errors and handle different
types of data, while Grad-CAM provide eedback showing what the model is focusing
on. The system achieved 95% accuracy, per@ming better than other well-known models like

Xception (94.40%) and InceptionV3 (93.20% ) erall, this work offers a highly accurate and

transparent tool to support early, ction of memory-related conditions, assist professionals
in planning care, and open n s for research in Al-supported health applications.
Keywords: Deep -CAM, Convolutional Neural Networks, Classification,
Explainable Al

ctionand memory loss. A timely and accurate diagnosis of Alzheimer's disease
the management of the disease and can lead to improved patient outcomes. As a
sive imaging modality, Magnetic resonance imaging (MRI) has proved to be an
tial strategy for studying the structural and functional changes in Alzheimer's [2]. On the
other hand, the interpretation of manual diagnoses from MRI data leaves room for interpretive
errors and necessitates considerable expertise, highlighting the necessity of automated and
consistent methods.

Alzheimer’s Disease (AD) is increasingly prevalent, bringing significant interest in possible
diagnostic solutions utilizing artificial intelligence (AI) and machine learning (ML) [3]. The



method has explored some different techniques, but deep learning specifically, has
demonstrated great promise in the US for its ability to identify complex patterns and features
from medical imaging data. Despite the above, the classification of Alzheimer's disease from
MRI data remains a challenging task because, in the early stages of the disease, the subtle
brain changes are often camouflaged by normal processes [4]. Moreover, the multi-
dimensionality of MRI data demands paradigms capable of isolating disease-characteristic
features and providing sufficient specificity.

Several reasons are challenging robust diagnostic model development for Alzheimer's dise
[5]. Variations in MRI data due to variations in imaging protocols, scanner settings g

differ from early Alzheimer's disease only with a high level of precision and th
overlap at this stage [6]. Existing advances themselves are hampered b

There is an increasing demand for an accurate, scalable, automate
Alzheimer’s disease [7]. Current methods usually fail jgTRg
datasets and therefore can perform very differently

This can be complemented or improved U@ If a continuous stream of improvements on
classification-based neural network architectur®@ean be obtained [8]. Incorporating a variety
of advanced techniques includin olutional neural networks (CNNs) and transfer learning,
the framework is capable of hgni@i arning from MRI data, including extracting features
inherent to the pathology the effect of variability in the data. Utilizing this
framework would yield a solf®®d scalable solution, delivering clinicians an accurate
and accurate tool for clSgkion of Alzheimer's disease.

2. Literature Sur

| [9]. Proposed a deep learning technique-based early diagnosis of the
eep Learning framework. Model development, which included pre-
, and evaluation, was performed using brain magnetic resonance imaging
red five deep-learning models and grouped them according to whether they
a augmentation or not—the Convolutional Neural Network-Long Short-Term
odel performed the best, producing an accuracy of 99.92 percent. The text-based
are designed specifically to optimize accuracy, recall, precision, Flscore and
utational efficiency. The findings underscore the promise of deep learning for
Alzheimer's disease detection.

Doaa Ahmed Arafa et al. [10] provide a CNN-based deep-learning framework for Alzheimer's
disease classification. The proposed paradigm encompasses four phases: preprocessing, data
augmentation, cross-validation, and classification with feature extraction. We implemented
two methods, simple CNN & Pre-trained VGG16 with transfer learning & fine-tuning. Results



showed that the framework was effective with a limited number of labels and less domain-
specific knowledge. Model: (acc: 99.95%, val acc: 99.99%) and fine-tuned VGG16 model:
(acc: 97.44%, val_acc: 97.40%) It focused on lowered computational complexity, limited over-
fitting and reduced memory consumption, resulting in the suitability of the framework for AD
diagnosis.

Ahmed A. Abd El-Latif et al. [11] developed a lightweight deep-learning model to detect
Alzheimer's disease from MRI data. You are without deeper layers, which does it perfor,

well. It is also less complex and consumes less time as compared to the other existing mo
with seven layers. On a 36 MB Kaggle dataset 99.22% accuracy on two classes and 95,93
accuracy on multi-class, higher than previous ly the model. Here, this study prese
combination of several methodologies of AD detection with the Kaggle datasetas
new challenges to researchers. The results underline model efficiency, as well
AD classification tasks.

and techniques for Alzheimer’s disease (AD) diagnosis, includ
normalizing flows, graph-based deep architectures, self-supervise
models. Three major categories of currently known chal
include data-related issues, methodology-related co
challenges. The study ends with potential future di

empower future studies in AD detection
e baj
§0s Q4

ase classification. Utilizing transfer learning
architectures (Inception v3 and Xception) and@&tom CNN with separable convolutional layers

the existing literature
s, and clinical adoption
ecommendations that may

Ahsan Bin Tufail et al. [13] devised a scy

contrast across scans. E esults showed that transfer learning methods
outperformed non-transfe aches, highlighting their effectiveness in binary AD
classification tasks.

pd et al. [14] introduced Alzheimer's Disease Detection Network
re designed for AD detection with fewer parameters, ideal for
distinguishes the early stages of Alzheimer's disease and generates
as brain heatmaps. It reduces computational costs while precisely
ages. To address the class imbalance in the Kaggle MRI dataset, synthetic

sNet V2 showed ADD-Net’s superior performance across metrics, achieving
racy, 99.76% AUC, 98.61% F1-score, and a loss of 0.0549%. The results highlight
’s effectiveness over state-0f-the-art models.

P.R. Buvaneswari et al. [15] proposed an approach for achieving high-performance automated
classification of Alzheimer’s disease. Seven morphological features, including grey matter,
white matter, cortical surface, gyri and sulci contours, cortical thickness, hippocampus, and
cerebrospinal fluid space, were extracted from 240 structural MRI (sSMRI) scans using SegNet.
These features were used to train a ResNet model for classification. The trained classifier
demonstrated a sensitivity of 96% and an accuracy of 95% on 240 ADNI sMRI scans not
included in the training set.



Ruhul Amin Hazarika et al. [16] Visualization of feature extraction was performed on deep
learning models used for Alzheimer’s disease classification on MR images from ADNI dataset
16. DenseNet-121 reached 88.78% average accuracy, though it was slower in terms of
computational cost s it performs considerable convolution operations. To reduce its resource
load, depth-wise convolution layers were replaced with regular convolution layers in the
DenseNet-121 architecture. This change improved the computation, and resulted in an increase
of the mean accuracy of the model to 90.22%, illustrating it has greater performance and
easier usage.

3. Proposed Model

Alzheimer's disease is a progressive degenerative disease of the nervous syst

prevalent cause of dementia, causing a major burden on millions
early diagnosis is essential for managing symptoms and improy
available modalities, MRI is essential in detecting structural and
function of the brain in the context of Alzheimer's. However man¥
data is error-prone, which requires an automated system built % ‘

alterations in the
¥ analyzing the MRI
yced deep learning
for the accurate

techniques. CNNs and transfer learning models have been woglfle wc
detection and classification of Alzheimer's disease even i Y stages.

The proposed CNN model which helps to classify, cgRorigfof Alzheimer's disease is
depicted in Figure 1.
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Figure 1: Proposed method Architecture

Conv2D Layer (16, kernel_size=(3,3), activation="ReLU’', padding='same'): The
effect of this block is that the first layer in a convolutional network is a convolutional
layer, which takes the input data and applies 16 filters of size 3 x 3 High. This layer is
responsible for extracting spatial features like edges and textures from the image.
ReLU activation function adds non-linearity, allowing the network to learn complex
behaviors. Using 'same' padding helps in keeping the aspect ratio of output feature ma
equal to input feature maps so that whenever the model goes ahead with learnin
can capture all the information from input as it can.
Conv2D Layer (16, kernel size=(3,3), activation="ReLU', padding="sa
second convolutional layer operates on these feature maps with the sa
Additional convolutional stacks allow for the addressing of fgmer

abstract features in the input image for downstream task repgfcnion:
. MaxPool2D Layer (pool_size=(2,2)): The next layer is 4@ t halves

the spatial dimensions of the feature maps. It downsamples ing the maximum

value in each 2x2 window of the input. This approach lo the computational
complexity, prevents overfitting, and keeps the strongestgitur®that the previous
convolutional layers have learned.
Conv2D Layer (32, kernel_size=(3,3), activa
increases the number of filters up to 32 for
of more complex patterns in the ig
capturing of local spatial relationg
Conv2D Layer (32, kernel_size
another 32 filters using convolutid
higher-order statistics of the signal,

U', padding='same'): It
ecognize a higher number
for the filter allows for the
U activation retains non-linearity.
ivation='ReLU', padding='same"): It adds
ayers. This allows the network to learn from
iding a deeper and more abstract signal

analysis.
. BatchNormalization [ t normalizes the outputs of the previous layer by
scaling the activa@®nsrand g¥ntering them. This technique, known as batch

normalization, no 17€S mputs of every layer in a way that stabilizes the
g slow learning speed and being stuck in local minima.

ool_size=(2,2)): The second pooling layer continues to reduce

g of the feature maps. This helps the network to only form high-

. MaxPool2I}
the spataal d1

(64, kernel_size=(3,3), activation="ReLU', padding='same'): These
ters from the convolution in the previous layer, this convolution layer has 64
learn high-level concepts. More number of filters cause the layer to learn
re diverse features.
v2D Layer (64, kernel_size=(3,3), activation="ReLLU', padding='same'): This
dditional convolutional layer has 64 filters to further abstract the features. The
stacking of several layers allows the model to create a hierarchical representation of
the input.
. BatchNormalization Layer (): It helps make the learning process more stable by
reducing the sensitivity of the model to shifting input distribution and also normalizes
the activations of the previous layer.
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MaxPool2D Layer (pool size=(2,2)): As such, the third pooling layer decreases the
feature maps' spatial dimensions in a way that facilitates the network to focus on
important features while omitting less important features.

Conv2D Layer (128, kernel_size=(3,3), activation="ReLU', padding='same'): This
layer applies 128 filters to identify increasingly abstract and complex characteristics
in the data. The high number of filters aids in learning minute details and intricate
relationships.

Conv2D Layer (128, kernel_size=(3,3), activation="ReLU', padding='same'):
hundred and twenty-eight filters applied over the previous layer enhance t
representation, enabling a more complex encoding of the class information i

for the model.

BatchNormalization Layer (): It is used to normalize the convolutiopf o

making sure that the output of the convolutional layers gives ling he
training model and also stabilizes and enhances the training
MaxPool2D Layer (pool_size=(2,2)): The last pooling
dimensions dramatically and helps to prepare the feature majp
fully connected layers. This technique allows us to abstractg tf
and capture the most relevant parts. )
Conv2D Layer (256, kernel_size=(3,3), activati
is the first convolutional layer, with 256 filte
features and information from the_inp«gl that
relationships.
Conv2D Layer (256, kerne
name="'last_conv_layer'): This [3

=

duces the spatial
¥efore taking them to
patial information

', padding="'same'): This
is giipected to detect high-level

to allow for stable gr,
MaxPool2D Laye

for the transitiga to dense layers while retaining the most important high-level

ust features.
se Layer (512, activation="ReLLU"): Neurons in the fully connected layer are 512,
ich learns high-level features of input. The ReLU activation function enables the
model to learn non-linear relationships.

. Batch Normalization Layer (): This layer normalizes the outputs of the dense layer.
. Dropout Layer (rate=0.7): Used 70% dropout rate to avoid overfitting by removing

the dependence on specific neurons in the training.

. Dense Layer (128, activation="ReLU'): The next layer is a dense layer of 128

neurons, allowing the model to better refine the feature representation and learn
important patterns for classification.



26. Batch Normalization Layer (): It contains the dense layer output and normalizes the
activations, which helps accelerate training.

27. Dropout Layer (rate=0.5): Implements 50% dropout for further regularization and
reduces overfitting.

28. Dense Layer (64, activation="ReLLU'): Further metas gave the dimensions 64 help
convolve the process and identify the dimensions most discriminative.

29. Batch Normalization Layer (): It also normalizes the dense layer outputs fo
consistency.

30. Dropout Layer (rate=0.3): Implements 30% dropout to regularize the model be

the final classification layer. %

31. Dense Layer (4, activation='SoftMax'): The last dense layer consists of n
M) is one of the

suit the output classes. It is a multi-class prediction model because Sofffta
each class to give probabilities of each class.

3.1 Grad-CAM

Related work Gradient-weighted class activation mapping (Gra
techniques used to interpret the decision-making process of
researchers determine and visualize salient features in i i

regions most responsible for a model's predicted outcom: nique calculates gradients
of the predicted class score concerning the feature gggp ¢ Jst convolutional layer and
generates a heatmap indicating which regio ut 1 1ve significant contributions
to the predicted score.

1. Feature Extraction: The Grad-
convolutional layer of the CNN (e.g.,
pass to determine how relevant they were

oorithms pull gradients from the final
d "last_conv_layer") and perform a backward
e output prediction.

2. Heatmap Generation: It pgpls ients to identify their significance and introduces a
weighted map addition s. The produced heatmap identifies the important
areas in the MRI imag@leadin e classification outcome.

3. e heatmap placed on the original MRI image, which also
e model is concentrating its attention.
The bas d Was a custom CNN consisting of Conv2D with multiple filters,

alization, Dropout, and Dense layers. We applied Grad-CAM to this
derstand the classifier's decisions.
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Figure 2: Grad-CAM Grad-CAM (Grad g ghted Class Activation Mapping) [GS21] is
interpretability of CNNs by highlighting the

CNN, where we feed images t
features are used for the ful
CAM takes the gradients
This also generates a gl criminative heatmap where only the prominent regions of the

flow, a heatmap that has been overlaid on the input image enables
the areas that contributed most to the model's classification. For

Algorithm for Alzheimer’s disease
Step 1: Input and Preprocessing
e The model shape is defined as Input € RH*W*C,
Where:
e H,W: Image height and width (e.g., 256 % 256 pixels).
e C: Number of channels (3 for RGB images).
e Input normalization ensures the pixel intensity values are scaled to the range [0,1]:




I
255
Here, I;; represents the pixel intensity at position (i,)).
Step 2: Feature Extraction via Convolutional Layers
e FEach convolutional layer applies a filter W, (Kernel) over the input to compute
feature maps Ay:

° xij=

AL = ReLU(WP « 40D 4 b )

. Wk(l): Weights of the k-th filter in layer 1.
o AUD: Input feature map to the layer.

e bW: Bias for the k-th filter.
e ReLU: Activation function
Step 3: Downsampling with MaxPooling
e The MaxPooling operation reduces spatial dimensions by maximum
value in non-overlapping windows:
pool _ Max )
A= (A¢irmy(j+m) ) M n € win e

This step helps in reducing computations and focusing on do t features.
l . .

A?j"o : Output of the pooling operation. }‘

Window size: The size of the pooling window 2x2).
Step 4: Flattening

e After the final convolutional and pooling 1
1D vector z:

1S, t ¢ maps are flattened into a

ten
t convolutional layer.
feature maps into a 1D vector for dense layer

Where A’ is the feature map fro
Flatten: Converts multi-dimensio

processing.
Step 5: Fully Connected Laye
e Fully connected (Dens@ 1a mpute weighted sums of their inputs:

eLU(WWzE=D 4 p®)
rla
the previous layer.

W ®: Weight matr

Step 6: . Dro ReguMirization
[y sets a fraction p of activations to zero during training to prevent

Zdrop _ {Zi, with probability 1 —p

i 0, with probability p

: out rate (e.g., 0.2, 0.5, etc.).

Jputput Layer with SoftMax

he output layer computes class probabilities using the SoftMax activation:
. exp(Z) .
Vi =ap——,i€12,..,C

j=1€xp(Z;)

C: Number of classes.

- yi: Predicted probability for class i.
Step 8: Loss Function (Categorical Crossentropy)

e The loss function measures the difference between predicted probabilities ¥ and true
labels y:




c
L= —Z}’ilog(f’i)
=1

y;: True label for class i (one-hot encoded).
B vi: Predicted probability for class i.
Step 9: Optimization (Adam)
e The Adam optimizer updates weights W using gradients VL:

Wi = We —n. —

Dete

—~

e, Ug: Corrected first and second moments of gradients.
n: Learning rate (e.g., 0.001).
€: Small value to avoid division by zero.
Step 10: Early Stopping

o Early stopping halts training when validation loss does ng for ecified

number of epochs (p):
Stop training if min(L,q;,t) does not decreasoQ@t>p

(Lyai,t) - Validation loss at epoch t.

The proposed model is a carefully designed convolutio I network (CNN) optimized
for multi-class classification of MRI data. The rates multiple layers of

convolutional operations with progressively increggaiie (16, 32, 64, 128, 256) to

extract hierarchical spatial features, enablig lcq@y complex patterns in medical imaging
data. Batch Normalization is strategi @ ‘

aftcN@gonvolutional and Dense layers to
stabilize activations and improve trainWge cifCiency. Regularization is achieved through

Dropout layers with varying rates (0.2, O\@and 0.7) to prevent overfitting and enhance
generalization. Additionally, the final convolutiS@Rl layer is explicitly named ‘last conv_layer
to support Grad-CAM, which p es interpretability by highlighting the critical regions in
MRI scans that influenced th n decision.

The proposed model bring ng s key contributions making it appropriate for medical
imaging classificatiog . ly Stopping allows for efficient training by stopping when
validation loss is nglfonger@npi®ving, and Model Checkpoint allows the saving of the best

(datiogf Adaptive updates to the model's parameters using the Adam
ate of 0.001 ensure faster convergence. The overall evaluation

orical accuracy, AUC, and F1-Score describe the performance of the

erimental Results

This subsection gives a thorough assessment of the results reported by the proposed method
while the simulations are still in progress. This Simulations UNIX dataset was obtained from
the Best Alzheimer MRI dataset [17]. The same data treatment detailed above was
performed on this dataset for the current study.

The dataset consists of:
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(a) Ground Truth: No Impairment
Predicted: No Impairment

(b) Ground Truth: No Impaj
Predicted: No Impairme

(¢) Ground Truth: No Impairment
Predicted: No Impairment Impairment
\ Mild Impairment

(e) Grogand w h Impairment (a) Ground Truth: Mild Impairment
i Predicted: Mild Impairment
-CAM Visualizations for Alzheimer’s Disease Classification

icted labels shown above each of the image’s dependent on the classification output of
the custom CNN model. The set of images provides evidence of the model learned to
differentiate important areas of the human brain that are related to three degrees of impairment
i.e., No Impairment, Mild Impairment, and Very Mild Impairment.

These numbers reinforce the need for something like Grad-CAM for interpretability in
medical Al systems. The Explainable Al behavior can be validated based on visualizing the top




pay between regions that lead to the classification made for a model by researchers and
clinicians. The predicted regions are not matched with the image ground truth and in all cases
the highlighted regions are consistent with clinicians' clinical expected regions, even providing
validation that the focused areas are diagnostically reasonable. This ability to provide
descriptive behavior improves trust in the Explainable Al itself and the model complements
the structural changes observed in the brain with the different stages of Alzheimer's disease,
thus making it useful for diagnostic aid but also for further studies in this research level.

Table 1: Classification Report

Precision Recall F1-Sco
Mild Impairment 0.93 0.96
Moderate 1.00 0.83 |
Impairment
No Impairment 0.94 0.98 0.96
Very Mild 0.97 0.90 0.94
Impairment
Accuracy

Performance of the proposed model in terms of fo amely, Mild Impairment,
shown in Table 1 by using
the classification report. The NO IMP catgl X johest value of F1 score of 0.96 and
i , recall and F1 scores across the
capabilities of the model. Both the Mild Xgag ent and Very Mild Impairment categories
have high Fl-scores of 0.94, indicating bot/@iieh precision and recall. Where the Moderate
Impairment class has a precision gf1.00, recal®s lower at 0.83, leading to a n Fl-score of

0.91. The metrics are yieldin all accuracy of 95% indicating a pretty effective

application of the model f(( sification of MRI data for patients with Alzheimer's
disease.
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The confusion matrix (Figure 5) is a overview used in statistics to assess the
performance of a multi-class classification gdel. Gives informative aspects of True positives
(TP), False positives (FP), False negatives ( and True negatives (TN) in each category. It
is a method that is especially u n the context of Alzheimer's disease diagnosis, allowing
us to see how well our model ish between different impairment levels.

Within this specific matri

. 1 in the top-left corner (171) indicates the true positives (TP),
which are d ately predicted as Mild Impairment. False negatives (FN) and

Pl out the off-diagonal cells (4, 4), showing instances that were

gonal cells (1, 1) show misclassifications into Mild Impairment and Very

il pairment.

Impairment: The largest TP value is 630, found in the third row, and third column,
reflecting the model's high accuracy for this class. Off-diagonal cells (3, 7) represent
misclassifications into other classes.

Very Mild Impairment: The TP count is 404 in the last row, last column, while the
off-diagonal cells (9, 35) indicate misclassifications into Mild Impairment and No
Impairment, respectively.



This confusion matrix demonstrates that the model performs exceptionally well for categories
like No Impairment and Mild Impairment while showing some misclassification challenges for
Very Mild Impairment and Moderate Impairment.

Table 2: Comparative Analysis

Methods Accuracy
EfficientNetBO [18] 39.48%
MobileNetV1 [19] 70.54%
VGG16[20] 72.87%
SqueezeNet [21] 88.60%
NASNETMobile [22] 92.80%
InceptionV3 [23] 93.20%
Xception [24] 94.40%

Proposed (GRAD-CAM’s)

thods used for Alzheimer’s
odel utilizing Grad-CAM

Table 2 presents a comparative analysis of various deep 1
disease classification based on their accuracy. T
achieves the highest accuracy of 95.00%, q several state-of-the-art architectures.
Among the compared methods, Xceptioge Jn acqacy of 94.40%, closely followed by
InceptionV3 at 93.20% and NASNE b 92.80%. SqueezeNet and VGGI16 achieve
moderate accuracies of 88.60% and X/%, respectively, while MobileNetV1 and
EfficientNetBO0 yield lower accuracies of 70.5%@aand 39.48%. Such comparison indicates an
excellent improvement for the p ed model, hence attesting precision and strength for the
successful classification of MR the task of detecting Alzheimer's disease.

—

5. Conclusion

yd Wplidates a new deep-learning system designed to identify
lated conditions. The proposed model combines a custom-built
d Grad-CAM, which helps explain how the system makes its

ility, and methods to prevent the system from becoming too focused
examples. Grad-CAM also provides visual feedback, showing which areas

s. The model reached an accuracy of 95%, outperforming other well-known
Xception (94.40%) and InceptionV3 (93.20%). This approach is unique because
delivers strong performance but also addresses the growing need for Al tools to be
standable and trustworthy. Our findings showed that the model can successfully
recognize different stages of human function decline and could be useful in real-world
decision-making processes. This system sets a new standard by bridging advanced technology
with everyday use, supporting better outcomes for people, and increasing trust in Al-powered
tools. The work shows that deep learning has great potential to improve how we detect and
understand complex problems, while also making sure that the results are clear and reliable.
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