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Abstract—DDoS attacks require efficient detection due to 

challenges like latency, false positives, and resource inefficiency, 

especially in IoT and Fog-SDN setups. A framework combining 

ML and DL for real-time DDoS detection was evaluated against 

Logistic Regression, Random Forest, and CNN using benchmark 

datasets. Key metrics included accuracy, precision, recall, F1-

score, false positive rate, latency, and resource use. The 

framework achieved 98.3% accuracy, surpassing CNN (95.6%), 

Random Forest (91.5%), and Logistic Regression (86.8%). 

Precision, recall, and F1-score were 98.7%, 97.8%, and 98.2%. 

False positive rates were 2.1%, compared to CNN (4.3%), Random 

Forest (6.4%), and Logistic Regression (8.2%). Latency was 30–

110 ms for 100–500 requests in Fog-SDN versus 50–180 ms in 

cloud setups. Resource utilization was efficient: fog nodes 70%, 

cloud 60%, and IoT devices 40%. The proposed framework 

ensures high accuracy, low latency, and efficient resource use, 

perfect for real-time DDoS detection in Fog-SDN environments.  

Keywords—SDN; fog computing; federated learning; machine 

learning; DDoS Mitigation; IoT; distributed controllers 

I. INTRODUCTION 

Software-Defined Networking (SDN) has emerged as a 
powerful and efficient platform for managing modern 
computational environments, devices, and applications [1][2]. A 
key feature of SDN is its ability to decouple network control 
from the data plane, enabling more flexible resource 
management [3]. This decoupling allows for efficient handling 
of control and forwarding activities across network nodes 
without introducing delays, making SDN highly scalable and 
adaptable. Over the past few years, SDN architecture has 
evolved from a centralized single-controller system to a 
distributed multi-controller framework, addressing the 
increasing demands of large-scale, dynamic networks. This 
evolution is essential for supporting the rapid growth of data 
traffic, particularly in IoT environments, and the integration of 
edge and cloud computing technologies. 

In this work, we introduce an advanced SDN framework 
integrated with edge computing and fog computing, where 
intelligent IoT nodes perform sending tasks with the assistance 
of a middle layer of fog computing [5]. This architecture 
leverages cloud computing resources at the application layer 
while addressing the growing complexity of securing SDN-
based networks, which are vulnerable to cyber-attacks like 

Distributed Denial of Service (DDoS)[6][7]. Traditional 
centralized SDN controllers are particularly prone to DDoS 
attacks, as attackers can overwhelm the central controller and 
disrupt the entire network. Therefore, it is imperative to create 
secure and robust SDN controllers that can fend off these 
attacks. 

A. Federated Learning for Secure and Scalable DDoS 
Mitigation 

Federated Learning (FL) is proposed as a remedy for 
securing SDN-based IoT networks by enhancing DDoS 
detection and mitigation while maintaining data privacy. FL 
allows for distributed training of machine learning models 
throughout fog nodes without transferring sensitive data to a 
central server. Each fog node performs local training on its own 
data, and the model updates are then combined to improve a 
global model using techniques like Federated Averaging. This 
process makes certain that the local raw data is maintained, 
addressing privacy concerns in IoT networks. By utilizing FL, 
the system can continuously learn from real-time traffic data and 
adapt to emerging DDoS attack patterns[8] [9]. 

In this framework, federated learning works alongside 
advanced Machine Learning (ML) techniques like ensemble 
learning and deep learning, which are employed to detect and 
mitigate DDoS attacks. These ML models analyse packet 
characteristics and traffic patterns at the edge, detecting 
malicious activities before they reach the central controller. The 
integration of FL with SDN and fog computing provides a 
decentralized yet collaborative approach to DDoS defence, 
ensuring that the system is scalable, efficient, and secure against 
evolving cyber threats. 

B. Challenges and Opportunities 

The rapid expansion of IoT networks and the increasing 
prevalence of DDoS attacks pose significant challenges in 
managing network traffic, detecting threats, and maintaining 
system resilience. In traditional cloud-based architectures, the 
centralized nature of network control increases vulnerability to 
attacks. Fog computing mitigates these challenges by allocating 
more computing work toward the edge, decreasing delay and 
raising overall effectiveness of traffic management. However, 
fog computing environments also face security and privacy 
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concerns, particularly within the framework of large-scale, 
distributed systems. 

The combination of SDN, fog computing, and federated 
learning presents a unique opportunity to build a robust, 
distributed, and privacy-preserving solution for DDoS 
mitigation in IoT networks. In order to overcome these issues, 
this study suggests a multi-layer security framework that 
leverages federated learning for collaborative model training, 
machine learning for attack detection, and fog computing for 
localized traffic analysis and mitigation. Additionally, fault 
tolerance and redundancy mechanisms will be incorporated into 
both the SDN controller and fog nodes to ensure continuous 
operation and enhance defence mechanisms in real-world 
scenarios. 

C. Contributions 

The key contributions of this study are:   

1) Proposing a Secure SDN Architecture: This work 

introduces a novel SDN framework integrated with 

fog computing, which addresses the security 

vulnerabilities of traditional centralized SDN 

controllers, particularly in mitigating DDoS attacks. 

2) Integration of DDoS Detection Using Federated 

Learning: We propose the use of Federated Learning 

(FL) to enhance the DDoS mitigation capabilities of 

the SDN architecture, ensuring privacy-preserving, 

distributed model training and allowing the system to 

adjust to fresh threat patterns in real-time. 

3) Decentralized Traffic Analysis: By incorporating fog 

nodes, this study decentralizes traffic analysis and 

attack mitigation, reducing network congestion and 

latency while improving the overall response time to 

malicious traffic. 

4) Fault Tolerance: Reliability through redundancy in 

SDN controllers and fog nodes ensures continuous 

operation. 

5) Scalability: A robust system for large-scale IoT 

networks to counter evolving DDoS threats 

effectively. 

D. Objectives and Scope 

This research develops a secure SDN framework integrating 

Federated Learning (FL) and fog computing for DDoS 

mitigation in IoT networks. Objectives include: 

1) FL-Based Detection: Deploy FL on fog nodes for 

localized, real-time DDoS detection while 

maintaining privacy. 

2) Security and Privacy: Keep sensitive data local to fog 

nodes, addressing IoT privacy concerns. 

3) Resilience and Scalability: Design a scalable, 

decentralized solution to handle large IoT data and 

adapt to evolving threats. 

4) Performance Evaluation: Measure detection 

accuracy, latency, and resource use under real-world 

conditions. 

The study designs, implements, and evaluates an SDN 

framework with FL in an IoT environment using real-time 

traffic data, comparing its performance with traditional SDN 

strategies. 

II. LITERATURE REVIEW 

The use of machine learning (ML) and blockchain technologies 

in various domains, particularly in cybersecurity, has gained 

substantial attention in recent years. The incorporation of 

these technologies has shown promise in enhancing 

security, improving data integrity, and optimizing the 

efficiency of different systems. Several studies have 

produced notable advancements toward the discipline, 

exploring various facets of machine learning, blockchain, 

and their applications in diverse contexts such as connected 

vehicles, Internet of Things (IoT) ecosystems, 5G networks, 

and smart healthcare. 

Machine Learning and Block chain in Cybersecurity for 

Connected Vehicles: Ahmad et al. (2024) [10] discuss the 

integration using block chain technology and machine learning 

to improve connected vehicle cybersecurity. The authors 

present a hybrid approach which integrates machine learning’s 

ability to identify threats with block chain’s ability to ensure 

data security and integrity. This convergence has the potential 

to offer a strong security remedy for connected vehicle 

networks, which are vulnerable to cyber-attacks due to their 

reliance on internet connectivity. Streaming Traffic 

Classification: Seydali et al. (2024) [11] propose a hybrid deep 

learning approach combined with big data techniques to 

classify streaming traffic in real-time. The paper highlights the 

importance of handling large-scale traffic data efficiently and 

accurately, which is critical in maintaining the security and 

quality of service in network traffic management. The proposed 

model combines deep learning’s predictive capabilities with big 

data’s scalability, making it effective in handling streaming 

traffic scenarios. 

Intrusion Detection in IoT Ecosystems: Isong et al. (2024) [12] 

focus on the evolving strategies for intrusion detection systems 

(IDS) in IoT ecosystems, a rapidly expanding field where 

devices are highly susceptible to cyber threats. The authors 

provide a detailed review of various intrusion detection 

techniques, assessing their effectiveness in IoT environments 

where resource constraints and heterogeneity of devices present 

unique challenges. Their insights into the design of more 

efficient IDS are critical in securing IoT networks. Hybrid IDS 

with host data transformation: Chen et al. (2024) [13] present 

an advanced two-stage classifier combined with host data 

transformation for intrusion detection in network systems. The 

authors argue that combining machine learning with host data 

allows for more accurate threat detection. Their research 

demonstrates the significance of feature transformation in 

enhancing the effectiveness of intrusion identification systems, 

especially in large and complex networks. 

ML in Smart Healthcare: Rahman et al. (2024) [14] explore 

deep learning and machine learning applications in intelligent 
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healthcare systems. The study reviews recent advancements, 

challenges, and opportunities in applying these technologies to 

improve healthcare services. The paper highlights key areas 

such as disease prediction, patient monitoring, and personalized 

medicine. Despite the promising results, the study emphasizes 

the need for addressing data privacy and ethical concerns in 

healthcare systems. eSIM and Block chain for Autonomous 

Cellular-IoTs in 5G Networks: Krishnan et al. (2024) [15] 

propose a novel integration of eSIM and block chain 

technologies for self-governing cellular-IoT devices in 5G 

networks. Their solution aims to ensure secure, seamless, and 

zero-touch provisioning of IoT devices in next-generation 

mobile networks. The integration of block chain enables secure 

transactions and data integrity, while eSIM simplifies the 

management of cellular connectivity. Intrusion Detection for 

5G SDN Networks: Nayak and Bhattacharyya (2024) [16] 

discuss an intrusion detection system designed for 5G SDN 

networks using Neural networks with binarized deep spiking 

capsule fire hawks combined with blockchain technology. 

Their work highlights the growing need for advanced security 

solutions that is capable of managing the complexity and 

dynamic character of next-generation networks like 5G. The 

planned solution seeks to enhance detection accuracy while 

minimizing computational overhead. 

Anomaly Detection in 6G Networks: Alsubai et al. (2024) [17] 

propose a Convolutional auto-encoder with multi scale for 6G 

anomaly detection environments. With the transition to 6G, the 

complexity of networks increases, requiring new methods for 

detecting anomalies. Their approach uses an autoencoder model 

that learns multi-scale features for robust anomaly detection, 

critical for maintaining the reliability and security of future 

mobile networks. Explainable Nature-Inspired Cyber Attack 

Detection System: Kumar and Ansari (2024) [18] introduce an 

clarified nature-inspired model for detection of cyberattacks in 

software-defined Internet of Things applications. The authors 

focus on providing transparency and explain ability in attack 

detection models, which is essential for gaining trust and 

understanding the reasoning behind detected threats. This 

approach is particularly important in the evolving field of 

software-defined networks (SDN) and IoT, where traditional 

security models may not be sufficient. IoMT with Artificial 

Intelligence: Ghodsizad (2024) [19] explores the potential of 

integrating Artificial Intelligence (AI) in Internet of Medical 

Things (IoMT) to enhance medical devices’ functionality and 

security. The paper discusses how AI can be used to improve 

medical data analysis, disease prediction, and decision-making 

in healthcare. The study also addresses the challenges of 

ensuring data privacy and regulatory compliance in the 

integration of AI with medical devices. 

A. Key Insights 

The integration of machine learning, block chain, and IoT 
enables automated, secure, and efficient systems. Key areas 
include cybersecurity in connected vehicles, IoT, 5G, 
healthcare, and autonomous systems. Emerging technologies 
like AI, deep learning, and big data address modern network 
complexities. However, challenges in scalability, privacy, and 
real-world integration demand further research. 

 

III. SYSTEM ARCHITECTURE 

 

The architecture of the proposed fog-based SDN network is 
illustrated in Figure 1. The system is composed of multiple IoT 
devices connected to fog nodes situated in the middle layer. 
These fog nodes are responsible for processing sensor data, 
filtering out malicious traffic, and facilitating communication 
with the SDN controller, which manages resources and controls 
the network. The SDN controller, which is decentralized and 
distributed across the network, interacts with the fog layer to 
ensure efficient traffic management, resource allocation, and 
attack detection. 

In addition to traditional SDN and fog computing elements, 
the proposed system integrates Federated Learning (FL) across 
fog nodes. Each fog node performs local training on traffic data 
collected from IoT devices, enabling them to learn and adapt to 
attack patterns while maintaining data privacy. The model 
updates are aggregated across the nodes to form a global model 
using the Federated Averaging technique. This distributed 
learning approach ensures that the system can dynamically 
respond to emerging threats without compromising privacy. 

The fog nodes serve as intelligent intermediaries between the 
IoT nodes and the SDN controller, processing data locally to 
reduce network load and minimize latency. The SDN controller, 
in turn, manages the global condition of the network, 
orchestrating the flow of traffic, implementing rules for 
forwarding, and coordinating attack mitigation tactics. To 
improve the robustness and integrity of the system, fault 
tolerance and redundancy are built into both the SDN controller 
and fog nodes. This ensures continuous operation in case of 
failures, providing a resilient and scalable solution for DDoS 
mitigation. 

The entire framework is designed to be scalable and resilient, 
offering robust defence mechanisms against DDoS attacks and 
ensuring that the system can handle large-scale IoT 
environments efficiently. Fig.1. shows the architecture. 

 

 

 
 

Fig. 1. System Architecture: Federated Learning-enabled Fog-SDN 

Framework. 
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A. Methods 

This research introduces a framework designed to defend 

against DDoS attacks within an SDN-Fog computing 

environment. Its objective is to detect and eliminate malicious 

traffic before it reaches the target resources. To accomplish this, 

a fog layer is implemented between the cloud resource server 

and the client layer. All network traffic is routed through this 

intermediate fog layer prior to accessing cloud resources. It is 

within this layer that harmful traffic is handled, and where the 

DDoS protection mechanism is deployed alongside the SDN 

controller. 

The Mininet tool with a Pox controller is used to build up an 

SDN distributed multi-controller with a middle layer of fog and 

a bottom layer of IoT components. Fog-based switches and 

routers serve as Fog nodes, connecting the numerous IoT and 

sensor devices from the bottom, physical, and components 

layers to the Fog intermediate layer. To access the database 

applications, these different fog-based middle layer nodes are 

linked to the SDN centralized/distributed multi-controller. 

Open Flow interface protocols connect all of these tiered 

systems. 

The Fog-based SDN controller is trained using Federated 

Learning (FL) to protect against DDoS attacks originating from 

lower-layer nodes, such as IoT devices. Our Fog layer 

integrates with the SDN controller’s programming 

environment, influenced by various parameters, to detect and 

mitigate DDoS attacks based on the controller's directives. The 

SDN controller interfaces with both the application layer (e.g., 

cloud or database) and the lower layer (e.g., edge devices) to 

monitor and analyze network traffic. It receives both legitimate 

and malicious packets from diverse network nodes, which are 

then processed using Federated Learning techniques to 

accurately identify and filter out attack traffic before it reaches 

the resources via the Fog layer. This approach enhances the 

detection of attack packets across network sources, whether or 

not they employ Fog-based SDN controllers. 

1) Network System Based on SDN-Fog-IoT 

Software Defined Networking (SDN) is an crucial foundation 

for networking design, providing A versatile platform for 

implementing both hardware and software. This work extends 

previous DDoS attack detection in IoT-based systems using 

machine learning techniques. Furthermore, to increase security 

in today's extensive network configurations and high traffic 

volumes, edge computing devices such as the fog layer are used 

to link different IoT and sensor digital devices from the physical 

layer to the centralized SDN controller. [20]. 

The centralized/distributed SDN controller is linked to cloud 

resources at the application layer. Distributed fogs spread 

around the network are further coupled to these SDN 

controllers. From the edge layer, SDN distributed controllers 

are in charge of communication and cloud resource security. 

The SDN controller at one end connects and manages all of the 

dispersed fog nodes, and it is connected to different end nodes 

by switches or gateways. The edge devices, fog layer nodes, 

and SDN controllers that are linked to end resources like 

storage, security, management, and resource allocation are 

mostly covered in this part. 

The foundation of this system design is the layered architecture 

for detecting DDoS attacks originating from the last nodes and 

processed through the Fog layer controller unit, and after that, 

the initial filtering stage data is confirmed once more in the 

master distributed SDN controller unit. The Resources for the 

Edge-Fog-SDN Controller architecture processes the 

information to use federated learning to counteract DDoS 

attacks. 

2) Federated Learning to identify DDoS Attacks 

Effective security rules and filtering techniques should be used 

to monitor and detect private data (such as data from IoT 

devices) that is created from end users to application resources 

and vice versa. In this study, actual DDoS attacks are employed, 

and a testbed is established to verify the model. Multiple 

random virtual computers are used to launch DDoS assaults 

against TCP, UDP, and ICMP protocols with the aid of the 

Mininet open-source program. The assaulted packets are 

processed by the federated learning model. The performance 

metrics are selected using test data accuracy as a percentage. 

The DDoS defense approach is contrasted with existing models 

that previously employed SDN and ML. Many small devices 

are usually connected to a fog network. Combining data from 

several devices makes managing the overall volume of data 

challenging. As a result, it takes additional processing time to 

filter every network packet. In order to detect and lessen DDoS 

attacks in the network, SDN is introduced on the fog layer. To 

access cloud resources, every distributed SDN-supported fog 

layer is linked to the main SDN controller network. 

The security system for detecting DDoS attacks is managed and 

built by the federated learning program on the SDN controller 

by means of the Fog layer. The SDN controller is housed on the 

Fog server, which is the point of presence. This server controls 

the packets that come from every node in the system. Various 

programs and tools are employed to simulate the source 

machine attacks. Federated learning techniques are used to 

teach the SDN Controller server using data that has important 

features of the incoming data pattern. The model is capable of 

classifying the arriving packets as authentic or malicious 

utilizing both multiclass and binary properties. If the packets 

are authentic, they are transferred to the application server. 

Otherwise, the relevant packet's IP address is filtered before 

being sent to the flow table for pragmatic addition to the 

switches' block list. 

3) A fog-based method for detecting DDoS attacks 

DDoS attacks, field devices can be used to simulate both 

protocol vulnerability-based and resource-exhaustion-based 
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attacks. In order to overwhelm the central controller, the 

experiment also mimics a DDoS attack by transmitting packets 

from several networks at once. The local server may fail to 

identify such attack traffic. The effectiveness of the mitigation 

strategy is assessed based on the precision and response time of 

detecting such distributed DDoS attacks in the fog 

environment. [21]. 

Any fog-based local network's DDoS detection module aims to 

evaluate hidden correlations by aggregating all traffic gathered 

from its field devices. Using specification-based anomaly 

identification and network activity baseline creation, this 

anomaly detection module, operating as a virtualized 

functionality (NFV) on a local server, aims to reveal concealed 

DDoS behaviours. The detection module will alert the 

administrator for additional mitigating actions, including 

changing the local fog node rules with the SDN, if it detects 

concealed DDoS activity. 

Client sites that might ask for access to target services send both 

malicious and benign messages. All data flow must pass via the 

Fog layer, which is made up of a number of Fog devices and a 

Fog server that houses the SDN controller, before it can reach 

the destination service. To ascertain if an incoming packet is 

malicious or valid, the SDN controller examines every packet 

that comes in from various nodes, filters the data flow, and 

records particular attributes. Several tools from multiple source 

machines are used to generate the DDoS attacks (e.g., Hping, 

Scapy, Wireshark, and scripts). The Fog server (also known as 

the SDN controller) is trained using the federated learning 

technique. Incoming data traffic features, including those from 

IoT devices, are gathered and used to train the algorithms. 

Classifier models are used by the server to identify malicious or 

legitimate incoming packets. A packet is sent to the intended 

server if it is found to be legitimate. The switch stops the packet 

from being sent to the target server if it is judged suspicious, 

and the associated IP address is added to the SDN controller's 

flow table. 

4) Consolidation and Analysis of central SDN 

 
In order to identify patterns of similarity and identify 

distributed DDoS attack traffic that seems legitimate, the SDN 
central controller analyzes suspicious DDoS behaviour from a 
specific fog local network by comparing traffic characteristics 
from other distributed local networks. Three different 
architecture levels are used to distribute and carry out the DDoS 
mitigation functions. IoT systems send packets, and the locally 
dispersed fog layer nodes carry out operations. Lastly, to filter 
out anomalies like DDoS attacks and let valid packets reach the 
resources, the SDN controller uses computational techniques 
with federated learning intelligence [22] [23] [24]. 

The local Fog nodes notify the relevant SDN controller with 
the suspicious packets' details, including the packet type, source 
address, destination address, protocol type, etc. Similarly, the 
central controller targets data from several dispersed networks 
and manages it to generate an effective network output. 
Consequently, pre-processing protection against attackers is 
effectively provided by the Fog server, controller, and switch. 

Even in the event that any malicious code, such as DDoS, DoS, 
ransomware, Mirai, etc., compromises the local fog pools, the 
SDN controller can swiftly isolate the compromised pool from 
the extensive network security processing. 

 

Fig. 2. Architecture of the SDN-Fog-IoT Network with Federated Learning for 
DDoS Detection 

B. Experimental Setup 

The suggested design approaches and testbed configurations 
are used, and the experimental results are documented and 
examined in the section that follows. A fair comparison between 
the suggested technique and current approaches is challenging 
since industrial systems are rarely used as test environments for 
DDoS mitigation in the literature currently in publication. In 
order to show that the proposed method is effective in thwarting 
DDoS attacks in the SDN-Fog-IoT context, we investigate it 
from a number of perspectives and situations. Here, data is 
captured and provided, including detection time and rate. The 
SDN network with fog computing technique typically begins 
detecting attack packets and prevents the attacks, whether or not 
DDoS attack packets are present. The purpose of the 
experiments is to evaluate the effectiveness of the proposed 
method, showing that the fog computing strategy can effectively 
moderate a DDoS attack, conserve network resources, and react 
swiftly to the attack. 

1) Data Sources 
A customized network dataset comprising hosts, fog nodes, 

SDN controllers, Internet of Things devices, and attack nodes is 
used in this study. The dataset was constructed and generated 
from an SDN-controlled Fog-IoT customized network using 
Mininet, Hping, Scapy, Nmap, and Wireshark. The data, which 
covers protocols used in both normal and attack circumstances, 
was generated and traced from roughly 100 network activity 
nodes. DOS and DDoS assaults have been tested as part of our 
security study. For attack identification and mitigation, some 
DDoS attack types—such as ipsweep, multihop, smurf, and 
snmpguess—are being studied. These include IP address, port, 
packet flow, motion status, pressure, temperature, humidity, 
protocol, source, destination, size, bytes, and so on, are included 
in the dataset. The total dataset contains approximately 250,000 
packets. 

The raw IoT mixed dataset's anomalous and normal packet 
counts are displayed in Table 1. While the fog level analyzes 
local traffic and takes longer to identify the assault traffic 
pattern, the fog computing solution offers a faster detection time 
through SDN controller coordination since the central SDN 
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server provides a comprehensive system view of the traffic 
status. Ubuntu characteristics are used to generate a number of 
SDN Controller setup rules. For instance, the Smurf attack is a 
common DDoS attack that floods the victims with ICMP traffic 
using a huge number of botnets. Numerous field devices, such 
as IP cameras, remote terminal units, and other like devices, are 
related to botnets. Tables 1 and 2 demonstrate how the fog 
computing technique is utilized to gauge the detection of DDoS 
attacks for various attack stream types.  

          TABLE 1. NORMAL PACKET SIZE AND ATTACK 

 

 

 

 

 

TABLE 2. DATASET CLASSIFICATION SUMMARY 

Type Count 

ICMP 175,000 

TCP 40,000 

UDP 30,000 

Normal 20,000 

Others 15,000 

 

Machine learning performance metrics like recall (R), F1-
score (F1), accuracy (A), and precision (P) are used to evaluate 
attack detection performance. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
    (1)

  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP+FN
    (2) 

 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+TN+FP+FN
   (3) 

                                                                                          
Recall × Precision 

F1-score = 2 ×  (4) 

                                            Recall + Precision 

The DDoS attack detection from the dataset is computed 
using the aforementioned formulas, which also yield the results 
and performance metrics. 

2) Setup 
A Python-based controller, a Mininet SDN system, and a 

virtual Oracle VMware were used to build the suggested 
network testbed and identify SDN threats. A variety of IoT and 
other terminal nodes, switches, routers, two SDN-based 
controllers, and two fog-based controllers are all part of the 
configuration. The hardware setup for our experimental machine 
learning training model included a 2TB hard drive and 8GB of 
RAM. Support software included the Anaconda Jupyter 
Notebook running Python 3.6 and the operating system 
Windows 10. The primary elements of the ML attack detection 
and mitigation setup were the SDN with IoT network datasets, 
which included DDoS attack packets from traffic generated in 
real-time. 

 

 

 

 

Fig. 3. Federated Learning in SDN-Fog-IoT Network Architecture 

Figure 3 demonstrates a prototype network architecture for 
SDN-Fog-IoT. It shows how the Fog switch/gateway/controller 
and clients with normal and attack nodes are connected to the 
SDN Controller. Information on network traffic varies 
according to the number of nodes. The IoT and SDN controllers 
are connected to the fog controller via switches in the middle 
layer, or fog layer. The higher layer contains the Root SDN 
controller. Controllers have been connected in a distributed 
manner. Packets are continuously sent between switches and the 
fog controller by both regular and assault end nodes. 

 

 

 

IV. RESULTS AND DISCUSSIONS 

A. DDoS Detection Accuracy 

The framework was tested with benchmark datasets, and the results for various ML and DL models are summarized in Table 

3. 

TABLE 3 PERFORMANCE METRICS FOR DDoS DETECTION AND NETWORK RESILIENCE 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) Latency (ms) 

Category Label 

Anomaly 250,000 

Normal 20,000 

Total 270,000 
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Logistic Regression 86.8 88.5 85.2 86.8 110 

Random Forest 91.5 92.1 90.3 91.2 90 

Deep Learning (CNN) 95.6 96.7 94.5 95.6 70 

Proposed Framework 98.3 98.7 97.8 98.2 50 

Table 3 shows the DDoS detection performance of various 
models. The proposed framework achieves the highest accuracy 
(98.3%), precision (98.7%), recall (97.8%), and F1-score 
(98.2%), with the lowest latency (50 ms), ensuring efficiency in 
network resilience and real-time DDoS detection. 

B. Accuracy rate 

Fig. 4. compares detection accuracy across models, showing 
the proposed framework’s superior performance with 98.3% 
accuracy, surpassing CNN (95.6%), Random Forest (91.5%), 
and Logistic Regression (86.8%), proving its effectiveness in 
DDoS detection. 

 
Fig. 4. DDoS Detection Accuracy Across Different Models. 

C. False Positive Rates 

Fig. 5. illustrates the false positive rates of different models. 
The proposed framework achieves the lowest false positive rate 

of 2.1%, significantly outperforming CNN (4.3 %), Random 
Forest (6.4%), and Logistic Regression (8.2%), highlighting its 
reliability in reducing detection errors. 

   

Fig. 5. False Positive Rates for Different Models. 

D. Latency Comparison 

Fig. 6. compares latency between the Fog-SDN framework and 

the traditional cloud approach. The Fog-SDN framework shows 

lower latency, ranging from 30 ms to 110 ms for 100 to 500 

requests, while the traditional cloud has higher latency from 50 

ms to 180 ms, highlighting the Fog-SDN's efficiency with high 

request volumes. Auth
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Fig. 6. Latency Comparison: Fog-SDN Framework vs Traditional Cloud. 

E. Resource Utilization 

Fig. 7. shows resource utilization across system layers. Fog 
nodes have the highest utilization at 70%, followed by the cloud 

at 60%, and IoT devices at 40%, highlighting the effective 
workload distribution with fog nodes at the core.

 

Fig 7. Resource Utilization at Different Layers. 

F. Summary of Key Findings 

This study proposed a DDoS detection framework in Fog-

SDN environments, achieving 98.3% accuracy, surpassing 

CNN (95.6%), Random Forest (91.5%), and Logistic 

Regression (86.8%). It showed a low false positive rate 

(2.1%), reduced latency, and balanced resource use, proving 

its effectiveness for scalable, real-time protection. 

G. Interpretation and Significance 

The framework’s high accuracy and low false positive rate 

effectively distinguish genuine traffic from DDoS attacks 

with minimal errors. Its low latency ensures efficient real-

time processing, ideal for IoT. Resource utilization shows 

effective workload distribution, with fog nodes connecting 

IoT devices and cloud systems. These results highlight the 

need for scalable, adaptive, and efficient network security. 

H. Implications 

The framework provides a robust DDoS mitigation solution, 

ensuring security and efficiency. It is ideal for sectors like 

healthcare, smart cities, and industrial IoT, where real-time 

response and low latency are crucial. It also supports 

sustainable resource use, optimizing network infrastructure. 

I. Limitations 

The framework demonstrates high efficiency but was tested 

on benchmark datasets, which may not fully reflect real-

world traffic. The study used limited ML and DL models; 

exploring ensemble and hybrid architectures could provide 

more insights. Scalability in ultra-dense IoT networks 

remains a future challenge. 

J. Recommendations and Comparisons 

The framework is ideal for real-time DDoS detection in Fog-

SDN environments. Future studies could integrate adaptive 
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learning to improve accuracy and resilience. Unlike cloud-

based solutions, it uses fog computing to reduce latency and 

enhance resource utilization, setting a new benchmark. 

K. Concluding Analysis 

The framework balances accuracy, efficiency, and 
scalability, addressing key DDoS detection challenges and 
enhancing network resilience. While limitations in dataset 
representativeness and scalability require further research, the 
study emphasizes Fog-SDN's role in combating evolving 
cyber threats. 

V. CONCLUSION 

This study introduced a novel Fog-SDN-based framework 
for detecting and mitigating DDoS attacks, addressing critical 
challenges in modern network security. The framework 
demonstrated exceptional performance, achieving an accuracy 
of 98.3%, precision of 98.7%, recall of 97.8%, and an F1-
score of 98.2%. Additionally, it significantly reduced latency 
(50 ms) compared to traditional cloud-based methods, 
ensuring real-time response and operational efficiency. 
Resource utilization analysis revealed effective workload 
distribution, with fog nodes playing a central role, achieving 
70% utilization compared to 60% for the cloud and 40% for 
IoT devices. These findings underscore the relevance and 
importance of leveraging Fog-SDN environments for scalable 
and adaptive DDoS detection solutions. By minimizing false 
positive rates (2.1%) and enhancing real-time detection 
capabilities, the proposed framework paves the way for secure 
and efficient network infrastructures in IoT-driven 
environments. Despite these achievements, the study 
acknowledges certain limitations. The evaluation was 
conducted using benchmark datasets, which may not capture 
all real-world scenarios. Furthermore, scalability in ultra-
dense IoT networks and the integration of advanced adaptive 
learning mechanisms remain open research challenges. Future 
research should focus on addressing these gaps, exploring 
hybrid models, and validating the framework under diverse 
and dynamic traffic patterns. Additionally, investigating the 
integration of ensemble techniques and advanced machine 
learning approaches could further enhance detection 
capabilities. In conclusion, this work contributes significantly 
to the field of network security by presenting a robust, 
efficient, and scalable framework for DDoS detection. It 
establishes a foundation for future innovations, emphasizing 
the importance of Fog-SDN-based solutions in combating 
evolving cyber threats.  
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