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Abstract 

In this growing field of network traffic management, lower latency and real-time offloading are very 

important for high-quality data transmission and the productive performance of networks. The research herein presents 

a new approach that merges the multi-layer perceptron (MLP) with long short-term memory (LSTM) networks. The 

MLP is used for the beginning of feature extraction while the LSTM captures long-term dependencies and is 

specifically adapted for managing complex sequences of data with higher accuracy. The approach has been tailored to 

fit the particular dataset and problem setting leading to excellent performance metrics in relation to conventional 

methods. The implementation was carried out in Python using widely used libraries such as TensorFlow and Keras, 

which provided great flexibility and efficiency. Through empirical testing and evaluation on real-world network 

datasets, our most proposed model demonstrates some very promising results. More so, our hybrid MLP-LSTM model 

achieves accuracy up to 94%, surpassing existing offloading frameworks. The model has also displayed very high 

performance in terms of lowering offloading latency. The model further can generalize across various network 

conditions and traffic patterns such as high latency, low bandwidth, and intermittent connectivity, ensuring efficient 

and adaptive offloading strategies in the fledgling work scenario. These results highlight the efficiency of the hybrid 

MLP-LSTM approach in improving real-time network traffic management, thus paving the way for significant 

opportunities in applications in IoT, edge computing, and telecommunications. Supported by its implementation in 

Python, our model will provide a practical and easy-to-implement solution for network operators and stakeholders 

aiming to advance traffic offloading and combat latency problems in contemporary network infrastructure. 

Keywords- Network Traffic Management; Hybrid Architecture; Novel Approach; Edge Computing; 

Telecommunications 

1. Introduction 

 The rapid growth of data traffic presents significant challenges for maintaining network efficiency and 

reducing latency in the ever-evolving telecommunications landscape [1]. The Internet of Things (IoT), 5G wireless 

networks, and various data-intensive applications have placed immense pressure on network service providers to 

optimize traffic management and allocation [2]. This scenario calls for innovative solutions capable of addressing 

network demands in real-time while minimizing latency, ensuring a seamless experience for users [3]. Modern network 

settings are dynamic and complicated, and traditional networks management strategies frequently struggle to keep up. 

Conventional traffic management systems and static resource allocation cannot be flexible enough to effectively 

handle erratic traffic patterns and abrupt demand surges [4]. As a result, sophisticated, intelligent systems which can 

automatically offload network traffic increasingly instantly lower latency are becoming more and more necessary [5]. 

One possible way to provide omnipresent deep neural network applications on normally computationally 

constrained devices is to offload information to a computationally competent node. Models of neural networks can be 

split up and inputs or intermediate information moved to edge servers so that inference can be partially or fully 

offloaded, reducing the strain on local end devices [6]. But most offloading processes in use today take a long time to 

transport data through the mobile/embedded sensing equipment and an edge server, therefore they need to be 

optimized to satisfy applications that require low latency [7]. A recent study has been prompted by this difficulty. 
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Determining the ideal offloading location for a network of neurons depending on available computing power and 

network circumstances is one possible system approach [8]. It makes sense that some of the neural network's 

intermediary layers would be lower in size. One way to shorten data transmission times is to choose these layers as 

dumping sites [9]. The first several layers' intermediate data volumes are still substantial, though. The offloading effect 

is diminished since to achieve a bandwidth-efficient offloading particular, we must execute a significant chunk of the 

model locally.  

The creation of a HMLP-LSTM appears to be a viable approach to these problems  [10]. The capabilities of 

both MLP as well as LSTM neural networks are combined in this hybrid model to provide a strong framework that 

can reduce dynamic latency and offload traffic in real-time. MLPs, which are well-known for their ease of use and 

efficiency in resolving regression and classification issues, serve as the model's foundation by identifying the linear 

connections present in network traffic data [11]. Nevertheless, MLPs by themselves are not adequate to manage the 

temporal dependencies present in network traffic dynamics [12].  

This text discusses the application of LSTM networks. LSTMs, which are specialized recurrent neural 

networks, excel at recognizing temporal patterns and forecasting time-series data due to their ability to learn from 

long-term relationships in sequential information [13]. The hybrid model merges MLPs with LSTMs, leveraging the 

fast processing and feature analysis strengths of MLPs alongside the temporal dynamics understanding and predictive 

capabilities of LSTMs [14], [15]. This integration ensures that the framework can accurately predict network 

conditions and make real-time decisions about resource allocation and traffic management based on well-informed 

insights [16]. 

While most existing ML-based offloading frameworks typically employ conventional deep learning models-

CNNs, SVMs, and FCNs-setting it apart from these is the ability to effectively capture the complex relationships and 

temporal dependencies inherent in network traffic data. This work proposes a new method of using a hybrid MLP-

LSTM model where MLP extracts complex non-linear features while LSTM pays attention towards sequence learning. 

This would lead to better performance adaptability and offloading efficiency. It contrasts with conventional methods, 

which either work on static data or do not take into account learning sequentially: the novel approach takes into 

considerations, therefore, what is happening in real time in changing network conditions, variable latency times for 

requests and congestion. It applies an STFT-based feature transformation to give the model an ability to interpret time-

frequency characteristics in network data. The proposed hybrid model outperforms existing task scheduling 

approaches based on reinforcement learning and traffic management schemes based on CNN in terms of efficacy, real-

time adaptability, and latency reduction, with an improvement of up to 30% in offloading efficiency. This development 

not only promises maximum utilization of network resources but also incurs low computational overhead, which 

makes it suitable for edge computing and next-generation IoT applications. The Hybrid MLP-LSTM model was 

implemented through various important phases. 

To prepare the model for higher accuracy, network traffic data is preprocessed to determine strictly important 

features together with data normalization. As for the initial preprocessing and feature extraction, it is taken care of by 

MLP component of the model. After then, an LSTM component takes the lead and structures the temporal 

characteristics of the data and as time elapses, reveals other intricate interconnection and structures. The final process 

involves the integration of the outputs from two halves in order to provide accurate forecasts and recommended 

solutions of latency minimization and traffic off-loading. This is among the main advantages of the hybrid approach; 

this discusses the flexibility of this kind of model. This is advantageous to the model as it is always in a learning mode 

concerning the changing network conditions and does fairly well under dynamic environments. In addition, the current 

model is proactive when it comes to networks bandwidth management, such that where the predictability is accurate, 

the performance guaranteed is not compromised since a congestion that could otherwise have happened is prevented. 

In the case of NTM, the Hybrid MLP-LSTM approach has the potential of enhancing users’ experiences 

when applied in real time. Through dynamic traffic shifting and minimum latency, the model can improve the quality 

of the service, facilitate increased data transmission rates and provide more dependable links for the end consumers. 

This is especially important for applications in industries like gaming, virtual reality and auto-mobile where the 

slightest of delays can have a huge effect on the performance of the services being rendered. The proposed technique 
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of using Hybrid MLP-LSTM model is a great leap forward towards network traffic management. Combining the 

advantages of both MLP and LSTM neural networks, the presented model is a sophisticated solution, providing 

flexibility for traffic offloading in real-time and improving dynamic latency. Provided that the current and future 

bandwidth requirements are anticipated to rise at an unsettling pace, with solutions such as these being paramount to 

sustaining effective telecommunications networks. The motivation behind this study, however, extends further from 

just network traffic management into the realms of broader scientific extrudes, where cooperation is an essential 

means. Towards this, in the synergistic scenario of edge computing and IoT, collaboration in decision-making will 

enhance data sharing, optimize resources, and enable task offloading in an on-demand scenario. These principles echo 

real-time adaptive strategies employed in several scientific spheres, including distributed computing, federated 

learning, and cooperative AI models, articulating the necessity of the proposed hybrid MLP-LSTM approach. 

Applying the concept of HMLP-LSTM model for real-time network traffic offloading and dynamic latency reduction 

brings in the following contributions of novel innovations in network management and telecommunications: 

1. The main contribution of this work is the innovative inclusion of the MLP and LSTM type of neural 

networks into a unified hybrid model. The merging captures the essence of both architectures: MLPs shall act as the 

preprocessor and an effective feature extractor, and LSTMs shall act as temporal dependence copulators and predictors 

in network traffic. This kind of fusion provides a more accurate and efficient analysis of complex and dynamic network 

conditions and greatly enhances the model's ability to forecast and manage traffic in real time. 

2. Through utilization of the temporal learning of LSTMs, the hybrid model offers an infernal improvement 

in the accuracy of traffic prediction so as to enable the forward-proactive network with the ability to avoid congestion 

and dynamically reroute traffic along less congested paths before facing a fallout. This proactive approach is a 

significant step forward from conventional reactive techniques, allowing for better utilization of network resources 

and improved performance. 

3. The design of this model guarantees that it updates seamlessly from new data and adjusts to the 

dynamically changing network environments live. This type of self-adjusting adaptability is of uttermost importance 

in the modern networking environments characterized by largely variable and unpredictable traffic patterns. Moreover, 

such ability to cater to dynamically changing conditions is thus quite essential in maintaining optimum performance 

and reducing latencies while providing improved quality of service to the end-users. 

4. Thus the introduction of the model is expected to reduce the latency in the network significantly. Through 

proper steering and rerouting of the traffic on an optimum path, there is lesser delay and higher speed and reliability 

in the data transfer. This will further assist latency-sensitive applications like online gaming, streaming services, and 

real-time communication service platforms. 

This work is divided into several sections to describe in evolutionary order the intent behind the study, 

methodology, results, and then recommendations. Section one (Introduction) gives a brief description of the research 

problem and its background, identifying real-time network traffic offloading and dynamic latency minimization as 

critical requirements for current and future network environments. Section 2, Literature Review, reviews existing 

literature and methodologies related to network traffic management, offloading techniques, and deep learning 

architectures. Section 3 provides the problem statement. Section 4, Methodology, outlines the proposed model and 

describes the data preprocessing steps, model training, and evaluation methodologies employed in the study. Section 

5, Results, presents the empirical findings and performance evaluation metrics obtained from experiments conducted 

using real-world network traffic datasets. Section 6, Conclusion, summarizes the key findings of the study, discusses 

their implications, and suggests avenues for future research. 

2. Related Works 

Yao et al. [17] displays the research Neural networks are now an essential component of intelligent Internet 

of Things platforms and applications for sensing thanks to recent advancements. Nevertheless, their implementations 

on low-end Internet of Things devices continue to be seriously hindered by the enormous computing demand. As edge 

computing takes off, offloading becomes a viable way to get around end-device constraints. However, in current 

offloading structures, a significant amount of time is spent transmitting data among local devices at the edge, which 
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creates a bottleneck for minimal latency smart services. Yao et al presents a broad framework known as deep 

compressive offloading. It offers theoretical assurances on flawless reconstructions and flawless inference and can 

transform data for offloading onto tiny amounts with minimum cost on local devices by merging compressive sensor 

theory with advanced knowledge. The data is then decoded on the edge servers. the solution can achieve nearly no 

accuracy loss while dramatically reducing offloading delay by exchanging edge computing capabilities for data 

transmission latency. Yao et al also presents a deep compressive offloading system is constructed to support the latest 

in voice recognition and computer vision applications. In comparison to the most cutting-edge neural net-offloading 

systems, after thorough testing, the technology can reliably cut total latency 2× to 4× at the cost of 1% loss of accuracy. 

In situations where the bandwidth is limited with excessive background data traffic, it speeds up neural network 

inference even more by a factor of 35 times. 

Bharatheedasan [18] presents a hybrid MLP-LSTM method that senses faults and realizes the remaining 

useful life of rolling bearings to improve predictive maintenance strategies. The innovation of this research is the 

combination of feedforward MLP to absorb and manage sequential dependencies, leading to an in-depth analysis of 

bearing faults. It comprises voltage signals preprocessed through normalization and band-pass filtering, followed by 

the ShortTime Fourier Transform (STFT) for time-frequency rearrangement. It trains the hybrid model on fault 

datasets with defects in inner and outer raceways and compares it with conventional models such as FCN, SVM, 

Decision Tree, KNN, LSTM, and CNN-BILSTM. The proposed model performs exceptionally well, with accuracy, 

sensitivity, and specificity of 99.9%, 98.90%, and 98.16%, respectively, making it a highly effective predictive 

maintenance model. There are still challenges in terms of computational intensity, representing an optimal model with 

high-quality annotation labels and real-world validation in other industrial applications. Nevertheless, the process 

offers a lot of merits in fault diagnosis, hence will reduce unplanned downtime as well as optimize maintenance 

schedules in industrial environments. 

Manogaran et al. [19] describes the study on Internet of Things, or IoT, paradigm, allocation of resources and 

administration necessitate exact request and response processing, regardless of its support for scalability. Reliable 

offloading is necessary to handle client request network and service response times due to unpredictable traffic patterns 

and user density. In light of the necessity of IoT on a broad scale due to its ability to communicate and heterogeneous 

assistance, this publication presents the response-aware transport offloading strategy for user requests that respond to 

latencies. A multidimensional spline regress machine learning model is used to identify traffic to enable this offloading 

technique and lower the failure rate. To accomplish both autonomous and shared unloading, the splines are adaptively 

designed based on the categorized traffic. The cyber-physical system along with the IoT-Cloud infrastructure is where 

the calculation procedure for figuring out the offloading model originates. When using the offloading approach for 

categorized traffic, decision-makers utilize data from the event logs and knowledge database. The scheme's simulation 

evaluation demonstrates its effectiveness in lowering manufacturing, response time, and latency as well as increasing 

the request-to-processing ratio.  

Wang et al. [20] proposed that Mobile Edge Computing is an effective way to give mobile devices 

computation-intensive yet dependent on latency services. This work studies the best way to minimize overall delay in 

multiuser compute offloading in MEC with the use of dynamic spectrum allocation. To be more precise, the study first 

concentrates upon a static multiuser compute offloading environment and jointly optimizes the allocations of resources 

of Edge Servers, communication times, and user preferences on offloading. Because our joint optimization issue is 

nonconvex, the study finds its structure of layers and splits it into two distinct issues: a top problem and a subproblem. 

The study suggests a bisection search-based technique to solve the subproblem effectively, allowing ESs to allocate 

resources and users to unload at the best times for a specific transmission frequency. Second, depending on the 

outcome of the subproblem, the study uses a simple search-based approach to find the optimal broadcast time and 

resolve the top problem. Additionally, the study takes into account an evolving situation of multiuser compute 

offloading involving workload and time-dependent channels after addressing the static situation. To properly address 

this dynamic situation, the research proposes to use a complex web programme based on reinforcement learning in 

order to determine the near-optimal transmission frequency in real-time. Our recommendations for reducing overall 

delay in dynamic as well as static offloading settings are validated by numerical data. The study also highlights the 

benefits of our suggested methods over traditional multiuser compute offloading strategies. 
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Li et al. [21] presents the two key foundations for system functioning are big data analytics and adaptive 

networking. Smart Network of Things systems that are unable to be effectively supplied by cloud computing because 

of bandwidth, latency, or Internet access constraints often employ edge computing. Applications, on the other hand, 

constantly produce a lot of data since they are programmed and specified to operate on cloud or edge platforms and 

cannot be altered during execution. If the apps are run between cloud-based and edge platforms in concert, they could 

perform better. The Dynamic Switching approach, a unique approach, is developed in this work to ensure intelligent 

dynamics in which all jobs are transferred to the cloud or edge based on the real-time circumstances within the system. 

Based on these real-time needs, the researchers further categories apps into four groups.  Every kind of application is 

configured with a fair latency to ensure that the infrastructure processes requests faster. The results of the experimental 

assessments demonstrate that the suggested strategy might successfully offload tasks in intelligent Internet of things 

systems. Table 1 presents the summary of the presented existing literatures. 

Ghoshal et. al The VESBELT approach delivers a new ensemble neural network framework designed for 

energy-efficient and low-latency task offloading in maritime IoT networks. It puts forth a solution that comprises 

shortcomings that have befallen earlier model instances such as CNNs, SVMs, and LSTMs. In contrast to the 

traditional offloading methods, where the high computation initiation and resource allocation come as a disadvantage, 

VESBELT acts to make instant and real-time updates on offloading decisions based on latency and energy constraints, 

drastically improving system efficiency. Ensemble learning dealt hand in hand with this assures better tolerance to 

faults, better decision-making reliability, and better generalization compared with DRL and edge intelligence methods 

in the reduction of execution time and energy optimization. This adaptive mechanism should promote efficient 

resource allocation, reduce network congestion, and improve system throughput. VESBELT becomes quite scalable 

and robust enough for use in latency-sensitive maritime applications. 

Hu et al., [23] This article proposes an algorithm for task offloading in Power Internet of Things (PIoT) using 

deep reinforcement learning (DRL), aimed at optimizing latency and energy efficiency of edge-assisted PIoT 

networks. This research is novel due to the fusion of DRL with task scheduling, transmit power control, and edge 

computing resource allocation, resulting in a dynamic and adaptive offloading mechanism. Under this framework, the 

methodology models task execution on edge servers as queuing systems such that the current system states affect 

future task scheduling. The framework first optimizes transmit power and computing resources, and then uses deep 

Q-learning to make real-time offloading decisions. Results indicate that this method might greatly improve the system 

utility and thus invariably reduce latency and energy spent compared to traditional offloading methods. Several 

limitations arise; these include high computational complexity from reinforcement learning updates, possible scaling 

challenges in large-scale PIoT, and the need for real-life deployment to evaluate performance under various network 

conditions. However, such problems allow it to enhance real-time data processing and decision-making in energy-

intensive smart city applications. 

Table 1: Literature Summary 

Author Key Focus Technology Limitations 

Yao et al. [17] Deep compressive offloading 

for low-end IoT devices to 

reduce latency with edge 

computing 

Compressive sensor theory, 

Edge Computing 

Limited application scope, 

primarily focused on specific 

voice recognition and 

computer vision 

Alameddine et al. [24] 

Dynamic Task Offloading 

and Scheduling in IoT 

applications using MEC 

servers 

Logic-Based Benders 

Decomposition, Multi-access 

Edge Computing 

Complex decomposition 

strategy limits scalability in 

highly dynamic 

environments 

Manogaran et al. [19] 

Response-aware offloading 

strategy for latency-sensitive 

user requests in IoT 

environments 

Multidimensional spline 

regression, IoT-Cloud 

infrastructure 

Limited to certain traffic 

patterns and lacks 

adaptability to highly 

dynamic and real-time data 

traffic  

Wang et al. [20] 

Minimizing delay in multi-

user compute offloading 

using dynamic spectrum 

allocation 

Mobile Edge Computing 

(MEC), Reinforcement 

Learning 

Solutions primarily focused 

on static offloading 

environments, with limited 

real-time adaptability 
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Li et al. [21] 

Dynamic Switching 

approach for real-time 

offloading in IoT systems 

Big Data Analytics, Adaptive 

Networking, Edge 

Computing 

High complexity in 

managing real-time dynamic 

switching between cloud and 

edge platforms 

Ghoshal et. al [22] 

Improving task execution 

time and energy use in 

changing maritime settings 

A flexible offloading system 

that chooses the most 

effective offloading strategy 

according to current 

conditions 

Could encounter scalability 

issues when implemented in 

extensive MIoT networks 

with diverse edge devices. 

Hu et al., [23] 

Optimizing task offloading 

in Power Internet of Things 

is very helpful for improving 

real-time processing and 

energy efficiency. 

Deep Reinforcement 

Learning (DRL), particularly 

Deep Q-Learning, can be 

utilized for intelligent task 

scheduling.  

However, this approach 

faces challenges due to the 

high computational 

complexity associated with 

continuous learning updates. 

 

3. Problem Statement 

In today’s highly distributed and bandwidth-intensive communication networks, the rapidly increasing traffic 

in modern telecommunication systems, such as IoT devices, 5G networks, and data-intensive applications, impose a 

severe problem on efficient network management and low latency. Implementing static allocation of resources and 

applying traffic management concepts that were acceptable in conventional networks does not fit intuitions of modern 

dynamic networks. They do not scale well to unpredictable traffic patterns and spikes, the result is traffic jams, and 

correspondingly increased delay. Moreover, the existing offloading frameworks of edge computing although are very 

effective but they have some limitations regarding the computational complexity of neural networks and the time lag 

involved in the transfer of data from local devices to edge servers. This data transfer time is becoming a large factor 

being a major concern in applications that are highly sensitive to latency; this will affects the overall performance and 

user experience. Due to variability in the workload requirements of the offloaded tasks, and considering the 

constrained capabilities of the MEC servers, what is needed is an intelligent and self-adaptive architecture for resource 

management in real-time. This system must possess the capabilities of offloading to avoid overloading the networks 

while at the same time guarantee optimum utilization of resources without compromising on the QoS of the networks. 

In order to overcome the challenges related to conventional network management as well as the existing offloading 

frameworks, the HMLP-LSTM model for RT offloading and DL reduction shall be developed in the context of this 

research. The hybrid model will incorporate the effectiveness of MLPs especially in feature extraction and the potential 

of LSTMs in identifying temporal patterns in traffic flow of a network [25]. 

4. Proposed Methodology for Hybrid MLP-LSTM Model for Real-Time Network Traffic 

Offloading 

The first step towards the development of Network Traffic Offloading and Dynamic Latency Reduction is 

data preprocessing where outliers are modified to deal with abnormal values, missing data is interpolated to ensure no 

gaps are left in data and finally min-max normalization to bound the data before feeding it to the neural networks. 

After preprocessing, MLP component that acts as the first layer of feature extraction and analysis is used for detecting 

traffic data. Further, the LSTM component captures the related sequential patterns to make future network status 

predictions. The outputs of the two architectures are then fused to enable real-time traffic offloading as well as real-

time dynamic resource management which reduces the latency the network architecture. The outputs from the two 

components of MLP and LSTM are usually passed to a decision-making logic include adjusting bandwidth allocation, 

prioritizing critical data streams, modulating offloading frequency based on network congestion, which based on the 

insights it acquires assist in traffic offloading and real time resource allocation. Policies for constant changes of 

network conditions are also provided where there is always improvement in the efficiency and reliability for traffic 

control, the QoS. The hybrid MLP-LSTM model is aimed at the improvement of the process of network traffic 

offloading using a good workflow. In essence, the workflow constitutes three main interdependent phases: (1) data 

preprocessing, (2) feature extraction using MLP, and (3) sequential pattern recognition with LSTM for traffic 

forecasting. MLP, primarily, is used to identify the significant features from real-time network data while LSTM 

analyzes the data to find long-term relationships and trends. Such output allows better decisions to be made regarding 

traffic flow offloading. These insights facilitate dynamic resource allocation, which helps to minimize latency and 

boost overall network efficiency. The model continuously refines its predictions based on live data, enabling it to 
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adjust to changing network conditions. Figure 1 illustrates how these components interact and work together to create 

an effective offloading strategy. 

 

 

Figure 1: Proposed Workflow for Network Offloading 

 

This workflow, as depicted in Figure 1, Proposed Workflow for Network Offloading, illustrates the sequential 

and iterative nature of the process, emphasizing the critical role of each component in achieving the overall objective 

of real-time network traffic offloading and dynamic latency reduction. 

4.1 Edge Computing 

Task offloading is a key component of cloud-edge orchestration. Figure 2 shows how it determines what 

percentage of the computing tasks must be transported to additional mobile-edge devices, cloud computing centres 

to fulfil the strict requirements of various IoT applications. When considering whether to offload, it's important to 

consider the computing and storage capacity of servers on the edge, cloud servers, and portable edge technologies; 

which delay communication; power usage; and requirements from the Internet of Things programmes. Deep learning 

has been a popular method for intelligently offloading computing in recent years. The cloud-edge orchestration 

problem for IIoT, Because of its significance for IIoT applications, the researchers added service reliability as a unique 

performance measure alongside latency & power consumption, both of which have been extensively researched in the 

available literature. Their main concern was the accuracy of the service, thus they proposed an AI-driven offloading 

mechanism. Intelligent distribution of traffic from IIoT devices to edge servers or the online environment was 

successfully realized using the provided solution. The main objective of the suggested design was to offer a three-tier 

structure made up of an edge layer, a cloud layer, and an IIoT layer. A remotely cloud is used to pre-train models of 

networks in the cloud, After having been trained in the cloud, the models are placed onto edge servers at the edge 

layer, wherein domain data is used to further develop these.  

Edge cutting is of utmost importance concerning AI-offloading in that it permits real-time processing closer 

to generation, thereby eliminating reliance on centralized cloud servers. In this sense, edge devices rely on machine 

learning models to intelligently decide when and where to offload computational tasks. This method helps in 

minimizing latency while optimizing resource allocation through the effective distribution of workloads between local 

edge nodes and cloud servers. The AI-edge computing combination empowers the system to learn continuously from 

evolving network conditions, including congestion levels, availability of bandwidth, and processing capabilities of 
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edge nodes. Such mechanisms are expected to lead to efficient offloading strategies ensuring enhanced performance 

and a potential reduction in energy costs. In contrast to the earlier static offloading, AI-driven edge computing 

continuously assesses the trade-off against cost and benefits so that more accurate and smarter decisions can be 

rendered in network management. Edge and fog computing makes it easier for the offload process of network traffic, 

adding more efficiency and moving away from centralized processing. Modern edge computing platforms are no 

longer static; thanks to AI, today's frameworks allow for intelligent task allocation so that devices can make decisions 

on their automatic basis, taking into consideration items like congestion levels within the network, the number of 

resources available, and penalties in latency. Moreover, federated learning is quite a powerful approach; it allows 

central processing while preserving data privacy, thus reducing the number of interactions with the cloud. Fog 

computing builds on edge computing by introducing an intermediate layer between edge devices and centralized cloud 

servers. The same layers allow for distributed processing over several edge nodes, hence providing scalability and 

removing the burden from any particular node. Containerized microservices in edge-based reinforcement learning 

made further improvements on dynamically offloading tasks and enhanced response times and efficiency greatly. 

Incorporating these advancements into AI-driven offloading mechanisms ensures that the proposed model can adapt 

to changing network architectures. Figure 2 illustrates the interaction between edge and fog computing within the 

system, promoting low-latency decision-making and intelligent resource distribution for optimal network 

performance. 

 

 

Figure 2: Advanced Edge-Based Dynamic Offloading Platform for Optimized Network Performance 

 

The IIoT devices' responsibilities could be delegated to the proper edge servers after an evaluation of the training 

model's operation correctness at the edge layer. Traffic could be managed and only relevant data might be transmitted 

to the cloud with the help of edge computing. The authors suggest an edge-side learning-based congestion management 

framework that allows for the offloading of certain data to the cloud. While preserving a suitable degree of cloud 

knowledge, this discovery makes label-less education a significant improvement since it enables unlabeled data 

collection in a networking scenario practicable. The label-less educational structure is composed of the following 
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architectural blocks: We label a portion of data in order to give an algorithm some starting intelligence before we 

utilize the model that was trained to classify the remaining data. The newly labelled data, that was chosen and added 

back into the training dataset together with another decision produced via mutual confirmation of multimodal 

information, is used to retrain the machine learning algorithm. The offloading problem was formulated as an 

optimisation problem, and a heuristic solution was put forth. A model using deep learning was created to ascertain the 

ideal workload distribution, one among the heuristics considered by the proposed method. Two of the qualities that an 

SDN-based processing infrastructure for the Internet of Things applications has to have are low latency as well as 

excellent dependability, which were emphasized. To facilitate cloud-edge construction with service administration, 

they suggested a work-offloading strategy. Complicated factors like overhead for communications and offloading 

latency were taken advantage of in the suggested system. Offloading choices might be made for jobs with different 

resource requirements and delay sensitivity. 

1.1.1 Case Studies 

The purpose of the use case is to gather relevant IP traffic data for two difficult XR offloading setups: total 

XR offload (setup A) and egocentric human algorithmic segmentation offloading (setup B). With configuration A, the 

XR equipment sends all processing duties to a nearby server, except sensor gathering. On the other hand, the use case 

sees the VR HMD serving as a reasonably portable instrument for collecting sensor data. In this case, it is assumed 

that the main sources of the sensor information are a stereo camera feed and inertial sensors. It is possible to ignore 

the inertial sensor traffic since its equivalent throughput is much lower than the stereoscopic camera feed throughput. 

This use case is quite demanding since the round trip durations should be shorter than the original frame update time, 

which is around 11 ms with an electrical device working at 90 Hz [26].  The severe latency requirements persist even 

with techniques like XR time warp, which can considerably expand this time budget, especially when drawing, 

encoding, and sending ultra-high resolution XR scenes. Given that egocentric body identification is a viable method 

for XR software, Setup B concentrates on this particular case. The device receives basic binary masking from the 

server; the white pixels on the device match the user's body. This is equally applicable to the proposed use case with 

concerns two XR offloading scenarios (Total XR offload and egocentric human algorithmic segmentation offloading) 

The major issue in both XR scenarios particularly; the setup A (Total XR offload) is on how to accommodate large 

data throughput from stereoscopic cameras and achieve very low latency with round trip duration of less than 11msec. 

To illustrate the practical use of the proposed MLP-LSTM model, we highlight potential real-world case 

studies where intelligent network traffic offloading and dynamic latency reduction are essential. One pertinent 

example is smart city infrastructure, where the model can enhance real-time traffic management systems by 

dynamically distributing network resources to avoid congestion in densely populated urban areas. Likewise, in 

Industrial IoT (IIoT) applications, where factories depend on edge computing to analyze machine sensor data, the 

model can improve predictive maintenance by ensuring low-latency task offloading for crucial production line 

components. Another possible application is in 5G-enabled edge networks, where massive machine-type 

communication (mMTC) demands effective resource allocation. By incorporating the proposed model into multi-

access edge computing (MEC) platforms, telecom providers can minimize latency and optimize bandwidth usage in 

real-time. Future research will aim to implement the model in real-world experimental testbeds, such as smart grids 

or connected vehicle networks, to further assess its effectiveness and scalability in dynamic settings. Incorporation of 

the proposed model into decoupled multi-access edge computing (MEC) platforms will allow telecom providers to 

bring down PC speed and drive optimal usages of available bandwidth. Future work shall carry out the model 

implementation into real-world experimental testbeds such as smart grids or connected vehicle networks for its further 

assessment in performance and scale in dynamic settings. 

4.2 Data Collection  

 The EDGE-IIoTset is a comprehensive dataset capturing a large breadth of cybersecurity information specific 

to Internet of Things and IIoT applications. It is targeted for use with both federated and centralized learning 

approaches by intrusion detection systems that use machine learning algorithms. It offered a rigorous testbed with 7 

levels incorporating state-of-the-art technology and a plethora of IoT devices in order to cater to basic requirements 

for IoT and IIoT applications This dataset is comprehensive and rich in cybersecurity information, specifically 

designed for IoT and IIoT applications [27]. It provides data collected from over ten sensor types (including 
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temperature and humidity sensors) with fourteen attack types within five threat categories-lending to its relevance for 

both centralized and federated machine learning-based network offloading systems. 

4.3 Data Pre-processing 

Methods of evaluating the data include Outliers are data points that are substantially different from other 

parts of the dataset, so they could be of great concern for analysis and modelling. To address outliers, methods such 

as trimming and winsorization can be used. Winsorization is the process of substituting less extreme values for severe 

ones, usually the closest data point falling inside a given percentile range. 

4.3.1 Missing Data Imputation: Errors in data transmission or malfunctioning sensors are only two of the many causes 

of missing data. For appropriate analysis and to ensure that the dataset is full, missing values must be imputed. A 

popular method is a mean imputation, in which the existing data's mean is used to substitute in the missing values. 

Mathematically, mean imputation can be expressed as:  

𝑥𝑖̂ =
1

𝑛
∑ 𝑥𝑗
𝑛
𝑗=1       (1) 

Where 𝑥𝑖̂ is the imputed value for the missing data point 𝑥𝑖̂, and 𝑛 is the total number of available data points 

[28]. 

4.3.2 Min-Max Normalization: Min-max normalization scales the data within a specified range, typically between 0 

and 1, making the features comparable and enhancing the performance of the neural networks. Mathematically, min-

max normalization can be expressed in (3):  

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥)
     (2) 

Where 𝑥 is the original data point and 𝑥norm is the normalized value. By incorporating these preprocessing 

techniques, we ensure that the dataset is free from anomalies, complete, and appropriately scaled, laying a solid 

foundation for the subsequent development and training of the Hybrid MLP-LSTM Model [29]. 

In the case of outliers in network traffic data, we employ a statistical analysis approach followed by machine 

learning techniques that are compatible with the hybrid model structure. The Z-score method and the Isolation Forest 

algorithm are two prominent techniques considered for outlier detection: The Z-score also referred to as the standard 

score, is used in identifying how far a given data point be in terms of standard deviations to the mean. In network 

traffic data, outliers have their value of Z-scores greater than a certain limit (either 3 or -3). The formula for the Z-

score is expressed in (3): 

𝑍 =
𝑋𝑖−𝜇

𝜎
    (3) 

Where, Z is the Z-score for data point 𝑋𝑖, 𝑋𝑖  represents the i-th traffic data point (e.g., latency, bandwidth), 

μ is the mean of the traffic data, σ is the standard deviation of the data. 

4.4 Hybrid MLP-LSTM Model for Real-Time Network Traffic Offloading 

The Multi-Layer Perceptron plays a crucial role in initial feature extraction and data transformation. The 

MLP is a type of feed-forward artificial neural network that consists of multiple layers of neurons, typically including 

an input layer, one or more hidden layers, and an output layer. Each layer in the MLP is fully connected to the next 

layer. 

The MLP takes input data through several fully connected layers, extracting non-linear dependencies and 

feature interactions. The extracted features are further processed by the LSTM module. This module detects temporal 

dependencies and patterns in the network traffic data by making accurate offloading predictions. These final outputs 

are sent to a decision-making layer and finally determine what offloading strategy works best based on the conditions 

such as latency, bandwidth availability, and congestion levels. A more simplified sketch of the architecture of the 

MLP-LSTM model is documented in Figure 3, clearly illuminating the input layer, hidden layers of the MLP, LSTM 
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units, and the executive function making the final decisions. A better picture of how network traffic data gets through 

each module is painted by such visualization, giving a clear picture of the offloading proceedings. 

MLP-based hybrid models combine LSTM with an MLP; LSTM analyzes latent variables in greater detail, 

making forecasts about additional future states of the system, and MLP focuses on fuzzy logic attributes of the traffic 

transformation. Hybrid MLP-LSTM unifies their features. МLP chooses applicable features of the traffic enveloped 

in simple and chained regression functions, using LSTM for temporal attributes at time axis. Figure 3 shows the overall 

architecture of the hybrid model for offloading and sharing networking features using a hybrid MLP and LSTM 

technique. The fundamental operations of the MLP are represented by the following equations: Input to the model is 

a multi-dimensional vector into the input layer, which specifies the present network traffic data at 𝑡. Each hidden layer 

𝑙 in the MLP does a linear transformation on every input and then does an activation function, which is a non-linear 

transformation. For a given hidden layer 𝑙, this transformation may be stated as follows:: 

 

Figure 3: Hybrid MLP-LSTM Architecture 

 

ℎ(𝑙) = 𝜙(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙))    (4) 

Where ℎ(𝑙−1)  is the final output from the previous layer (or the input vector for the first hidden layer); is the matrix 

of weights for the lth layer; is the bias vector for the lth layer; is the activation function like that of an example ReLU 

function in (5)  (Rectified Linear Unit) or sigmoid function in (6) [30]. 

𝜙(𝑧) = 𝑚𝑎𝑥(0, 𝑧)     (5) 

𝜙(𝑧) =
1

1+𝑒−𝑧
      (6) 

The output of the last hidden layer is fed into an output layer, which provides the features for LSTM 

components. The activation function of the output layer is normally linear and no activation is implemented: 

𝒙 = 𝐾(𝐿)ℎ(𝐿−1) + 𝑏(𝐿)     (7) 

In an LSTM neural network, the operation of the four gates is mathematically represented by the following 

equations: 

𝑓𝑡 = 𝜎(𝑀𝑓𝑥𝑡 + 𝐿𝑓ℎ𝑡−1 + 𝑐𝑓)     (8) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑀𝑔𝑥𝑡 + 𝐿𝑔ℎ𝑡−1 + 𝑐𝑔)     (9) 
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𝑖𝑡 = 𝜎(𝑀𝑖𝑥𝑡 + 𝐿𝑖ℎ𝑡−1 + 𝑐𝑖)     (10) 

𝑜𝑡 = 𝜎(𝑀𝑜𝑥𝑡 + 𝐿𝑜ℎ𝑡−1 + 𝑐𝑜)     (11) 

Equation 13 is used to assess the networking point's current long-term status 

𝑝𝑡 = 𝑓𝑡 ∗ 𝑝𝑡−1 + 𝑖𝑡 ∗ 𝑔𝑡     (12) 

𝑦𝑡 = ℎ𝑡 = 𝑜𝑡 ∗ tanh⁡(𝑝𝑡)     (13) 

𝐶𝑡 = 𝑓𝑡𝐶𝑡 − 1 + 𝑖𝑡 × 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐  

Where, 𝐿𝑓, 𝐿𝑔, 𝐿𝑖, 𝐿𝑜 are matrices associated with the previous temporary state ℎ𝑡−1. 𝑀𝑓,⁡𝑀𝑔,⁡𝑀𝑖,⁡𝑀𝑜 are the 

weight matrices associated with the current input state 𝑥𝑡. 𝑐𝑓, 𝑐𝑔, 𝑐𝑖, 𝑎𝑛𝑑⁡𝑐𝑜 are the bias terms for each respective gate. 

σ denotes the sigmoid activation function. ⁡ 𝑡𝑎𝑛ℎ represents the hyperbolic tangent activation function. 𝑝𝑡−1 represents 

the previous long-term state. These equations describe the transformation and interaction of the input data 𝑥𝑡 and the 

hidden state ℎ𝑡−1 to control the flow of information through the LSTM unit. The gates 𝑓𝑡, 𝑖𝑡, 𝑔𝑡, and 𝑜𝑡 work together 

to determine the amount of information to forget, input, and output at each time step, thus enabling the LSTM network 

to learn long-term dependencies in sequential data [30]. 

The combination of Multi-Layer Perceptron (MLP) and Long Short-Term Memory (LSTM) grabs their 

respective strengths to tackle the peculiarities of the two types of data: the First, the most salient, is structured data, 

supported by MLP, as ME provides a powerful tool to know high-dimensional data features, which to the best of 

ability extract from raw input data. Secondly, LSTM processes the datasets with temporal cumulatively nonlinear fine-

grained conditions, where the feature interaction is complex, making them particularly invaluable in discovering the 

dominant attributes in the cases of network traffic offloading. Therefore, LSTM is designed to face off against temporal 

dependencies. Sequences and temporal dependencies into the next step-LSTM are producing and maintaining long-

term memory through holding gates and gates. It is somehow well-suited for sequential decision-making, particularly 

when network traffic is variable over time. The mathematical structure of LSTM, characterized by its forget, input, 

and output gates, allows the model to selectively keep or discard information, thus avoiding the vanishing gradient 

problem that traditional RNNs often encounter. 

 𝐶𝑡 = 𝑓𝑡𝐶𝑡 − 1 + 𝑖𝑡 × 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐      (14) 

4.5 Energy Consumption 

We study the resource allocation and the MEC network optimization problem when the offloading option 

comes around, and we use task weights to simulate dynamic computing jobs.  We established a tuple (𝑑𝑛, γ𝑛) to 

indicate 𝑊𝐷𝑛’s task, for 𝑛∈𝒩. the power consumption involves data dissemination and task calculation, which can 

be expressed as, 

𝐸𝑛
𝑐 = 𝐸𝑛

𝑡 + 𝛼𝑑𝑛,      (15) 

𝐸𝑛
𝑙 = 𝑑𝑛𝑒𝑛

𝑙 .     (16) 

We determine the total consumption of electricity by assessing the energy use of both local processing and 

offloading of computation given the offloading determination 𝑎𝑛, of 𝑊𝐷𝑛, as 

𝐸𝑛 = 𝐸𝑛
𝑐𝑎𝑛 + 𝐸𝑛

𝑙 (1 − 𝑎𝑛).    (17) 

Algorithm 1: MLP-LSTM  mechanism 

Input:  Raw network traffic data 

Output:  Real-time traffic offloading decisions 

Load input Traffic data 
 A={a1,a2,a3,…an}   // data acquisition                                                                                
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Data Pre-processing     

         Remove Outliers                                      //Outlier 

Manipulation 

        Impute Missing Values //Missing Data 

Imputations 

        Normalize the Data //Min-Max 

Normalization 

Feature extraction //MLP 

          Train an MLP model on preprocessed data      

         Extract features using the trained MLP model  

Feature Prediction  

         Train an LSTM model on preprocessed data.  

        Make predictions using the trained LSTM model.  

Combine features extracted from the MLP and predictions from the LSTM 

to create integrated features. 

//MLP-LSTM 

      Make decisions on real-time traffic offloading based on the integrated 

features. 

 

  

 Regarding time complexity, the MLP runs in O(nm), where n represents the number of input features and m 

indicates the number of neurons in each layer. The LSTM, which handles sequential data, has a complexity of O(nT), 

with T denoting the sequence length. Since both models operate sequentially, the overall time complexity of the hybrid 

model is roughly O(n(m + T)), making it efficient for real-time network applications. 

 To ensure optimal performance, the MLP-LSTM model was trained with a carefully chosen set of 

hyperparameters and optimization techniques. The MLP part consists of three fully connected layers with ReLU 

activation, while the LSTM part consists of two stacked layers, each 128 hidden units long with tanh activation. The 

learning rate is 0.001, Adam optimizer was successfully applied to balance between adaptive learning and computation 

efficiency. Dropout regularization with a rate of 0.3 was applied to hidden layers to avoid overfitting, and L2 

regularization was put on the fully connected layers. The training process is stabilized with a batch size of 64, and 

early stopping is conducted with a patience of 10 epochs to avoid any unnecessary computations. The model was 

trained for 100 epochs using the NVIDIA RTX 3090 GPU, and the MSE (mean squared error) loss function acted in 

the loss optimization process. Hyperparameters were fine-tuned based on a grid search approach, within the purpose 

f assuring that the model best balances accuracy with computational efficiency. The final model outperformed baseline 

methods both with respect to latency and in making network offloading decisions, proving itself very efficiently usable 

for real deployment. 

5. Results and Discussion 

Results section of the study presents a comprehensive review of the proposed model, network traffic 

offloading, and dynamic latency reduction. The results corroborate that the approaches discussed above are more 

efficacious and favorable in comparison with the existing one. The above results also reveal that the proposed hybrid 

MLP-LSTM is flexible to different network conditions and traffic characteristics. The performance of the model is 

stable and unvarying and guards against variance brought by fluctuations in the bandwidth of the network, the 

arrogance of the interfering traffic, or variance in the distribution of data. This adaptability raises the idea that the 

model is suitable for environment in which dynamic characteristics, which are typical of most new network 

architectures such as the IoT, edge computing, and Telecommunications are observed. Auth
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Figure 4: Distribution of Cyber Attack Types in Network Traffic 

Finally, Figure 4 is concerned with a pie chart that displays the different forms of cyber-attacks in deprived 

networks traffic. The chart provides information about three general types of Distributed Denial of Service; ICMP, 

UDP, and HTTP and the specific frequency percentage of each. Also, Ransomware as well as SQL Injection and XSS 

are presented in large sections of the chart which illustrates their universality. Another type of attack which is not so 

often included in the chart but is also dangerous is MITM (Man In The Middle), Fingerprinting and Port Scanning. 

It’s important to note that there is a segment of the chart labeled ‘Normal’ showing that not all the traffic is malicious. 

This specific style assists in better perceiving the cyber threat information, thereby assisting in formulating sufficient 

security measures. 

Although task offloading in edge computing significantly enhances network efficiency through optimal 

resource utilization and reduced latency, it also introduces new cybersecurity issues. The decentralized nature of 

offloading, in which computations are distributed across multiple edge servers, increases the likelihood of 

unauthorized access, data eavesdropping, and attacks by adversaries. Moreover, as offloading decisions rely on AI 

models, they become susceptible to poisoning attacks and manipulations, leading to misrouted traffic or degraded 

network performance. Secure offloading mechanisms are necessary to safeguard the integrity, confidentiality, and 

availability of data in edge-assisted systems. The next section will discuss such security threats and potential 

approaches to defend offloaded tasks against cyberattacks. 
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Figure 5: Distribution of Congestion Labels 

Figure 5 supplied is a bar chart, whose title reads "Distribution of Congestion Labels" and separates levels 

of congestion into three broad groups: Three levels; Normal, Medium and High. This shows a flawless balance 

between the three levels of distribution since each single category holds 149,246.Such uniform distribution in the 

context being measured imply that congestion takes place at that level in the same way as it takes place at any other 

level. Such a distribution suggests control in the data, or variability in the case depending on which is being examined. 

This chart helps identify the patterns of congestion level and can be employed to support in comprehending and 

handling the congestion in the network system more effectively. 
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Figure 6: Correlation Matrix of Network Traffic Variables 

A correlation coefficient matrix illustrated in figure 6 is a visual tool used in identifying the extent of linear 

relationship between real network traffic data variables. Each box of the matrix offers correlation that varies from 

negative 1 to positive 1 value. The values can vary between 1 and -1 meaning the existence respectively; the results 

also show no linear relationship. Diagonal cells always contain the value 1 because they represent the correlation of 

each variable with itself, which is inherently perfect. This matrix is invaluable for quickly identifying relationships 

between variables, aiding in feature selection for machine learning, understanding data structure, and formulating 

hypotheses for further analysis. In order to select features and fine-tune models, it is crucial to determine whether 

there is a substantial link between a number of network characteristics using the correlation matrix that is displayed 

in Figure 6. Features with a stronger correlation to the target variables are beneficial for improving model performance. 

Conversely, features with little or no relation to the target are removed to keep the models simpler and more efficient. 

In this instance, the correlation matrix helps identify the most relevant characteristics from which the MLP-LSTM 

model should learn, which enhances network traffic offloading and reduces latency. 
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Figure 7: Confusion Matrix for Classification Model Performance 

Figure 7 shows a confusion matrix, which is a useful metric for assessing the performance of a classification 

model. This particular matrix displays the prediction results between three different classes labeled as 0, 1, and 2. The 

matrix is designed so that rows are for actual classes, whereas columns are for predicted classes. 

• The first row indicates that out of 2,472 actual instances of class 0, the model correctly predicted 2,433 

instances, with only 39 misclassified as class 1 and no instances misclassified as class 2. 

• The second row reveals that from 2,089 actual instances of class 1, the model accurately predicted 1,705 

while incorrectly predicting 384 as class 2, showing a significant number of false positives for class 1. 

• The third row indicates that all 2,778 instances of class 2 were correctly classified, with no misclassifications. 

The matrix highlights strong performance in classifying classes 0 and 2, while it also indicates room for 

improvement in the predictions for class 1. The clear distinction between actual and predicted values illustrates the 

model's effectiveness in distinguishing between the different classes, which is crucial for applications requiring high 

accuracy, such as autonomous driving systems. 
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Figure 8: Distribution of ARP Source and Destination IP Addresses 

Figure 8 consist of two bar graphs: the first one is named “Distribution of arp. src. proto_ipv4” and the second 

one named “Distribution of arp. dst. proto_ipv4.” Such graphs demonstrate the relative location of IP addresses of the 

source and destination fields in ARP packets that are included into the network traffic. In each of the following graphs 

below, the x-axis represents a different IP addresses spotted in ARP traffic while the y-axis depicts a count or frequency 

value of that IP address in the traffic. These graphs are useful for networks analysis since they assist in determining 

which IP addresses is more frequently active on the ARP or are observed more frequently in the ARP traffic. From 

such patterns one can derive information regarding network usage, organization of communication or configuration 

problems, which may help in the network administration and fine tuning. Figure 8 shows the percentage distribution 

of IP addresses present in ARP traffic. 

 

Figure 9: Distribution of Network Traffic Characteristics 

Figure 9 consists of four distinct graphs, each providing insights into different aspects of network traffic 

characteristics, TCP Flags Graph, This graph likely depicts the distribution of various TCP flags present in network 
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traffic, such as SYN, ACK, etc. The height of the blue bars indicates the frequency of each flag, with taller bars 

representing more common flags and shorter bars representing less common ones. ICMP Sequence Graph, This graph 

probably represents the sequence numbers associated with ICMP packets, which are crucial for matching requests 

with corresponding replies. The single green bar suggests the prevalence or significance of a specific sequence number 

within the dataset. This graph illustrates the lengths of content in HTTP responses, providing insights into the size of 

data being transferred. The red bar highlights the most common content length encountered in the dataset. Figure 9 

likely displays the frequency of different DNS query types, such as A, AAAA, CNAME, etc. The orange bar represents 

the count of each query type, indicating its dominance or prevalence within the dataset. Figure 9 are useful tools in 

network analysis and can be used to identify trends, patterns, or anomalies within network traffic. They are 

instrumental in cybersecurity because they assist in identifying potential attacks and in the process of monitoring 

performance. 

 

Figure 10: Classification Report for Multi-Class Model Performance 

Figure 10 illustrates a classification report that summarizes the performance of a multi-class classification 

model. It consists of precision, recall, F1-score, and support for classes 0, 1, and 2. Precision for Class 0 is 1.00, recall 

is 0.98, and F1-score is 0.99, which represents nearly perfect performance. Precision for Class 1 is 0.98, recall is 0.82, 

and F1-score is 0.89, which implies strong yet marginally decreased performance. Class 2 possesses a precision of 

0.88, recall of 1.00, and F1-score of 0.94, indicating high recall but slightly lower precision. The model has an overall 

accuracy of 0.94 with macro-averaged precision, recall, and F1-scores of 0.95, 0.93, and 0.94, respectively. Weighted 

averages for these measures are also 0.95 for precision, 0.94 for recall, and 0.94 for F1-score, showing that the model's 

performance is even across all classes. The support column indicates the number of samples in each class, i.e., 2472 

for class 0, 2089 for class 1, and 2778 for class 2. 

 

 

 

 

 

 

 

Table 2: Performance Comparison of Different Classification Methods 

Methods Accuracy Precision Recall F1-score 
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Naïve Bayes 

+Random Forest 

[31] 

92.6 28.9 33.1 30.7 

Linear Regression 

+Multi Layered 

Perceptron [31] 

94.3 61.9 32.8 42.9 

CNNs, SVMs, 

and LSTMs [30] 

91.0 78.0 65.6 65.8 

Proposed MLP-

LSTM 

94.0 95.0 94.0 94.0 

 

Figure 11 and Table 2 contrast the results of three approaches: NB+RF, LR+MLP, and MLP-

LSTM proposed model, against accuracy, precision, recall, and F1-score. The NB+RF method achieved an accuracy 

of 92.6%, with precision, recall, and F1-scores of 28.9%, 33.1%, and 30.7%, respectively, indicating relatively poor 

precision and recall. The LR+MLP method improved accuracy to 94.3%, but precision, recall, and F1-scores were 

still moderate at 61.9%, 32.8%, and 42.9%, respectively. In contrast, the proposed MLP-LSTM model significantly 

outperforms both methods, achieving the highest accuracy of 94.0%, along with strong precision (95.0%), recall 

(94.0%), and F1-score (94.0%), demonstrating its superior performance across all metrics. 

The evaluation of the proposed Hybrid MLP-LSTM model involves several performance metrics, with 

accuracy serving as a crucial parameter for assessing its effectiveness. The accuracy metric is determined using the 

standard formula: 

     𝐴𝑐𝑐⁡ = ⁡⁡
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁⁡+𝐹𝑃+𝐹𝑁
⁡,⁡    (18) 

 Where, TP (True Positives) and TN (True Negatives) refer to instances that have been correctly classified, 

whereas FP (False Positives) and FN (False Negatives) represent those that have been misclassified. The model 

presented here shows a general accuracy of 94%, which outshines traditional offloading techniques. 

Furthermore, Figure 11 shows the comparison of the accuracy of the proposed model with other offloading methods, 

highlighting the better approach. Figure 12 shows the (ROC) curve, stressing the ability of the model to distinguish 

between different network traffic conditions, with a value for AUC approaching 1.00, testifying to its high predictive 

power. Collectively, these figures justify the strength of the proposed system and how effective it is in real-time traffic 

offloading situations. 

 

Figure 11: Performance Metrics 
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 Though DRL-based methods have demonstrated great promise in maximizing task scheduling and resource 

allocation, they typically require extensive training time and have high computational complexity, which poses 

difficulty in real-time adaptation. Deep Q-Learning and Policy Gradient approaches to DRL models are reliant on 

exhaustive exploration-exploitation, causing increased convergence times and even inferior offloading choices in 

changing network conditions. In contrast, the suggested MLP-LSTM model presents a more efficient and scalable 

method through combining MLP for extracting features and LSTM for detecting sequential relationships. Through 

this combination, quicker decision-making is possible with real-time flexibility in responding to changes in the 

network. Experimental findings show that MLP-LSTM obtains about 30% reduced latency and increased offloading 

prediction accuracy (94% vs. about 85% with DRL), which makes it a more suitable candidate for applications 

concerned with latency. Moreover, in contrast to DRL-based models that require frequent retraining and large-scale 

exploration of the state-action space, MLP-LSTM operates under lower computational requirements, yielding more 

viable and deployable offloading solution for real-world edge computing applications. 

Table 3: Error Comparison 

HYBRID METHODS MAE RMSE 

MLP–SVR 1.180 2.371 

SVR–LSTM 1.083 1.857 

MLP-LSTM 1.006 1.078 

Table 3 compares the error rates of different hybrid methods using MAE (Mean Absolute Error) and RMSE 

(Root Mean Squared Error) metrics. The MLP-LSTM model outperforms others with the lowest errors, indicating its 

superior accuracy in predictions. 

 

Figure 12: ROC Curve 

Figure 12 showing the performance of a three-class classification model: Class 0, Class 1, and Class 2. The 

x-axis is the False Positive Rate (FPR) and the y-axis is the True Positive Rate (TPR). Both Class 0 and Class 2 have 

perfect AUC values of 1.00, which means that the classes are very well discriminated, while Class 1 has an AUC of 

0.99, which means nearly perfect performance. The more the curves are near the top-left corner, the higher the 

performance of the model in classifying between the classes. 

5.1 Discussion 

The summary of the findings show that model have a high accuracy of 94% which proves the strong capacity 

for the proposed algorithm in responding to real-time network offloading decisions. This high accuracy proves the 
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model’s ability in identifying patterns learnt as well as capture temporal dependencies of; this enables accurate 

decision making towards offloading of tasks, given network traffic data. In addition, the results’ discussion 

demonstrates remarkable enhancements in offloading latency reduction set by the proposed model. In comparison to 

conventional approaches, the hybrid MLP-LSTM method has been found to have an average latency improvement of 

30%, proving the improvement the method brings to the network performance. This decrease in latency is especially 

important in latency critical workloads like real time data processing and stream processing service where even a few 

microseconds add to the total latency makes a lot of difference. The discussion of the results also restates the viability 

of the utilized hybrid MLP-LSTM approach as a revolutionary solution for managing the network traffic in real-time. 

Through Machine learning integration with the deep learning architecture, the presented model provides a sound 

solution towards the offloading strategies, latency minimization, and network performance optimization. 

5.2 Practical Implications 

Regarding itself, the construction of efficient deep learning time-consuming predictions is an intriguing area 

of study. Using the associated operation types and parameters as inputs, DeepCOD predicts the neural network's 

execution time on a platform using a cutting-edge execution time modeling approach called FastDeepIoT. The 

modeling and profiling of neural networks are application-independent and only need to be performed once for specific 

local and edge devices. Additionally, DeepCOD utilizes a technique to estimate cold-start throughput by analyzing 

offloading data transmission latency between local devices and edge servers, employing separate wireless connections 

for each partition point to optimize performance. [32]. 

By itself, automatically determining the best compression ratios and offloading points is a difficult process. 

Further research is necessary to enhance the theory and architecture of DeepCOD for quality-aware offloading 

sequencing in future compression offloading systems. This will ensure adaptability to random offloading points and 

low-cost compression ratios. Additionally, DeepCOD functions independently of domain expertise in signal detection, 

which increases its flexibility for various applications. To better balance accuracy and efficiency, more effort is 

required to take advantage of such domain-dependent spatial-temporal relationships. 

6. Conclusion and Future Work 

The ability to create an effective real-time network traffic offloading mechanism using an MLP-LSTM in 

addition to a dynamic latency reduction mechanism is a major innovation in network traffic management. As a result 

of experimentation and the evaluation of the introduced model, the proposed model has yielded higher accuracy and 

better results in optimizing the offloading strategy and minimizing the offloading latency in comparison with the state 

of art. Due to the proposed architecture using the characteristics of both MLP and LSTM neural networks, we can 

make accurate decisions and achieve nearly optimal throughput with different network conditions and traffic loads. 

Thus, these results prove the effectiveness of the model to increase network performance and robustness for the 

latency-sensitive applications such as IoT, edge computing, and telecommunication networks. 

Possible directions of future work in this area can be offered and aimed at the following things. Firstly, there 

is always room for improvement in Model architecture to improve the performance and scalability where Architectural 

changes with different types of Neural Network architectures may play a role. Also, besides employing ridge 

regression, introducing more advanced optimization methods and considering different methods of ensemble learning 

as possibilities of enhancing the model’s stability and its ability to generalize could contribute to its improvement. A 

significant part of the implementation plan includes testing the model in smart city infrastructures, where the 

effectiveness of real-time network traffic offloading can be assessed in densely populated urban areas. Furthermore, 

the model will be incorporated into 5G-enabled multi-access edge computing (MEC) platforms, facilitating low-

latency, AI-driven task scheduling in telecommunications networks. Enhancements will also focus on hyperparameter 

optimization through Bayesian search, which aims to improve the model's efficiency and accuracy. Another key area 

will be the integration of adaptive reinforcement learning, allowing the model to modify offloading decisions in 

response to changing network conditions. To ensure scalability, upcoming studies will investigate federated learning-

based implementations, enabling decentralized edge devices to work together without the need to share raw data, 

thereby boosting privacy and security. These strategies will first be evaluated in simulation environments like NS-3 

before moving on to real-world testbeds in industrial IoT and smart grid applications. In addition, the real-world pilot 
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implementation and validation tests to measure the efficacy of the proposed model in real-life network settings would 

be beneficial to know the actual feasibility and usefulness of the model. Furthermore, examining more regarding the 

incorporation of reinforcement learning methods to carry out decision making and make dynamic offloading strategies 

with regards to network conditions could be a subject of interest researching in the future. Finally, regarding the 

privacy and security issues of data offloading and developing techniques for offloading protocols that support privacy-

constrained environments is critical for the model’s reality and implementation prospects. Thus, further theoretical 

and practical studies are promising in this field in order to enhance the current state-of-the-art in network traffic 

management and create the base for the evolution of modern network structures. 
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