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Abstract

In this growing field of network traffic management, lower latency and
important for high-quality data transmission and the productive performance of net
a new approach that merges the multi-layer perceptron (MLP) with long short-td
MLP is used for the beginning of feature extraction while the LSTM captures
specifically adapted for managing complex sequences of data with higher accuracy. The
fit the particular dataset and problem setting leading to excellent performance ?cs 1Ngelation to conventional
methods. The implementation was carried out in Python using widely usgiliaca®®s such as TensorFlow and Keras,
which provided great flexibility and efficiency. Through empirical cevaluation on real-world network
datasets, our most proposed model demonstrates some very promisg s0, our hybrid MLP-LSTM model
achieves accuracy up to 94%, surpassing existing offloadi odel has also displayed very high
performance in terms of lowering offloading lateng urther can generalize across various network

erm dependencies and is
groach has been tailored to

conditions and traffic patterns such as high laten
and adaptive offloading strategies in the fledgling g ario. These results highlight the efficiency of the hybrid
MLP-LSTM approach in improving real-time netw¥
opportunities in applications in IoT, edge computing, an®
Python, our model will provide a practic easy-to-imp
ency problems in contemporary network infrastructure.

Rlccommunications. Supported by its implementation in
ement solution for network operators and stakeholders

aiming to advance traffic offloading an

Keywords- Network TgaWfic t; Hybrid Architecture; Novel Approach; Edge Computing;

Telecommunications

1. Introduction

affic presents significant challenges for maintaining network efficiency and
g telecommunications landscape [1]. The Internet of Things (IoT), 5G wireless
intensive applications have placed immense pressure on network service providers to

affic patterns and abrupt demand surges [4]. As a result, sophisticated, intelligent systems which can
oftload network traffic increasingly instantly lower latency are becoming more and more necessary [5].

One possible way to provide omnipresent deep neural network applications on normally computationally
constrained devices is to offload information to a computationally competent node. Models of neural networks can be
split up and inputs or intermediate information moved to edge servers so that inference can be partially or fully
offloaded, reducing the strain on local end devices [6]. But most offloading processes in use today take a long time to
transport data through the mobile/embedded sensing equipment and an edge server, therefore they need to be
optimized to satisfy applications that require low latency [7]. A recent study has been prompted by this difficulty.
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Determining the ideal offloading location for a network of neurons depending on available computing power and
network circumstances is one possible system approach [8]. It makes sense that some of the neural network's
intermediary layers would be lower in size. One way to shorten data transmission times is to choose these layers as
dumping sites [9]. The first several layers' intermediate data volumes are still substantial, though. The offloading effect
is diminished since to achieve a bandwidth-efficient offloading particular, we must execute a significant chunk of the
model locally.

The creation of a HMLP-LSTM appears to be a viable approach to these problems [10]. The capabilities of
both MLP as well as LSTM neural networks are combined in this hybrid model to provide a strong framework
can reduce dynamic latency and offload traffic in real-time. MLPs, which are well-known for their ease of u
efficiency in resolving regression and classification issues, serve as the model's foundation by identifying the I\ga
connections present in network traffic data [11]. Nevertheless, MLPs by themselves are not adequate
temporal dependencies present in network traffic dynamics [12].

recu ural
to learn from

This text discusses the application of LSTM networks. LSTMs, which are
networks, excel at recognizing temporal patterns and forecasting time-series data g
long-term relationships in sequential information [13]. The hybrid model merge
fast processing and feature analysis strengths of MLPs alongside the temporal dynaXggs ’rstanding and predictive
capabilities of LSTMs [14], [15]. This integration ensures that the framework cX@ccurately predict network
conditions and make real-time decisions about resource allocation and traffic managgem&@based on well-informed
insights [16]. }

CNNs, SVMs, and FCNs-setting it apart from these is the ability
temporal dependencies inherent in network traffic datggsial P cw method of using a hybrid MLP-

which either work on static data or do not take i acAPfint learning sequentially: the novel approach takes into
changing network conditions, variable latency times for

ic management schemes based on CNN in terms of efficacy, real-
time adaptability, and latency reduc imjovement of up to 30% in offloading efficiency. This development
not only promises maximum uti
makes it suitable for edge comaauti d next-generation IoT applications. The Hybrid MLP-LSTM model was

features tog Mization. As for the initial preprocessing and feature extraction, it is taken care of by
el. After then, an LSTM component takes the lead and structures the temporal

of the outputs from two halves in order to provide accurate forecasts and recommended
inimization and traffic off-loading. This is among the main advantages of the hybrid approach;
e flexibility of this kind of model. This is advantageous to the model as it is always in a learning mode

active when it comes to networks bandwidth management, such that where the predictability is accurate,
rmance guaranteed is not compromised since a congestion that could otherwise have happened is prevented.

In the case of NTM, the Hybrid MLP-LSTM approach has the potential of enhancing users’ experiences
when applied in real time. Through dynamic traffic shifting and minimum latency, the model can improve the quality
of the service, facilitate increased data transmission rates and provide more dependable links for the end consumers.
This is especially important for applications in industries like gaming, virtual reality and auto-mobile where the
slightest of delays can have a huge effect on the performance of the services being rendered. The proposed technique




of using Hybrid MLP-LSTM model is a great leap forward towards network traffic management. Combining the
advantages of both MLP and LSTM neural networks, the presented model is a sophisticated solution, providing
flexibility for traffic offloading in real-time and improving dynamic latency. Provided that the current and future
bandwidth requirements are anticipated to rise at an unsettling pace, with solutions such as these being paramount to
sustaining effective telecommunications networks. The motivation behind this study, however, extends further from
just network traffic management into the realms of broader scientific extrudes, where cooperation is an essential
means. Towards this, in the synergistic scenario of edge computing and IoT, collaboration in decision-making will
enhance data sharing, optimize resources, and enable task offloading in an on-demand scenario. These principles echo
real-time adaptive strategies employed in several scientific spheres, including distributed computing, fede
learning, and cooperative Al models, articulating the necessity of the proposed hybrid MLP-LSTM app
Applying the concept of HMLP-LSTM model for real-time network traffic offloading and dynamic lateng

s the

the ability to avoid congestion
and dynamically reroute traffic along less congested paths before f3 llout. This proactive approach is a
significant step forward from conventional reactive techniques, al utilization of network resources
and improved performance.

3. The design of this model guarantees 4
dynamically changing network environments liva
in the modern networking environments characteriz$
such ability to cater to dynamically changing conditio
and reducing latencies while providing improved quality O

Pely variable and unpredictable traffic patterns. Moreover,
thus quite essential in maintaining optimum performance
yrvice to the end-users.

4. Thus the introduction of the jibdel ected to reduce the latency in the network significantly. Through
proper steering and rerouting of the n ojlimum path, there is lesser delay and higher speed and reliability
in the data transfer. This will furt ensitive applications like online gaming, streaming services, and
real-time communication servj

This work is di i pveral sections to describe in evolutionary order the intent behind the study,
methodology, result S Inendations. Section one (Introduction) gives a brief description of the research
problem an@ ying real-time network traffic offloading and dynamic latency minimization as
critical ent and future network environments. Section 2, Literature Review, reviews existing

2. Related Works

Yao et al. [17] displays the research Neural networks are now an essential component of intelligent Internet
of Things platforms and applications for sensing thanks to recent advancements. Nevertheless, their implementations
on low-end Internet of Things devices continue to be seriously hindered by the enormous computing demand. As edge
computing takes off, offloading becomes a viable way to get around end-device constraints. However, in current
offloading structures, a significant amount of time is spent transmitting data among local devices at the edge, which




creates a bottleneck for minimal latency smart services. Yao et al presents a broad framework known as deep
compressive offloading. It offers theoretical assurances on flawless reconstructions and flawless inference and can
transform data for offloading onto tiny amounts with minimum cost on local devices by merging compressive sensor
theory with advanced knowledge. The data is then decoded on the edge servers. the solution can achieve nearly no
accuracy loss while dramatically reducing offloading delay by exchanging edge computing capabilities for data
transmission latency. Yao et al also presents a deep compressive offloading system is constructed to support the latest
in voice recognition and computer vision applications. In comparison to the most cutting-edge neural net-offloading
systems, after thorough testing, the technology can reliably cut total latency 2% to 4% at the cost of 1% loss of accurac
In situations where the bandwidth is limited with excessive background data traffic, it speeds up neural net
inference even more by a factor of 35 times.

Bharatheedasan [18] presents a hybrid MLP-LSTM method that senses faults and realizes 4
useful life of rolling bearings to improve predictive maintenance strategies. The innovation of this

Decision Tree, KNN, LSTM, and CNN-BILSTM. The proposed model performs €
sensitivity, and specificity of 99.9%, 98.90%, and 98.16%, respectively, making it
maintenance model. There are still challenges in terms of computational intensity, regpscn g
high-quality annotation labels and real-world validation in other indusisisg l&)sns. Nevertheless, the process
¢ as well as optimize maintenance

ally well, with accuracy,
hichly effective predictive

schedules in industrial environments.

Manogaran et al. [19] describes the study on Ig ) , paradigm, allocation of resources and

offloading is necessary to handle client request ne se times due to unpredictable traffic patterns
and user density. In light of the necessity of IoT on a cale due to its ability to communicate and heterogeneous
assistance, this publication presents the response-awarc W@msport offloading strategy for user requests that respond to

designed based on the categorized traffi hysical system along with the IoT-Cloud infrastructure is where
ding model originates. When using the offloading approach for
categorized traffic, decision-make m the event logs and knowledge database. The scheme's simulation

evaluation demonstrates its g in lowering manufacturing, response time, and latency as well as increasing

in MEC with the use of dynamic spectrum allocation. To be more precise, the study first
ic multiuser compute offloading environment and jointly optimizes the allocations of resources

finds its structure of layers and splits it into two distinct issues: a top problem and a subproblem.
sts a bisection search-based technique to solve the subproblem effectively, allowing ESs to allocate

the subproblem, the study uses a simple search-based approach to find the optimal broadcast time and
the top problem. Additionally, the study takes into account an evolving situation of multiuser compute
offloading involving workload and time-dependent channels after addressing the static situation. To properly address
this dynamic situation, the research proposes to use a complex web programme based on reinforcement learning in
order to determine the near-optimal transmission frequency in real-time. Our recommendations for reducing overall
delay in dynamic as well as static offloading settings are validated by numerical data. The study also highlights the
benefits of our suggested methods over traditional multiuser compute offloading strategies.




Li et al. [21] presents the two key foundations for system functioning are big data analytics and adaptive
networking. Smart Network of Things systems that are unable to be effectively supplied by cloud computing because
of bandwidth, latency, or Internet access constraints often employ edge computing. Applications, on the other hand,
constantly produce a lot of data since they are programmed and specified to operate on cloud or edge platforms and
cannot be altered during execution. If the apps are run between cloud-based and edge platforms in concert, they could
perform better. The Dynamic Switching approach, a unique approach, is developed in this work to ensure intelligent
dynamics in which all jobs are transferred to the cloud or edge based on the real-time circumstances within the system.
Based on these real-time needs, the researchers further categories apps into four groups. Every kind of application is
configured with a fair latency to ensure that the infrastructure processes requests faster. The results of the experimgta
assessments demonstrate that the suggested strategy might successfully offload tasks in intelligent Internet of {
systems. Table 1 presents the summary of the presented existing literatures.

drastically improving system efficiency. Ensemble learning dealt hand in hand w1 ssures better tolerance to
faults, better decision-making reliability, and better generalization compared with DRL %@l edge intelligence methods
in the reduction of execution time and energy optimization. This adaptive mechelyis puld promote efficient
resource allocation, reduce network congestion, and improve system thr, ut%BELT becomes quite scalable

and robust enough for use in latency-sensitive maritime applications.

Hu et al., [23] This article proposes an algorithm for tas 0al in er Internet of Things (PIoT) using
i and gy efficiency of edge-assisted PloT
cheduling, transmit power control, and edge
ding mechanism. Under this framework, the
Picuing systems such that the current system states affect
smit power and computing resources, and then uses deep

limitations arise; these include high ¢
challenges in large-scale PloT, an
conditions. However, such proble
intensive smart city applicajg

Table 1: Literature Summary

Limitations
Limited application scope,
primarily focused on specific
voice recognition and
computer vision
Complex decomposition
strategy limits scalability in
highly dynamic
environments
Limited to certain traffic

Key Focus

Reep compressive offloading

or low-end 10T devices to

reduce latency with edge
computing

Dynamic Task Offloading

and Scheduling in 10T
applications using MEC
servers

Technology

Compressive sensor theory,
Edge Computing

Logic-Based Benders
Decomposition, Multi-access
Edge Computing

lamed t al. [24]

Response-aware offloading

Manogaran et al. [19]

strategy for latency-sensitive
user requests in 1oT
environments

Multidimensional spline
regression, loT-Cloud
infrastructure

patterns and lacks
adaptability to highly
dynamic and real-time data
traffic

Wang et al. [20]

Minimizing delay in multi-
user compute offloading
using dynamic spectrum

allocation

Mobile Edge Computing
(MEC), Reinforcement
Learning

Solutions primarily focused
on static offloading
environments, with limited
real-time adaptability




Dynamic Switching
approach for real-time
offloading in loT systems

Lietal. [21]

Big Data Analytics, Adaptive
Networking, Edge
Computing

High complexity in
managing real-time dynamic
switching between cloud and

edge platforms

Improving task execution
time and energy use in
changing maritime settings

Ghoshal et. al [22]

A flexible offloading system
that chooses the most
effective offloading strategy
according to current

Could encounter scalability
issues when implemented in
extensive MIoT networks

L with diverse edge devices.
conditions

Deep Reinforcement
Learning (DRL), particularly
Deep Q-Learning, can be
utilized for intelligent task
scheduling.

Optimizing task offloading
in Power Internet of Things
is very helpful for improving
real-time processing and
energy efficiency.

However, this approach
faces challenges due to the
high computational
complexity associated wit
continuous learnin

Hu et al., [23]

3. Problem Statement

In today’s highly distributed and bandwidth-intensive communication netwo
in modern telecommunication systems, such as IoT devices, 5G networks, and da
severe problem on efficient network management and low latency. Implementiny
applying traffic management concepts that were acceptable in conventional networks
dynamic networks. They do not scale well to unpredictable traffic patterns and spikes, W@result is traffic jams, and
correspondingly increased delay. Moreover, the existing offloading frameworks of corputing although are very
effective but they have some limitations regarding the computational cog ) neural networks and the time lag
gcr time is becoming a large factor
fects the overall performance and

ot fit intuitions of modern

frameworks, the HMLP-LSTM model for RT offloading ¥
research. The hybrid model will incorporal ffectiveness of MLPs especially in feature extraction and the potential

flow of a network [25].

4. Proposed Methodology.

Offloading
The first step to
data preprocessing where

and LSTM are usually passed to a decision-making logic include adjusting bandwidth allocation,
ycal data streams, modulating offloading frequency based on network congestion, which based on the

nditions are also provided where there is always improvement in the efficiency and reliability for traffic
the QoS. The hybrid MLP-LSTM model is aimed at the improvement of the process of network traffic
offloading using a good workflow. In essence, the workflow constitutes three main interdependent phases: (1) data
preprocessing, (2) feature extraction using MLP, and (3) sequential pattern recognition with LSTM for traffic
forecasting. MLP, primarily, is used to identify the significant features from real-time network data while LSTM
analyzes the data to find long-term relationships and trends. Such output allows better decisions to be made regarding
traffic flow offloading. These insights facilitate dynamic resource allocation, which helps to minimize latency and
boost overall network efficiency. The model continuously refines its predictions based on live data, enabling it to




adjust to changing network conditions. Figure 1 illustrates how these components interact and work together to create
an effective offloading strategy.

manipulation
Missing value imputation
Data Collection ]
(Edge IIOT Dataset) Data Pre-processing

Min-max Normalization

o —
b N

| Ay Select Best Hybrid Deep
< f— Offloading Action fm= | Learning model

(MLP-LSTM)

Opﬁmal Offloading
Decision

Figure 1: Proposed Wo, fo twork oading

rkflow for Network Offloading, illustrates the sequential
role of each component in achieving the overall objective

This workflow, as depicted in Figure 1, Pro
and iterative nature of the process, emphasizing the cri
of real-time network traffic offloading and dynamic latenc

4.1 Edge Computing

Task offloading is a key
percentage of the computing tas
to fulfil the strict requiremepés

of cud-edge orchestration. Figure 2 shows how it determines what
rted to additional mobile-edge devices, cloud computing centres
s IoT applications. When considering whether to offload, it's important to
bty of servers on the edge, cloud servers, and portable edge technologies;
kage; and requirements from the Internet of Things programmes. Deep learning

has been a gopul N ¥ ligently offloading computing in recent years. The cloud-edge orchestration

e latency & power consumption, both of which have been extensively researched in the
ir main concern was the accuracy of the service, thus they proposed an Al-driven offloading

using the provided solution. The main objective of the suggested design was to offer a three-tier
p of an edge layer, a cloud layer, and an IIoT layer. A remotely cloud is used to pre-train models of

wiicrein domain data is used to further develop these.

Edge cutting is of utmost importance concerning Al-offloading in that it permits real-time processing closer
to generation, thereby eliminating reliance on centralized cloud servers. In this sense, edge devices rely on machine
learning models to intelligently decide when and where to offload computational tasks. This method helps in
minimizing latency while optimizing resource allocation through the effective distribution of workloads between local
edge nodes and cloud servers. The Al-edge computing combination empowers the system to learn continuously from
evolving network conditions, including congestion levels, availability of bandwidth, and processing capabilities of




edge nodes. Such mechanisms are expected to lead to efficient offloading strategies ensuring enhanced performance
and a potential reduction in energy costs. In contrast to the earlier static offloading, Al-driven edge computing
continuously assesses the trade-off against cost and benefits so that more accurate and smarter decisions can be
rendered in network management. Edge and fog computing makes it easier for the offload process of network traffic,
adding more efficiency and moving away from centralized processing. Modern edge computing platforms are no
longer static; thanks to Al today's frameworks allow for intelligent task allocation so that devices can make decisions
on their automatic basis, taking into consideration items like congestion levels within the network, the number of
resources available, and penalties in latency. Moreover, federated learning is quite a powerful approach; it allows
central processing while preserving data privacy, thus reducing the number of interactions with the cloud,
computing builds on edge computing by introducing an intermediate layer between edge devices and centralized
servers. The same layers allow for distributed processing over several edge nodes, hence providing scalakilit

system, promoting low-latency decision-making and intelligent resource
performance.

Applications that are not offloaded
to the edge computing layer

Outcomes Fed

to Cloud E Edge I1oT }

(@ I = :
(2R i=l

: - » < :

' — '

: :

Q LSTM Classification of Application
T Types T
EDGE Layer

: Advanced Edge-Based Dynamic Offloading Platform for Optimized Network Performance

The TIoT devices' responsibilities could be delegated to the proper edge servers after an evaluation of the training
model's operation correctness at the edge layer. Traffic could be managed and only relevant data might be transmitted
to the cloud with the help of edge computing. The authors suggest an edge-side learning-based congestion management
framework that allows for the offloading of certain data to the cloud. While preserving a suitable degree of cloud
knowledge, this discovery makes label-less education a significant improvement since it enables unlabeled data
collection in a networking scenario practicable. The label-less educational structure is composed of the following




architectural blocks: We label a portion of data in order to give an algorithm some starting intelligence before we
utilize the model that was trained to classify the remaining data. The newly labelled data, that was chosen and added
back into the training dataset together with another decision produced via mutual confirmation of multimodal
information, is used to retrain the machine learning algorithm. The offloading problem was formulated as an
optimisation problem, and a heuristic solution was put forth. A model using deep learning was created to ascertain the
ideal workload distribution, one among the heuristics considered by the proposed method. Two of the qualities that an
SDN-based processing infrastructure for the Internet of Things applications has to have are low latency as well as
excellent dependability, which were emphasized. To facilitate cloud-edge construction with service administration
they suggested a work-offloading strategy. Complicated factors like overhead for communications and offloggfe
latency were taken advantage of in the suggested system. Offloading choices might be made for jobs with di
resource requirements and delay sensitivity.

1.1.1 Case Studies

that the main sources of the sensor information are a stereo camera feed and inertial
the inertial sensor traffic since its equivalent throughput is much lower than the steregacops

&he original frame update time,
re latency requirements persist even
budget, especially when drawing,
Ky identification is a viable method
for XR software, Setup B concentrates on this partic c. deviceTeceives basic binary masking from the
server; the white pixels on the device match the usgl Yhis i ally applicable to the proposed use case with
X uman algorithmic segmentation offloading)
The major issue in both XR scenarios particularly; @ A (Total XR offload) is on how to accommodate large
low latency with round trip duration of less than 11msec.

This use case is quite demanding since the round trip durations should be

studies where intelligent network trafi and dynamic latency reduction are essential. One pertinent
example is smart city infrastruct odel can enhance real-time traffic management systems by
dynamically distributing networ
Industrial IoT (IIoT) applicgiias
model can improve pred
components. Another pisi ication is in 5G-enabled edge networks, where massive machine-type
communicaggon ( 2ndfffective resource allocation. By incorporating the proposed model into multi-

aim to implement the model in real-world experimental testbeds, such as smart grids
tworks, to further assess its effectiveness and scalability in dynamic settings. Incorporation of

d and drive optimal usages of available bandwidth. Future work shall carry out the model
into real-world experimental testbeds such as smart grids or connected vehicle networks for its further

The EDGE-IloTset is a comprehensive dataset capturing a large breadth of cybersecurity information specific
to Internet of Things and IloT applications. It is targeted for use with both federated and centralized learning
approaches by intrusion detection systems that use machine learning algorithms. It offered a rigorous testbed with 7
levels incorporating state-of-the-art technology and a plethora of IoT devices in order to cater to basic requirements
for IoT and IIoT applications This dataset is comprehensive and rich in cybersecurity information, specifically
designed for IoT and IIoT applications [27]. It provides data collected from over ten sensor types (including




temperature and humidity sensors) with fourteen attack types within five threat categories-lending to its relevance for
both centralized and federated machine learning-based network offloading systems.

4.3 Data Pre-processing

Methods of evaluating the data include Outliers are data points that are substantially different from other
parts of the dataset, so they could be of great concern for analysis and modelling. To address outliers, methods such
as trimming and winsorization can be used. Winsorization is the process of substituting less extreme values for severe
ones, usually the closest data point falling inside a given percentile range.

4.3.1 Missing Data Imputation: Errors in data transmission or malfunctioning sensors are only two of the many

of missing data. For appropriate analysis and to ensure that the dataset is full, missing values must be imput
popular method is a mean imputation, in which the existing data's mean is used to substitute in the -
(

Mathematically, mean imputation can be expressed as:

4.3.2 Min-Max Normalization: Min-max normalization scales the data within a spegificS@ge, typically between 0
and 1, making the features comparable and enhancing the performance of the ne etworKs. Mathematically, min-
max normalization can be expressed in (3):

~ 1

X Yj-1%;

1)

L on

Where ¥, is the imputed value for the missing data point X,, and n is the & bf avai data points

[28].

)
Xnog gy @)

prma value. By incorporating these preprocessing
s, comp®te, and appropriately scaled, laying a solid
¢ Hybrid MLP-LSTM Model [29].

or outlier detection: The Z-score also referred to as the standard
int be in terms of standard deviations to the mean. In network

algorithm are two prominent technique
score, is used in identifying how f:

traffic data, outliers have their v fZ-s reater than a certain limit (either 3 or -3). The formula for the Z-
score is expressed in (3):

ayer Perceptron plays a crucial role in initial feature extraction and data transformation. The
feed-forward artificial neural network that consists of multiple layers of neurons, typically including

The MLP takes input data through several fully connected layers, extracting non-linear dependencies and
feature interactions. The extracted features are further processed by the LSTM module. This module detects temporal
dependencies and patterns in the network traffic data by making accurate offloading predictions. These final outputs
are sent to a decision-making layer and finally determine what offloading strategy works best based on the conditions
such as latency, bandwidth availability, and congestion levels. A more simplified sketch of the architecture of the
MLP-LSTM model is documented in Figure 3, clearly illuminating the input layer, hidden layers of the MLP, LSTM




units, and the executive function making the final decisions. A better picture of how network traffic data gets through
each module is painted by such visualization, giving a clear picture of the offloading proceedings.

MLP-based hybrid models combine LSTM with an MLP; LSTM analyzes latent variables in greater detail,
making forecasts about additional future states of the system, and MLP focuses on fuzzy logic attributes of the traffic
transformation. Hybrid MLP-LSTM unifies their features. MLP chooses applicable features of the traffic enveloped
in simple and chained regression functions, using LSTM for temporal attributes at time axis. Figure 3 shows the overall
architecture of the hybrid model for offloading and sharing networking features using a hybrid MLP and LSTM
technique. The fundamental operations of the MLP are represented by the following equations: Input to the modg
a multi-dimensional vector into the input layer, which specifies the present network traffic data at t. Each hidde
[ in the MLP does a linear transformation on every input and then does an activation function, which is a non-
transformation. For a given hidden layer [, this transformation may be stated as follows::

Hidden layer

N \‘(’;n.x \

(x ) 0
= - ’ ‘ ' N:;.x’ \ C‘. A L
= | X2 K i I
Real Time A 4 \/ e
Network —> Y% AVA (Yixax ) Y S
Traffic Data = AL W J 2
{ X3 f ;
: A 7 ";'V(xlr.x \ he. [ o | > h
P @ LSTM
{ Xa f H -
- ‘ \(x oX ) l
Feature Extraction (MLP) -
Figure 3: Hybrid ML TM Architecture
D= pWORE-D 4 p1) 4)

Where h¢=1 s the final outp
of weights for the Ith layeyg
function in (5) (Rectified

fro ¢ previous layer (or the input vector for the first hidden layer); is the matrix
r for the Ith layer; is the activation function like that of an example ReLU
or sigmoid function in (6) [30].

¢(z) = max(0,z) (5)
$(2) = —— (©6)
e 0 f the last hidden layer is fed into an output layer, which provides the features for LSTM
ponen e activation function of the output layer is normally linear and no activation is implemented:
x=KOpl-D 4 p® (7

In an LSTM neural network, the operation of the four gates is mathematically represented by the following
equations:

fe = 0(Mgx, + Lehi_q + ¢f) (®)

ge = tanh(Myx; + Lgh_q + ¢4) 9)




i, =0(M;x; + Lih_1 +¢;) (10)
0y = 0(Myx; + Lohe_q + ¢,) (11)

Equation 13 is used to assess the networking point's current long-term status
Pe = fe*De-1+ it * g¢ (12)

Yt = hy = o, * tanh (p,) (1

C, = f,Co — 1+ i, X tanh(W,.[he—y, x:] + b,

Where, L¢, Ly, L;, L, are matrices associated with the previous temporary state hy_q. M¢, M,

weight matrices associated with the current input state x,. cf, cg, ci, and co are the bias terms for each 1

o denotes the sigmoid activation function. tanh represents the hyperbolic tangent activation fung ts
the previous long-term state. These equations describe the transformation and interactjg #nd the
hidden state h;_; to control the flow of information through the LSTM unit. The ga work together
to determine the amount of information to forget, input, and output at each time std M network

to learn long-term dependencies in sequential data [30].

The combination of Multi-Layer Perceptron (MLP) and Long Short-Te Ay (LSTM) grabs their
respective strengths to tackle the peculiarities of the two types of data: thekirst, ¥ most salient, is structured data,
data features, which to the best of
ability extract from raw input data. Secondly, LSTM processes the tc§liporal cumulatively nonlinear fine-
grained conditions, where the feature interaction is complex, m, il |arly invaluable in discovering the
dominant attributes in the cases of network traffic offlog 1s designed to face off against temporal
dependencies. Sequences and temporal dependency -] STM are producing and maintaining long-
for sequential decision-making, particularly
cal structure of LSTM, characterized by its forget, input,

liscard information, thus avoiding the vanishing gradient

when network traffic is variable over time. The mat
and output gates, allows the model to selectively keep §
problem that traditional RNNs often encounter.

Ct = ftCt -1+ it ta ht_l,xt] + bC (14)

4.5 Energy Consumption

We study the resoyzamms
comes around, and we ug
indicate WD,,’s task, for
be expressegaas,

ES = EL + ad,, (15)
E! = d,el. (16)

ermine the total consumption of electricity by assessing the energy use of both local processing and

t
0 ing of®mputation given the offloading determination a,,, of WD,,, as
E, = ESa, + EL(1 — an). (17)
Algorithm 1: MLP-LSTM mechanism
Input: Raw network traffic data

Output: Real-time traffic offloading decisions
Load input Traffic data
A={aj,a,a3,...an} // data acquisition

and the MEC network optimization problem when the offloading option
simulate dynamic computing jobs. We established a tuple (d,,, y,) to
wer consumption involves data dissemination and task calculation, which can



Data Pre-processing

Remove Outliers //Outlier
Manipulation
Impute Missing Values //Missing  Data
Imputations
Normalize the Data //Min-Max
Normalization
Feature extraction //MLP

Train an MLP model on preprocessed data
Extract features using the trained MLP model
Feature Prediction
Train an LSTM model on preprocessed data.
Make predictions using the trained LSTM model.
Combine features extracted from the MLP and predictions from the LSTd
to create integrated features.
Make decisions on real-time traffic offloading based on the intt
features.

-LS

Regarding time complexity, the MLP runs in O(nm), where n reprgsents
indicates the number of neurons in each layer. The LSTM, which hand
with T denoting the sequence length. Since both models operate se

model is roughly O(n(m + T)), making it efficient for real-time

number of input features and m
ial data, has a complexity of O(nT),

To ensure optimal performance, the M
hyperparameters and optimization techniques.

early stopping is conducted with a pati pochs to avoid any unnecessary computations. The model was
GPU, and the MSE (mean squared error) loss function acted in
the loss optimization process. Hy'
fassuring that the model besiaglg uracy with computational efficiency. The final model outperformed baseline
methods both with respec g aking network offloading decisions, proving itself very efficiently usable
for real deployment.

le to different network conditions and traffic characteristics. The performance of the model is
rying and guards against variance brought by fluctuations in the bandwidth of the network, the

uitable for environment in which dynamic characteristics, which are typical of most new network
rc tures such as the IoT, edge computing, and Telecommunications are observed.
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Figure 4: Distribution of Cyber Attack Types in N etwwaf

Finally, Figure 4 is concerned with a pie chart that displays th tforms of cyber-attacks in deprived
networks traffic. The chart provides information about three gen ributed Denial of Service; ICMP,
UDP, and HTTP and the specific frequency percentage of each. C as well as SQL Injection and XSS

often included in the chart but is also dangerous ig h Middle), Fingerprinting and Port Scanning.
It’s important to note that there is a segment of the ®d ‘Normal’ showing that not all the traffic is malicious.
This specific style assists in better perceiving the cyb¥ cat information, thereby assisting in formulating sufficient

security measures.

Although task offloading in e
resource utilization and reduced late

mputing significantly enhances network efficiency through optimal
roduces new cybersecurity issues. The decentralized nature of
are distriby#d across multiple edge servers, increases the likelihood of
i acks by adversaries. Moreover, as offloading decisions rely on Al
ning attacks and manipulations, leading to misrouted traffic or degraded
ing¥mechanisms are necessary to safeguard the integrity, confidentiality, and
systems. The next section will discuss such security threats and potential
against cyberattacks.




Distribution of Congestion Labels
149246 149246 149246

140000 A

120000 A

100000 A

=
S 80000 -
=]
Qo
60000 +
40000 A
20000 +
0 .
Normal Medium
Congestion Label
Figure 5: Distribution of Congesti ,
Figure 5 supplied is a bar chart, whose title reads "Distrjdéti ongdlistion Labels" and separates levels

diu ch. This shows a flawless balance

of congestion into three broad groups: Three levels;
g olds 149,246.Such uniform distribution in the

between the three levels of distribution since each
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Figure 6: Correlation Mat Network Traffic Variables

A correlation coefficient matrix 4
relationship between real network traf
negative 1 to positive 1 value. The
also show no linear relationship. onal ¢
each variable with itself, whisiim

ated in figure 6 is a visual tool used in identifying the extent of linear
les. Each box of the matrix offers correlation that varies from
etween 1 and -1 meaning the existence respectively; the results
ways contain the value 1 because they represent the correlation of

tly perfect. This matrix is invaluable for quickly identifying relationships
c/3®ion for machine learning, understanding data structure, and formulating
der to select features and fine-tune models, it is crucial to determine whether
umber of network characteristics using the correlation matrix that is displayed

hypotheses for further an
there is a sy@astantg

in Figure 6.

Conver ith 11{W® or no relation to the target are removed to keep the models simpler and more efficient.
In this in elation matrix helps identify the most relevant characteristics from which the MLP-LSTM
model S@Qguld ich enhances network traffic offloading and reduces latency.
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Figure 8: Distribution of ARP Source and Destination IP,

Figure 8 consist of two bar graphs: the first one is named “Distribution of ary
one named “Distribution of arp. dst. proto_ipv4.” Such graphs demonstrate the relative
source and destination fields in ARP packets that are included into the network traffgn

Oto_ipv4” and the second
pation of [P addresses of the
cq@of the following graphs
xis depicts a count or frequency

sis since they assist in determining

below, the x-axis represents a different IP addresses spotted in ARP traffic ygadle th

of IP addresses present in ARP traffic.
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Figure 9: Distribution of Network Traffic Characteristics

Figure 9 consists of four distinct graphs, each providing insights into different aspects of network traffic
characteristics, TCP Flags Graph, This graph likely depicts the distribution of various TCP flags present in network



traffic, such as SYN, ACK, etc. The height of the blue bars indicates the frequency of each flag, with taller bars
representing more common flags and shorter bars representing less common ones. ICMP Sequence Graph, This graph
probably represents the sequence numbers associated with ICMP packets, which are crucial for matching requests
with corresponding replies. The single green bar suggests the prevalence or significance of a specific sequence number
within the dataset. This graph illustrates the lengths of content in HTTP responses, providing insights into the size of
data being transferred. The red bar highlights the most common content length encountered in the dataset. Figure 9
likely displays the frequency of different DNS query types, such as A, AAAA, CNAME, etc. The orange bar represents
the count of each query type, indicating its dominance or prevalence within the dataset. Figure 9 are useful tools in
network analysis and can be used to identify trends, patterns, or anomalies within network traffic. The

instrumental in cybersecurity because they assist in identifying potential attacks and in the process of moni

performance.
Classification Report:
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Figure 10: Classification i-Class Model Performance

arizes the performance of a multi-class classification
model. It consists of precision, recall, F1-score, and s8 for classes 0, 1, and 2. Precision for Class 0 is 1.00, recall
performance. Precision for Class 1 is 0.98, recall is 0.82,
®creased performance. Class 2 possesses a precision of
0.88, recall of 1.00, and F1-score of 0.94 ino high recall but slightly lower precision. The model has an overall
accuracy of 0.94 with macro-averag i 11, and F1-scores of 0.95, 0.93, and 0.94, respectively. Weighted

performance is even across all clas ort column indicates the number of samples in each class, i.e., 2472

for class 0, 2089 for class 8

E Table 2: Performance Comparison of Different Classification Methods

Methods Accuracy Precision Recall F1-score

lass 2.




Naive Bayes 92.6 28.9 33.1 30.7
+Random Forest
[31]
Linear Regression 943 61.9 32.8 429
+Multi Layered
Perceptron [31]

CNNs, SVMs, 91.0 78.0 65.6 65.8
and LSTMs [30]
Proposed MLP- 94.0 95.0 94.0 94.0
LSTM

Figure 11 and Table 2 contrastthe results of three approaches: NB-+RF, LR+MLE
LSTM proposed model, against accuracy, precision, recall, and F1-score. The NB+RF method achiev
of 92.6%, with precision, recall, and F1-scores of 28.9%, 33.1%, and 30.7%, respectively, indic
precision and recall. The LR+MLP method improved accuracy to 94.3%, but precisiQasss
still moderate at 61.9%, 32.8%, and 42.9%, respectively. In contrast, the proposedg
outperforms both methods, achieving the highest accuracy of 94.0%, along w4
(94.0%), and F1-score (94.0%), demonstrating its superior performance across all

accuracy serving as a crucial parameter for assessing its effectiveness. The accu metric’1s determined using the

The evaluation of the proposed Hybrid MLP-LSTM model involves sevsa ormance metrics, with
standard formula:

(18)

Where, TP (True Positives) and TN (Trueg \ instances that have been correctly classified,
< that have been misclassified. The model
presented here shows a general accuracy of 94%, W@k 4 ines traditional offloading techniques.

of the proposed model with other offloading methods,
curve, stressing the ability of the model to distinguish

Performance Metrics

E ) Accuracy Precision F1 Score Recall

Metrics

Figure 11: Performance Metrics




Though DRL-based methods have demonstrated great promise in maximizing task scheduling and resource
allocation, they typically require extensive training time and have high computational complexity, which poses
difficulty in real-time adaptation. Deep Q-Learning and Policy Gradient approaches to DRL models are reliant on
exhaustive exploration-exploitation, causing increased convergence times and even inferior offloading choices in
changing network conditions. In contrast, the suggested MLP-LSTM model presents a more efficient and scalable
method through combining MLP for extracting features and LSTM for detecting sequential relationships. Through
this combination, quicker decision-making is possible with real-time flexibility in responding to changes in the
network. Experimental findings show that MLP-LSTM obtains about 30% reduced latency and increased offloading
prediction accuracy (94% vs. about 85% with DRL), which makes it a more suitable candidate for applicaj
concerned with latency. Moreover, in contrast to DRL-based models that require frequent retraining and large

exploration of the state-action space, MLP-LSTM operates under lower computational requirements, yi
viable and deployable offloading solution for real-world edge computing applications.

Table 3: Error Comparison

HYBRID METHODS MAE RMSE
MLP-SVR 1.180 2.371
SVR-LSTM 1.083 1.857
MLP-LSTM 1.006 1.078
Table 3 compares the error rates of different hybrid methods using MAE Wn olute Error) and RMSE

(Root Mean Squared Error) metrics. The MLP-LSTM model outperforms others the lowest errors, indicating its
superior accuracy in predictions.
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Figure 12: ROC Curve

Fi 12 showing the performance of a three-class classification model: Class 0, Class 1, and Class 2. The

alse Positive Rate (FPR) and the y-axis is the True Positive Rate (TPR). Both Class 0 and Class 2 have
UC values of 1.00, which means that the classes are very well discriminated, while Class 1 has an AUC of
0.99, which means nearly perfect performance. The more the curves are near the top-left corner, the higher the
performance of the model in classifying between the classes.

5.1 Discussion
The summary of the findings show that model have a high accuracy of 94% which proves the strong capacity
for the proposed algorithm in responding to real-time network offloading decisions. This high accuracy proves the



model’s ability in identifying patterns learnt as well as capture temporal dependencies of; this enables accurate
decision making towards offloading of tasks, given network traffic data. In addition, the results’ discussion
demonstrates remarkable enhancements in offloading latency reduction set by the proposed model. In comparison to
conventional approaches, the hybrid MLP-LSTM method has been found to have an average latency improvement of
30%, proving the improvement the method brings to the network performance. This decrease in latency is especially
important in latency critical workloads like real time data processing and stream processing service where even a few
microseconds add to the total latency makes a lot of difference. The discussion of the results also restates the viability
of the utilized hybrid MLP-LSTM approach as a revolutionary solution for managing the network traffic in real-time
Through Machine learning integration with the deep learning architecture, the presented model provides a s
solution towards the offloading strategies, latency minimization, and network performance optimization.

5.2 Practical Implications
Regarding itself, the construction of efficient deep learning time-consuming predictions isan {triguingjtea

offloading data transmission latency between local devices and edge servers, employ
for each partition point to optimize performance. [32].

The ability to create an effective real-time net® traffic offloading mechanism using an MLP-LSTM in
addition to a dynamic latency reduction mechanism is a maj@ innovation in network traffic management. As a result

better results in optimizing the offloadinl d minimizing the offloading latency in comparison with the state

of art. Due to the proposed archi aracteristics of both MLP and LSTM neural networks, we can
make accurate decisions and achie mal throughput with different network conditions and traffic loads.
Thus, these results prove : i s of the model to increase network performance and robustness for the

latency-sensitive applicat edge computing, and telecommunication networks.

ancing the model’s stability and its ability to generalize could contribute to its improvement. A
e implementation plan includes testing the model in smart city infrastructures, where the
real-time network traffic offloading can be assessed in densely populated urban areas. Furthermore,

ation through Bayesian search, which aims to improve the model's efficiency and accuracy. Another key area
will be the integration of adaptive reinforcement learning, allowing the model to modify offloading decisions in
response to changing network conditions. To ensure scalability, upcoming studies will investigate federated learning-
based implementations, enabling decentralized edge devices to work together without the need to share raw data,
thereby boosting privacy and security. These strategies will first be evaluated in simulation environments like NS-3
before moving on to real-world testbeds in industrial IoT and smart grid applications. In addition, the real-world pilot




implementation and validation tests to measure the efficacy of the proposed model in real-life network settings would
be beneficial to know the actual feasibility and usefulness of the model. Furthermore, examining more regarding the
incorporation of reinforcement learning methods to carry out decision making and make dynamic offloading strategies
with regards to network conditions could be a subject of interest researching in the future. Finally, regarding the
privacy and security issues of data offloading and developing techniques for offloading protocols that support privacy-
constrained environments is critical for the model’s reality and implementation prospects. Thus, further theoretical
and practical studies are promising in this field in order to enhance the current state-of-the-art in network traffic
management and create the base for the evolution of modern network structures.
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