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Abstract:

Accurate identification and classification of tumours are essential for effe ly diagnosing and treating
hepatocellular carcinoma and metastatic disease. However, the heterogeneous natalre umours, characterized by
irregular boundarles and varlatlons in shape, size, and Iocatlon poses mgmﬂcantﬁeng or precise and automated

cdP learning has emerged as a powerful
gerformance in tumour classification,
roposes an innovative deep-learning
cdhproach begins by enhancing image
ian filt€F, regions are then accurately segmented
el based on region-based convolutional neural
ed Swin Transformer to mitigate overfitting
demonstrate that the proposed model achieves superior
exhibiting strong performance even in noise.

tool for medical image analy5|s Although current clinical methods off e
there is still considerable scope for improving diagnostic accuracy

framework to enhance the segmentation and classification of

from abdominal CT images using Mask R-CNN, a
networks. The segmented outputs are further proe
and boost classification performance. Experimenta
accuracy and robustness across diverse CT image data

Keywords—Segmentation, Deep Learnin CNN Classi®®ation, CT image, Mask R-CNN

TRODUCTION

urvival of all vertebrates and animals on our planet. The human
Se, despite the fact that it is a potentially deadly ailment. An early
beneficial to the patient's prognosis from a medical standpoint. When it
iseases, the computer-aided diagnostic (CAD) system is an extremely
any CAD based medical image processing activities is the segmentation of
, it entails categorizing the medical pictures that are supplied and making use

body does not exhibit any symptom
recognition of liver disease
comes to the diagnosis ang

knowledge of human anatomy that does not need any intrusive procedures, medical
ritical relevance. In addition to this, it provides radiologists with assistance in recognizing
isualizing them based on the granularity of the pixels. The ultimate objective is to improve
d intuitiveness of human tissue and sick structures [2][3]. Simulation of biological processes,
lematic tissues, monitoring of illness development, and provision of the essential information for

e now available ensure that a number of different cell types inside the microenvironment of the tumor may be
ropriately identified.

The computerized tumor categorization systems that are now being used are very new, and they often fail to
correctly capture the features that are detected in the early stages of the illness. Even while deeper neural networks
are effective for classification, they are not practical because of the temporal limitations that they provide. On the
other hand, shape-based techniques that make use of past data indicate positive potential. The development of PSMs
can be sped up with the use of Al-driven deep learning (DL) [20][21], which is beneficial to medical analysis [3].



A number of characteristics, including size variety, complicated backdrops, ambiguous boundaries, and a lack of
contrast in organ density, provide difficulties in the process of human liver segmentation. The accurate segmentation
of the liver has the potential to dramatically improve both medical assessment and research. A significant reduction
in death rates and an improvement in survival prospects may be achieved via the accurate identification and treatment
of liver cancer[4]. Because of its poor prognosis, liver disease is the third major cause of death associated to lesions.
This is likely owing to the fact that it is often identified at an inappropriately late stage.

A large portion of the research has focused on other variables, such as the kind of illness, the current stage o
disease, the size, the number, and the course of the disease. Along with these other factors, liver function is a fa
that plays a role in determining the treatment plan that is selected. As a consequence of this, we needed to establ
a diagnostic aid system in order to detect individuals with liver cancer at an early stage and then allow 4l
evaluation of the levels of abnormalities in the liver. This is crucial for those who work in the medical field,
when it comes to the fact that they may benefit from an intelligent system that could assist them in dlag
treatment. In this manner, we provide a unique hybrid deep classifier for the segmentation and class' ’
cancer. This classifier is based on a customized mask-region convolutional neural network

following is a list of the contributions that this work has made. .
e The model is designed to undergo a three-stage process which j§ . g,
dict th

segmentation, and classification.

& rea mask of the
ayers, eight transposed 2D
ig) activation function.

e The RCNN strategy that has been presented for liver segmentation
picture in an effective manner. The technique includes four max- p
convolutional layers, a dropout layer, ReL U, and the modified sigm0|d

e In an effort to mitigate overfitting, the image with segments wutt
Transformer Network with adversarial Propagating.

into an Improved Swin

accommodate the different sizes and shapes of cells thal@gy be seen in microscope images. The indicated method's
success is shown by experiments using microggcope cell ima¥§® datasets, highlighting increased performance measures
like as AP, Precision, Recall, Dice, and P e retaining competitive FLOPs (floating point operations per second)
and FPS (frames per second) Offerln answer for biomedical engineering applications, this research
etecting and segmenting cells that have varying forms, sizes,
suggests using Mask R-DHCNN for cell identification and
he conventional convolutional kernel in Mask R-CNN with DHConv. The

grayscale fluctuations, and dense
segmentatlon This involves sy
purpose is to accommodate §
is designed by combining t ity HetConv with dilated convolution. This design is particularly ideal for cell
identification and seg
efficient.

S. Vani
new technol
with a Fas, ral Network (BWOFRCNN) technique is presented as a means of categorizing segmented
escribed here achieves superior accuracy, sensitivity, and precision when compared to other
study significantly enhances the objective function of image segmentation by employing the

ptimization and Moth Flame Optimization (IWOMFO) method for feature selection. The outcome
WOFRCNN classifier is evaluated using characteristics such as accuracy, F1-score, sensitivity, and

6. 95% in comparison with various other approaches The investigation assessed the experlments by using receiver
erating characteristic (ROC) curve analysis, accuracy measures, and F1-score computations.

A. M. Hendi et al., [7] research aims to enhance the accuracy and efficiency of detecting and forecasting liver
disorders by investigating DL methods. Its emphasis is on improving the diagnosis and prognosis of liver ailments.
This study presents a unique DL model called CNN+LSTM, which combines Convolutional Neural Network (CNN)
and Long Short-Term Memory (LSTM) networks. The model achieves a high accuracy of 98.73% in predicting liver



ailments. Offers a thorough examination of the influence of liver disorders, with a focus on the possible advantages
of DL approaches in diagnosing, predicting the course of, and treating liver diseases. This has an opportunity to
benefit patients, society, and healthcare providers. Addresses the limitations of conventional diagnostic techniques
for liver diseases, highlighting the importance of new approaches like DL to enhance precision in diagnosis and aid
in prognosis prediction for patients. This text provides an overview of recent progress in applying ML and DL
methods to identify liver illness. It highlights the promise of these techniques in many areas of liver disease treatment,
including fibrosis staging, liver cancer categorization, and diagnosing non-alcoholic liver disease.

A. Kesana et al., [8] conducts a detailed analysis of conventional thresholding methods, such as Otsu thresholdi
and sophisticated deep learning algorithms like YOLOvV5 and Faster R-CNN, in the context of brain tu
identification. It aims to provide a thorough knowledge of the benefits and drawbacks associated with each apg
The investigation provides valuable insights for scientists, clinicians, and medical professionals by assef
merits and limitations of both methods in detecting brain tumors. This information may assist |nd|V|duaI
informed decisions on diagnostic procedures. The results provide the foundation for possible
technigues that might integrate the advantages of conventional thresholding with DL methods, pog
enhanced diagnostic results and patlent treatment. The article explores the methodology use
describes the experimental setting, gives the results of the comparison investigation, a
analysis to contextualize the significance of what was found within the field of rg

detection.

R. Khanetal ., [9] study presents a new hybrid deep learner for the segmentatNgaandg@fissification of liver cancer.
The approach utilizes a modified mask-region CNN (cm-RCNN). The hybrid clas g model is trained by using
several features retrieved, hence improving the precision and effectiveness of liver S@ase detection systems. The
SqueezeNet DeepMaxout method shown exceptional performance, achlevmg staNghally lower False Positive
Rate (FPR) of 2.301 compared to other methods. This suggests its effig curately diagnosing cases of liver
cancer. The effectiveness of the model may be ascribed to the use of edian binary pattern-based feature
extraction and a combination of classification methods, resulting igara rate determinations in the detection
of liver cancer. The segmentation and categorlzatlon of tharlive problems owing to the complex
characteristics of the organ, such as differences in C onentSysizes, and forms, which hinder correct
segmentation.

ing and vrain tumor

TABLE I. COMPARISON OF DEE P TECHNIQUES IN MEDICAL IMAGE ANALYSIS

Author Methods Contribution Limitation
- Improves representational . .
F. Huetal. [5] Dilation Heterogeneous Convoluti HConv) efficiency and reduces data Not mentioned in the

. excerpt
calculations P

- Lacks comparison with
other recent deep
learning techniques for
COVID-19 classification
- Achieves high accuracy (98.73%) - Not mentioned in the
in liver disease prediction excerpt

- Provides insights into advantages
and limitations of deep learning vs.
conventional methods for brain
tumor detection

- Achieves high accuracy, sensitivity,
and precision in COVID-19
classification

Black Widow Optimizatig eCjrent Neural

S Vanietal [6] | \erwork (BWOFRCN

A. M. Hendi et al.

CNN+LSTM
[7]

- Lacks exploration of
potential combinations of
these techniques

A. Kesana et al. [8] 3 vs. thresholding methods

- Segmentation
challenges due to liver's
complex characteristics
and imaging variations

- Achieves low False Positive Rate
tjueezeNet and DeepMaxout (FPR) in liver cancer segmentation
and classification

Igorithms may encounter difficulties in effectively discerning malignancies in the liver,
pcate anatomical scenarios such as tumors situated in close proximity to blood vessels or adjacent

estigation recognizes the need of multidisciplinary cooperation among computer scientists, medical
aging professionals, clinicians, and regulatory experts to successfully tackle the issues associated with liver disease
gnosis.

I1l. METHODOLOGY

Radiologists are currently carrying out the painstaking task of examining many CT images slice by slice to
segment liver tumors [11]. A surge in complexity and a substantial time commitment are among manual procedures.



Computer-assisted diagnostics rely on segmented areas, which could reduce accuracy if photos are manually
segmented. Some of the challenges faced by fully automatic liver tumor segmentation that low contrast between the
liver tumor, variable size that make it difficult to accurately segment them, and proximity of the liver to other internal
organs which results in similar CT values for these organs as well as for liver.

A. Dataset

The experiment LiTS17 dataset. In LiTS17-Training, the dataset consists of a variety of sampling strateg@ss
which were included in the abdominal CT scan sets numbers 131 — 3 D. The CT pictures and associated labels arggf,
size 512x512 pixels. Out of a pool of 131 datasets, we randomly selected 121 for use during the training phase w
using the rest as testing set (10).

The raw CT abdominal image is prepared using the histogram equalization and filtering by median apyg @

is employed as an initial processing step given that it modifies the brightness of the image to enhance its cq

Ir = initial Ir (epoch/step scope) Q)
Let InfErepresent the supplied image, and establish the value of every pixel as a matrix conggi w pixels
with intensities ranging from 0 to 1.

Number of pixels with density he

NHS =

Total number of pixels

In*E = floor ((INV —1) 3,49 NHS

)
)

The function floor() in the equation described above rounds down g
median filter is used to further enhance the smoothness of the histograj
is abbreviated as InfE.

est integer number. Therefore, a
ed image by Equation 1-4.. The input

In nMF(x,y) = med {InE (x —u,y — v)u,v € H}

B. Segmentation

Mask R-CNN [9] represents an advanced a|
image. Derived from the Faster R-CNN model,
predecessor. Faster R-CNN, a variant of convolution
objects. It provides bounding boxes for each item alon
comprehend Mask R-CNN, it is necessary g
distinct stages:

curatelyWetect and isolate specific objects within an
-CNN expands upon the foundational principles of its
ural network, employs regions to discern and categorize
ith a class label and a confidence score. In order to
st go into the architecture of Faster R-CNN, which operates in two

These networks execute a single
Region suggestions refer to certain
uses the hypothesized regions
suggested area might vary. §
detection. The Mask R-CN
Faster R-CNN, the R
becomes misa

ture in order to provide a collection of region recommendations.
feature map that include the item. In the second phase, the model
1 to forecast the item class and bounding boxes. While the size of each
is a singular and integrated network designed for the purpose of object
Jy is used for the task of instance segmentation[16]. In the second phase of
is substituted by RolAlign, which effectively maintains the spatial data that

techno
peratig
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T
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Fig.1. RCNN

C. Classification
Despite the Transformer architecture has been widely used for natural Iangu?roc
al

ing tasks, its utilization in

computer vision is still restricted. Within the field of vision, attention U ongside convolutional networks
or substituted for certain components of convolutional networks, whj ining the overall structure intact. We
demonstrate that the dependence on CNNs [14]is unnecessary, si@c dajne transformer model may achieve
excellent performance in image classification tasks when direcid{tse e ces of picture patches.

CNN [15] is used in image processing by directl
On the other hand, the Transformer model, whicj
utilized for processing sequences of natural lang™
picture feature extraction. As a result, we implementes
merging, and masking [12].

picture as a matrix for convolution operations.
tural Language Processing (NLP), is mostly
, it is not straightforward to use it directly for
ing procedures, which consist of patch embedding, patch

Patch embedding: It is utilized to split a B map intd™on-overlapping distinct patches. In this case, the patch
has dimensions of 4 x 4, When combine t mber of RGB channels (3), the overall size is calculated as 4 x 4
x 3 =48. In order to create a feature rgat straightforwardly cast the improved patchwork into the desired
dimensions.

Patch merging: The feature gpatr
location of each window theg

enerated in the prior step is partitioned into windows of size 2 x 2. The
ined, and the resulting four feature matrices are synthesized.

Mask: It is designed in s at the window will only engage in self-attention with the continuous portion
after the subseguent : SW-MSA. The mask sections are shown in Figure 1a. The initial window is
positioned in t

The for
Equation 4.

(4)

ormer

n Transformer, also known as the Shifted Window Transformer [12], is a vision transformer architecture
at utilizes the idea of shifted windows to improve computational effectiveness and performance in applications that
nipulate images. In this article, we will discuss the many arrangements of the Swin Transformer, which largely
lude adjusting the model's depths and widths to accommodate different levels of complexity and performance
requirements. The patterns are commonly represented as Swin-T (Tiny), Swin-S (Small), Swin-B (Base), and Swin-
L (Large).

The Swin Transformer provides many configurations designed to meet varied performance and computational
requirements. Swin-T (Tiny) is a compact setup with dimensions of [2, 2, 6, 2], 29 million parameters, and 4.5



GFLOPs. It is specifically designed for lightweight tasks that demand quicker inference and reduced memory
consumption, but with a modest compromise in accuracy. The Swin-S (Small) model has depths of [2, 2, 18, 2], 50
million parameters, and 8.7 GFLOPs. It strikes a balance between model complexity and performance, making it
appropriate for more demanding jobs. Swin-B (Base) has the same depths as Swin-B, which are [2, 2, 18, 2].
However, it contains 88 million parameters and 15.4 GFLOPSs, making it suitable for high-performance workloads
with less computational limitations. It provides improved accuracy compared to Swin-B. Swin-L (Large) is the most
extensive setup with depths of [2, 2, 18, 2], 197 million parameters, and 34.5 GFLOPs. It is designed for hi
demanding tasks that require precise results and significant processing power. Swin-L excels in tasks such as det
picture analysis and complicated pattern recognition.

Patch Partition ] Linear Projection

Linear Embedding

Swin Transformer Swin Transformer

Patch Expanding ]

Fatch Merging Patch Expanding

Patch Merging Patch Expandin

Swin Transformer Swin Transformer

Patch Merging Patch Merging

|
| |
| |
| |
Swin Transformer ] [ Swin Transformer
| |
| |
| |

R

Swin Transformer ]

Encoder Decoder

Fig. 2.

The main objective of Swin Transformer is t a transformer-based framework for computer vision
problems. The algorithm divides the input pictures in merous patches that do not overlap and then transforms
them into embeddings. Subsequently, several Swin Tr rmer blocks are used on the patches in four stages,

wherever each subsequent step diminishes uantity of patches in order to preserve a hierarchical description.

The Swin Transformer block consist Iti-headed self-attention (MSA) modules, which use alternating
shifting patch windows in succeedin . mputational difficulty of local self-attention increases linearly

with the size of the picture. Ho of shifted windows allows for cross-window connections and
significantly improves detectigg with little additional computational overhead.

Persistent swin transforri ~ ponsible for the generation of this specific sort of window division in
Equation 5-8.

()
(6)
(7)
(8)

ion. Utilizing the hierarchical framework of the Swin transformer, scientists had the opportunity to
prove the features by integrating the output maps from the several phases.
QK

T
Atention (Q, K, V) = SoftMax (ﬁ +B)V  (9)

B denotes the relative position parameter, similar to the position embedding in a Transformer. The dimension size
d is associated with each head and helps balance the sizes of QK and B. For the incoming window information, the
guery, key, and value values (Q, K, V) are derived after passing through a linear layer in Equation 9.



The above explains the utilization of a Swin Transformer for feature extraction. Ultimately, we employed a Swin
Transformer to accomplish the tasks of classification and segmentation.

A. Segmentation

These metrics find applications in diverse domains including image processing, medical imaging, and pattgn
recognition to measure similarities and dissimilarities between sets or shapes. Each metric is designed for a spe

IV. RESULTS AND DISCUSSION

use, selected according to the nature of the data and the intended analysis.

2|ANB|
|Al+|B|
|ANB|
lAnB|

Dice(4,B) =
VOE =1-—

RVD(A,B) ==

_ 1BI=l4l

(10)
(11)

(12)

ASD(A, B) = e (Bpesiay A, S(BY) + Zgescay 4(4,5(4))) (13)

MSD (4, B) = max {prézs(ac)d(p,S(B)), qrgS(%JBC)d(p,S(A))}

(14)

Y4

TABLE Il RESULTS OF SEGMEN
Reference Model Mean IoU | loU (Class 1) Ll loU (Class 3) | loU (Class 4)
Configuration
Liuetal., 2021 Swin-T 75.4% 78% 77.5% 76.0%
[12] (Config 1)
Ronneberger et U-Net 73.2% 0% 74.5% 73.8%
al., 2015 [15]
Chenetal., 2017 | DeepLabV3 76.8% 78.5% 77.0% 76.7%
[17]
Zhao et al., 2017 PSPNet 74.5% 76.0% 75.5% 75.0%
[18]
Liuetal., Swin-S 8. 74.5% 80.0% 79.0% 79.3%
2021[12]
RCNN+ISTNAP 85.6% 91.0% 90.1% 90.1%
Model

Ioll IClass 21
Iol) [Class 3)
_— ol (Class 4)

N - .
& I & &
& g &
e &

o
o

Medel Canfiguration

Fig. 3. Segmentation Analysis Comparison
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The Proposed Model achieves the highest mean loU of 89.2%, indicating superior overall segmentation
performance across all classes compared to other models. Specifically, it leads in Class 1 with an loU of 85.6%, in
Class 2 with an loU of 91.0%, in Class 3 with an loU of 90.1%, and in Class 4 with an loU of 88.5%. These results
demonstrate the effectiveness and robustness of the Proposed Model in segmentation tasks, consistently
outperforming well-known models such as Swin-T (Config 1), U-Net, DeepLabV3, PSPNet, and Swin-S (Configg)
across all evaluated classes in Table 3.

The Swin-S (Config 2) paradigm obtains a Dice coefficient of 0.78, which indicates the greatest degree of Qigigian
with the ground truth compared to the other systems. DeeplLabV3 demonstrates strong performance, wi
coefficient of 0.77. The Swin-T (Config 1) model outperforms both U-Net and PSPNet, indicating tgs
Transformer frameworks usually provide superior segmentation overlap. The VOE numbers provide i goncg
of the improved performance of Swin-S (Config 2) and DeepLabV3, which have the lowest error:

respectively. Swin-T (Config 1) likewise exhibits excellent performance with a VOE (Volumggof

0.25. U-Net and PSPNet have larger values of VOE, which suggests a lower level of accurg@ i

overlap. Swin-S (Config 2) has the smallest RVD value of 0.03, indicating a negligjadsmaisp i between
the projected and observed segments. Both DeepLabV3 and Swin-T (Config D values, which
suggests excellent volume accuracy. The U-Net and PSPNet models have large

values, indicating potential problems with either over-segmentation or under-

(Config 2) demonstrates superior performance with the lowest ASD (Average

indicating the least average difference between the anticipated and real surface

(Config 1) have low ASD values, which suggests a high level of surface ag?ent amd quality. The U-Net and
PSPNet models have greater ASD values, suggesting less precise 4 edictions. Swin-S (Config 2) and
DeepLabV3 demonstrate superior performance, achieving the lowes gaared Distance (MSD) values of 5.4
mm and 5.5 mm, respectively. Swin-T (Config 1) likewise exh@i performance, with a mean squared
deviation (MSD) of 5.8 mm. U-Net and PSPNet have _high SD hich suggests that there are more
differences in the worst-case surface distance.

—t
a

B. Classification

The proposed approach exhibits substantial im
suggested model obtains an accuracy of 92.2%, preci
classification. The suggested model obtains a mean Inters

nts in both classification and segmentation tasks. The
of 93.0%, recall of 91.0%, and an F1-score of 91.0% for
hon over Union (loU) of 89.2% in terms of segmentation.

It also demonstrates an accuracy of 85.6% Il of 91.0%, and an F1-score of 90.1%. The findings underscore the
exceptional performance and resilience e sed model in medical image processing tasks, surpassing earlier
models. K
TABLE IlI. RESULTS OF CLASSIFICATION
el COWgpguration | Accuracy | Precision | Recall | F1-Score Reference
Config 1) 85.4% 86.0% | 84.0% | 85.0% Liuetal., 2021 [12]
ResNet-50 82.3% 83.0% | 815% | 82.2% He et al., 2016[13]
EfficientNet-B0 84.7% 85.5% | 83.8% | 84.6% Tan and Le, 2019[14]

DenseNet-121 83.5% 84.2% | 82.7% | 83.4% Huang et al., 2017[15]
Swin-S (Config 2) 88.2% 89.0% | 87.0% | 88.0% Liu et al., 2021[16]
Proposed Model 92.2% 93.0% | 91.0% 9.0% RCNN+ISTNAP Model
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V. CONCLUSION

The rate of death among patients with liver cancer is significantly elevated due to the delayed identification of the
ilness. Computer-aided diagnostic systems using diverse medical imaging methods may assist in the early detection
of liver cancer. Liver cancer identification has been achieved by the use of both traditional machine learning and
deep learning classifiers, using a range of methodologies. The objective of this study is to evaluate and compare the
effectiveness of several neural network models, such as CNN and RCNN, in the identification of liver diseases. The
study's results indicate that the RCNN+ISTNAP model may outperform other models in terms of DC, VOE, RflE,
ASD, and MSD, leading to improved segmentation performance. Additionally, the classification performance
be evaluated by comparing it to other models in terms of recall, accuracy, AUC-ROC, and F1 score. The finding
this research suggest that combining ISTNAP and CNN models has the capacity to improve the accurg
robustness of liver disease detection.

of our future work will be on making full use of the information provided by the z-axis in three di
to minimize mistakes.
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