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Abstract —

Detection and classification of abnormalities in biological systems are critical ta
significantly enhance intervention strategies and outcomes. Emerging technologig
opened new avenues for more accurate prediction and classification of disease-relat@
learning algorithms can detect abnormalities at early stages to support preventive act any existing models suffer
from limitations such as inaccuracy, bias, and overfitting. This work presents a novel aE h for improving prediction

ms. While several machine

accuracy by identifying essential features using advanced deep learning architecturgpA framework is proposed,
combining the Dual Path Network (DPN-131), known for its robust feature pabilities, with Local Interpretable
Model-Agnostic Explanations (LIME) to enhance both model predictal interpretability. The DPN-131 model
effectively captures complex patterns in high-resolution biological dgta g Wlecise detection and classification of
various abnormal conditions for cardiovascular disease. To addre e retz@lity challenges often encountered in
deep learning models, LIME provides localized explanatjgs tify i al data regions and features associated
with specific predictions. Experimental results on a lgg al dataset demonstrate that the DPN-131 model,
supported by LIME, achieves state-of-the-art classif duces interpretable, trustworthy explanations.
This method provides a powerful and explainable tO% mtelllgen decision-making processes for early detection
and management of abnormalities in biological systems

Keywords - DPN-131, LIME, medical image classification, Y@aJainable Al, Deep Learning.

NTRODUCTION

gent medicinal concern at the moment. It's the most common cause of mortality
niCN@seases. Over 20.5 million people die from cardiovascular disease every year,
globally, according to unconstrained data from the World Health Organization
at by 2030, there will be 24.2 million deaths each year. Heart attacks as well as
ardiovascular disease-related deaths [1]. A heart attack happens when plaque builds
he supply of blood to the heart. The brain's blood supply is cut off when a blood clot plugs
eart disease is mostly caused by the heart's inability to pump blood to specific parts of
sweats, swollen feet, nausea, shortness of breath, chest pain, sudden disorientation, and an erratic
arly symptoms. Increasing patient survival rates requires accurate heart disease prognosis and
, sedentary lifestyles, high blood pressure, high cholesterol, alcohol and tobacco use, and genetic

making for about 31. 5% 0
(WHO). Furthermore, j

nt techniques for identifying and predicting heart disease rely on a patient's medicinal history, symptoms, and
hysical inspection results. Diagnosing heart disease can be challenging for physicians, with accuracy often reaching only
up to 67%, as the diagnosis is typically based on symptoms observed in patients who have already been diagnosed [3].
herefore, to improve heart disease prediction, the medicinal industry involves an automatic intelligent classification. The
application of machine learning procedures, along with the extensive patient data available in healthcare, can help achieve
this goal. Data science research teams have recently shown a great deal of importance in disease prediction. The availability
of large health statistics and the quick improvement of computer methods in healthcare production are the main causes of
this interest. Integrating cutting-edge deep learning and intelligent decision-making technologies could greatly improve the
healthcare assistance that society receives [4]. The most important resource for learning new things and getting useful
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information is data. Numerous sectors such as research, technology, commerce, educational institutions, and health deal
with enormous volumes of data, or 'big data.' This data, whether unstructured or structured, is typically unprocessed. To
store, process, analyze, manage, and visualize it, valuable information must first be extracted through data analysis [5].

Patient data and medical information are becoming increasingly accessible and growing in the healthcare sector. This raw
data contains a great deal of imbalance and redundancy. Pre-processing is required to extract relevant attributes, speed
training computations, and increase classification accuracy. These processes are enhanced by recent advancements
computing power and machine learning capabilities, which also open new avenues for healthcare research [6], particularl
in the primary detection of diseases like cancer and cardiovascular disease, thus increasing survival rates. Applications 0

ilinesses. Machine learning provides powerful predictive modeling techniques to address existing limitations. |
used to develop predictive algorithms and interpret large datasets. By minimizing the discrepancy between estima

predicts outcomes by applying patterns learned from the features in the current dataset to unseen data.
suitable data, classification and an approach in supervised machine learning can effectively detect dj

In this research, we proposed a novel method for cardiovascular disease detection and clzgs at col LIME
with DPN-131. The proposed structure leverages the model-agnostic interpretabild X ME to improve
transparency in critical decision-making procedures in medical requests. By comprig ptecture, known
for its dual-path capability to detention both local and global feature demonstratiorn g od advances organization

accuracy and interpretability, making it a powerful tool for recognizing and categorizing @@#ovascular circumstances with
high precision.

1.1 Motivation of this research ,

The motivation for this paper originates from the rising occurrence of C entral need for precise, interpretable
diagnostic tools to aid in early analysis and treatment. Traditional di frequently lack transparency, posing
challenges to clinical trust and widespread use. This study goals to QW ease e rpretability while maintaining height
accuracy in CVD diagnosis and organization by joining . This hybrid method not only enhances
predictive capacity but also offers clinicians insighjg making process, fostering belief and enabling
additional conversant, data-driven healthcare decisi

1.2 Contribution of the research

e Suggested an advanced framework that combines tHS@PN-131, a deep learning architecture known for its robust

in CVD detection and organizati

e The DPN-131 model efficien lex designs in high-resolution medical images, agreeing on precise
identification and organizaig iovascular diseases.

e To address the interpretabil in DL, LIME is utilized to propose localized explanations, allowing
doctors to envisage g i nd features of an image contributed to a specific diagnosis.

e  Experimental resul dataset determine that the DPN-131 model, augmented by LIME, completes
state-of-the-art org uracy and provides credible, interpretable explanations that align with clinical
CVDgpark

1.3 Outlingg of aper
Table 1: Outline of the paper
S.NO Sessions

1. Introduction

Literature Review

0 . Proposed model
. Results
. Conclusion
1. LITERATURE REVIEW

CVDs are a major global cause of death and indisposition, emphasizing the dangerous need for enhanced categorization
and recognition approaches. This literature survey examines recent advancements in CVD detection, focusing on
approaches that leverage machine learning, signal handling, and image analysis to improve diagnostic accuracy. It explores
state-of-the-art approaches for detecting various types of cardiovascular diseases, highlighting the strengths, limitations,
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and trends in the current study. This review aims to provide insights into current approaches, analyze challenges, and
propose future directions for successful early detection and personalized treatment of cardiovascular disease.

A Swarm-ANN-based model for forecasting heart disease was proposed by Nandy et al. [8]. In this model, the Swarm-
ANN method is used to train a set of randomly constructed Neural Networks (NNs). The weights of the NN populations
are altered throughout two weight-modification training sessions using a newly developing heuristic approach to impro
the prediction accuracy for cardiovascular conditions. To aid physicians in the early identification of cardiac disea
Mahalakshmi et al. [9] developed effective feature optimization and organization algorithms. Initial steps include rescalin
the collected data using the min-max normalization procedure. The optimal features and feature subsections are particul

suggested a convolutional neural network (CNN) technique utilizing a DL-based approach called BiLSTM to a
predict cardiovascular disease. Feature selection is performed by ranking and selecting the most pertinent featu

A major cause of death, heart disease, was the subject of a suggestion by Bharti et al. [11], who highli
of precise prediction in preventing potentially fatal situations. The study investigated various

methods such as SVM and conclusion trees. Sudha and Kumar [12] propose that CNNs 3 ective for identifying cardiac
issues. The value of CNNs enhances as the network depth grows, enhancing their comp¥g@gce to interpret and convey
information clearly and conceptually. A hybrid model that combines CNN and Long rt-TN
a type of recurrent neural network (RNN), was also proposed by them. By gai reater classification accuracy, thls
combination made it possible for the model to effectively learn intricate 3 the input. The hybrid model created
encouraging results from investigations with 93% specificity, 89% acgur b sensitivity.

, utilizing a CNN architecture, EEG

predicting cardiovascular disease. To develop mode
strategies of various algorithms, the Heart Dataset was
suggested technique is approximately 96%.

account for the training procedures and data observation
grated with other organization models. The accuracy of the

2.1 Research Gap

Existing models face a research gap in

across groups and geographies can limit the generalizability of these models.

ems do not incorporate diverse data types (e.g., genetic, lifestyle, and environmental factors) that could
predictive accuracy, relying instead solely on clinical data.

ced DL and ML models for detection sometimes require substantial computational resources, restricting
eir applicability in resource-constrained environments.

1. METHODOLOGY

3.1 Overall Architecture

This research presents a novel and unique technique to enhance the accuracy of CVD forecasts by recognizing essential
traits using DL algorithms. The study introduces an innovative framework that combines DPN-131, a DL architecture
renowned for its robust feature extraction competencies, with LIME to increase the transparency and interpretability of



model predictions in CVD detection and classification. The DPN-131 model effectively captures complex patterns in high-
resolution medical images, enabling accurate detection and organization of various cardiovascular diseases. To address the
interpretability challenges in deep learning, LIME provides localized explanations, helping clinicians identify which
regions and attributes of an image contribute to a specific diagnosis. Fig. 1 illustrates the architecture of DPN-131-LIME.
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3.2 Dataset

Three benchmark datasets, as shown i ollected to evaluate the proposed study. The first dataset, which is
referred to as the 2009 Cardiac MR mentation Experiment data or Sunnybrook Cardiac Data (SCD), is
shortened to HNET-DSI for this study? dataset, abbreviated as HNET-DSII, contains 1200 cardiovascular ECG
recordings, with 300 for eacg onditions under consideration. The original signals are from the MIT-BIH
PhysioNet Database. ECG r the¥®e four databases were divided into 4120 samples, resulting in 300 signals per
based on the specified gain for each database and preprocessed using bandpass

represented as ma-Separated Value (CSV) file included below. This file contains records with
dimensiongaof . inal dataset, HNET-DSIII, is a hybrid collection assembled from previously published
studies. Iti es om 1300 participants in the UK Biobank imaging program, consisting of paired cardiac cine MRI

standardization, are used to ensure consistency. In machine learning, optimal data representation requires thorough data
reprocessing. The dataset can be prepared for successful training models using methods such as handling absent values,
andard scaling (Standscale or SS), MaxAbs scaling, quantile transformation, zero-mean normalization, resilient scaling,
and min-max scaling (MinMax). Further data preprocessing methods include predictive modeling, data cleansing,
removing rows or columns with a high percentage of missing values, and substituting estimates for missing data. Analysis
can be made simpler by eliminating independent variables (like symptoms) that take little to no consequence on the object



variable (like disease). Usually, the dataset's numerical properties are normalized to avoid some traits taking over the
modeling process. Taking the appropriate rows out of the dataset is one way to deal with missing values [15].

Table 2: Dataset description

Dataset Dataset type and description Web-link
name
HNET- e SCD and Cardiac MR Left | https://www.cardiacatlas.org/ Sunnybrook-cardiac-
DSI Ventricle Integration data/ (accessed on 2 March 2024)

Experiment data.
e Acollection of 450 cine-
MRI images of various
patients and disease

conditions.
HNET- e 1200 records of cardiovascular ECGs, | https://www.kaggle.com/datase
DSl with 300 records for each ailment. cardiac-ailments dataset (
e  Four databases of ECG records, )

segmented into 4120 samples each,
forming 300 signals.
e Each database contains records of size
1200 x 54.

HNET- e  Multimodal dataset , b

DSIII consisting of paired MR
images.

e  Voxel resolve of 1.8 x 1.8 x
8.0 mm’.

3.4 Dual Path Network (DPN-131)

The DPN-131 is a convolutional neural network archi
network layers. It associations the strengths of both resi
reuses and aggregates feature representations. This networ

nsidered to increase feature sharing and aggregation across
and dense connections, creating a structure that efficiently
struction is particularly powerful for deep learning tasks

such as image organization [16]. Fig. 2 sho DPN architeCture.
SF-DPN BLOCK
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Fig 2. DPN diagram



DPN-131 comprises two pathways: one for learning new features to complete dense connections and another for reusing
features via residual connections. This arrangement enables the network to maintain information flow across different
layers, improving the network’s expressive power without extreme growth in parameters.

1. Residual Path: The residual associates help maintain feature reuse, enabling stable gradients across layers.

For a residual path, the connection container be represented as follows:

Where F (X,W ) signifies the transformation function with weights W' functional to the input X.

preceding feature maps.

y=F(x,W)+x
2. Dense Path: The dense associates encourage new feature generation, where each layer h( to all

In a dense path, the output container be represented as follows:

x =H ([xo,xl,...,x}
Where H () denotes the composite function (convolution, lization, etc.) and [XO, Xiyeens XH]
represents the concatenation of all previous feature maps.

Dual Path Mechanism in DPN-132

2

In DPN-131, each block combines both residual and Sgse | as follows:

Y = Free (X Qe )+ Haense ([X0r0 %11 |- W ) 3)
Where F, () represents the residual {ggs on @nctionand H () represents the dense transformation function.
This dual structure allows each laye euse a and features simultaneously.
1. Feature Reuse: Reg® s:
Yies = X+ F (X,W,, ) 4)
2. F %{H\taﬂm: Dense connections:
Yaense = H ([Xg1 X500 x,_l],Wdense) (5)
ned Output:
VI = Yres T Yeense (6)

he DPN-131 achieves a balance between network depth and feature utilization, making it highly effective for complex
vision tasks.

3.5 Feature Extraction using Local Interpretable Model-Agnostic Explanations (LIME)



To explain the predictions of complex black-box ML models, a technique called Local Interpretable Model-Agnostic
Explanations (LIME) uses simpler, interpretable models to approximate each prediction locally [17].

Given a black-box model f that produces predictions, LIME explains the prediction for a specific instance X by

perturbing X to create a set of new samples around it. These perturbations yield a new dataset Z = {(Xi', f (XI'))} , wh

Xi' are perturbed instances and f (X,' ) are the black-box model's predictions for each perturbed instance.

Step-by-step LIME explanation

1. Sampling Perturbations: Perturbed instances Xi' are generated by slightly altering th

eiue
example, in text models, this might involve removing or replacing words, while injgh
involve adjusting feature values.

X' = X+

Where €1 N (0, 02) is random noise applied to each feature.

2. Model Prediction: For each perturbed instance Xi' , the ﬁel f generates predictions:
. ) (8)

©)

Movel: An interpretable model g (e.g., linear regression) is trained on the dataset

4. Fitting |
Z aanh inNQiCE V4 htSﬂ(X, Xi').The objective is to minimize a weighted loss function:
12| )
Loss(f,g,7)=> z(xx).(f(x)-9(x)) (10)
i=1
Generating Explanation: The interpretable method g is used to approximate f the local vicinity X.
For alinear g, the coefficients ,Bj of each feature | indicate the feature's contribution to the prediction:
P
9(x)= 5+ 25X, (1)
j-1

This process yields feature weights that provide an interpretable explanation of how f made its

prediction X, with higher B; values indicating stronger influence. LIME's model-agnostic nature allows
it to explain any model f , regardless of complexity or structure.



3.6 Implementation

e The implementation of the DPN-131 model, a hybrid neural network that combines the strengths of residual and
densely connected networks, is trained using a dataset of cardiovascular images and patient data. DPN-131
efficiently captures compound patterns and dependencies in the data, with successful organization accuracy across
various CVD cases.

e To interpret the model's predictions, we utilized LIME, a post-hoc explanation tool. LIME provides interpreta
clarifications by perturbing the input data and detecting variations in the model’s output, highlighting elemen
that are most significant to specific predictions.

e After DPN-131 predicts the class (e.g., the type of cardiovascular disease), LIME is employed to genergj
explanations, revealing the model's decision-making process. This step helps clinicians understand the
predictions, fostering confidence in the outcomes.

o Finally, the DPN-131-LIME arrangement is estimated on a test dataset using relevant metrics, vald
model's strong presentation and interpretability.

3.7 Advantages of the proposed model

e The model offers local, interpretable explanations, enabling doctors to undg
specific cases, which is important in healthcare.

e  This model-agnostic technique can be functional to any prediction model,
various algorithms and scenarios in cardiovascular diagnostics.

e  The DPN-131 architecture employments a dual-path structure that combines globa
its accuracy in detecting subtle patterns in cardiovascular data. ,

trUN@ts predictions for
EXible and adaptable across

0d local features, enhancing

V. RESULTS AND DIS

4.1 Experimental setup

The paper was conducted using pooled cardiac diseasg
by each dataset based on whether cardiac diseas$
simulations implemented in Python, running on an Int3

he -DSI dataset. Different outcomes are predicted
or not. Wie proposed approach was evaluated through
with a 1 TB hard drive and 4 GB of RAM.

4.1.1 Optimized hyperparameter

We utilized 20% of the data for testing an
accurately determine if a patient has ca
update the parameters of the propos tw
most important improvements in pre tion.

raining. In this research, we proposed a hybrid DL-based method to
ase. During training, the ADAM optimizer is used to continuously
Adjusting the hyperparameters of the proposed network yields the
3 shows the updated parameters.

a : Optimized hyperparameter settings
Hyperfarameters Range
Mipdbatch size 64
gularization 1.0000¢e4
radient decay factor 0.9000
Maximum number of epochs 100
Initial learning rate 0.001

4.240mpa e Methods

1al Neural Network (Swarm-ANN) [8]: To train and evaluate the structure based on the constancy of its
a predefined number of Neural Networks (NNs) is randomly created using the proposed Swarm-ANN method.

CNN with bidirectional long/short-term memory (CNN + BiLSTM) [10]: According to this study, a CNN with
idirectional long short-term memory is a DL-based system that can be utilized to predict cardiovascular disease since
atient data.

Chi-square and principal component analysis (CHI-PCA) [18]: CHI-PCA, a combination of major component
investigation and chi-square analysis, is used for feature decrease.



XGBoost [19]: Accurate cardiovascular disease prediction results are provided by the XGBoost classifier in conjunction
with wrapping techniques.

4.3 Performance Metrics

Accuracy: The percentage of properly classified examples out of all examples is known as accuracy. While it provides
overall measure of the classifier's performance, it can be misleading in imbalanced datasets.

True Positives (TP) + True Negatives (TN)
Total Instances (TP +TN + FP + FN)

Accuracy =

Where:

e FN = False Negatives
e TN = True Negatives
o FP = False Positives
e TP = True Positives

Precision: Precision, sometimes referred to as positive predictive value, is the proportio enuine positive predictions

to all of the model's positive predictions. When false positives have a high cost, it is?u )

Precision = (13)

True Positives (TP)+

(15)

sion+ Recall

s the false positive rate, is the percentage of negative examples wrongly
e likelihood of false alarms is critical.

False Positives (FP)
False Positives (FP) +True Negatives (TN)

Fall Rate = (16)

al-time or near-real-time responses. Measured in seconds, milliseconds, etc., processing time can
on hardware, model complexity, and dataset size.

1g.3 present the presentation metrics of the suggested model for three changed configurations: HNET-DSI,
I, and HNET-DSIII. HNET-DSII shows the most comprehensive presentation, with an accuracy of 97.80%,
recision of 95.73%, recall of 94.14%, and F-score of 92.55%, indicating strong classification reliability and precision.
HNET-DSIII follows with high accuracy (89.39%) and an exceptional F-score (90.56%), suggesting a balanced precision
nd recall. In contrast, HNET-DSI has the lowest metrics, with an accuracy of 65.20% and an F-score of 75.35%, indicating
comparatively lower performance. Overall, the HNET-DSII configuration appears to be the most effective.

The graphical representation in Fig. 4 demonstrates that the proposed technique achieves high precision, recall, and
accuracy across the different datasets. When applied to HNET-DSI, the technique achieved outstanding results, by an F-
score of 97.80%, accuracy of 95.73%, precision of 94.14%, and recall of 92.55%.



Perfor: re of the proposed model
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redicted response rate on HNET-DSI; (b) the actual response rate on HNET-DSII compared to the model's

Fig 4. TS|, HNET-DSII, and HNET-DSIII confusion matrices are presented as follows: (a) The suggested model's
ve
» (c) the model's actual versus predicted response rate on HNET-DSIII.

Table 4: Performance measure for the proposed technique

Metrics HNET-DSI HNET-DSII HNET-DSIII
Accuracy 65.20 97.80 89.39
Precision 71.93 95.73 86.64

Recall 78.69 94.14 82.52

F-Score 75.35 92.55 90.56




4.3.2 Fallout Rate Analysis

Table 5: Fallout Rate Analysis for DPN-131-LIME method

Dataset Swarm-ANN CNN-BIiLSTM CHI-PCA XGBoost DPN-131-
LIME
HNET-DSI 54.58 47.93 39.24 62.83 24.32
HNET-DSII 57.47 43.81 42.36 60.37 25.63
HNET-DSIII 58.39 40.39 37.73 58.39 26.23
0 Fallout Rate Analysis
I Swarm-ANN EE=S CHI-PCA E=F DPN-131-LIME
70 =2 CNN-BiLSTM 20 XGBoost
60 7 7
S
590
E 40 - B
é .
=]
20
10
0 H}.Il::].iDSI‘ - }]Z.N;E.PDSII =
Dataset
Fig 5. Fallout Rate Analysis for D
4.3.3 Processing Time Analysis
Table 6: Processing Ti 31-LIME method
Dataset Swarm-ANN CNN-BILST XGBoost DPN-131-
LIME
HNET-DSI 12.472 11.324 10.213
HNET-DSII 12.943 11.733 10.473
HNET-DSIII 12.434 11.921 10.324
Pocessing Time Analysis
== Swarm-ANN XGBoost
CNN-BILSTM DPN-131-LIME
CHI-PCA
.E
&
1
10
HN?ZT—DSI HNET-DSIL HNET-DSIII

Dataset

Fig 6. Processing Time Analysis for DPN-131-LIME method

able 5 and Fig. 5 associate the fallout rate of the DPN-131-LIME technique with various machine learning models
(Swarm-ANN, CNN-BIiLSTM, CHI-PCA, and XGBoost) on three datasets: HNET-DSI, HNET-DSII, and HNET-DSIII.
The DPN-131-LIME approach consistently achieves the lowest fallout rates across all datasets, recorded at 24.32%,
25.63%, and 26.23% for HNET-DSI, HNET-DSII, and HNET-DSIII, respectively. This indicates superior performance in
minimizing false positives, outperforming models such as Swarm-ANN and XGBoost, which exhibit significantly higher



fallout rates across datasets. The results demonstrate DPN-131-LIME's capability to effectively categorize with minimal
false-positive errors, establishing it as a strong candidate for this application.

Table 6 and Fig. 6 compare the processing durations of various approaches, including Swarm-ANN, CNN-BiLSTM, CHI-
PCA, XGBoost, and the DPN-131-LIME approach, across three datasets (HNET-DSI, HNET-DSII, and HNET-DSIII).
The DPN-131-LIME technique consistently demonstrates the shortest processing time across all datasets, with duratio
of 10.213, 10.473, and 10.324 seconds for HNET-DSI, HNET-DSII, and HNET-DSIII, respectively. This efficien
highlights DPN-131-LIME's potential as a faster processing model compared to other approaches, with XGBoo
performing closest in speed. CNN-BiLSTM and CHI-PCA have the longest processing times, making them less suitable
for applications requiring quick responses.

4.4 Training and Testing Validation

Cardiovascular Disease-Based Training and Testing with Loss and Accuracy method involves utilizing
forecast the possibility of cardiovascular disease (CVD) in patients. The training procedure empga/s
minimize the change between expected and actual results, thereby optimizing the model's presentaji- Fo
an accuracy model is used to estimate the model's efficacy by determining how accuratg e CVD outcomes on
previously unobserved test data. This approach subsidizes the improvement of predig s fo ly analysis, risk
assessment, and personalized treatment improvement for CVD patients.

4.5 Discussion
The accuracy, precision, recall, and F-score metrics for three datasets (HNET-DSI
estimated using a variety of models, including Swarm-ANN, CNN-BiLSTM, CHI-P4

-DSII, and HNET-DSIII)
’ XG®®ost, and DPN-131-LIME,
-DSI and HNET-DSIII) across the
dermore, the datasets exhibit different

board, achieving the highest values for accuracy, precision, recall, and F
model presentations, with Swarm-ANN and XGBoost genera

Additionally, DPN-131-LIME constantly has the shortest proc; gt
effectual computational presentation. The table also sho i

4.6 Ablation Study

All components in the proposed model are important. on discusses the proposed DPN-131-LIME model alongside
existing models, including CNN-BILSTM, Swarm-ANNY I-PCA, and BDLSTM, along with their rationale, using a
series of ablation experiments on the HNET-DSI, HNE I, and HNET-DSIII datasets. To examine presentation
enhancements and demonstrate the motivati hind our sugdested DLFF-HELM model, we incrementally add different

features extracted by the model in a stepwi@ mal

Model Loss

train
test

X 0.50 \

0.45 \L

XD &
O —

35
0.30

0 10 20 30 40 50
epoch

Fig 7. Training and Testing Validation Analysis

.6.1 Influence of the LIME

The application of the LIME technique offers insights into complex models used for predicting cardiovascular disease by
providing interpretable, locally faithful explanations for individual predictions. In cardiovascular disease prediction,
machine learning models may achieve high accuracy but often lack transparency, making it difficult for healthcare



providers to understand how a model arrives at its decisions. LIME addresses this by creating simplified, interpretable
models that estimate the behavior of the compound model for specific predictions. This helps clinicians understand the
factors influencing each prediction, thereby aiding in decision-making and potentially improving patient outcomes.

4.6.2 K-Fold Cross Validation

K-Fold cross-validation is a resampling method utilized to estimate a model's presentation. The final performance estim

is obtained by averaging the results across the K iterations of this method, where each fold serves as validation data once
When K is set to 5, the dataset is divided into five equivalent parts for the experiments. In each of the five training an
validation cycles, four subsets are utilized for training, and the remaining subset is used for validation. This g
confirms that each subset is utilized once for validation, provided that a more reliable performance estimate by a

the results from all five iterations.

Model Accuracy

train /—/\/_\I'/
test

atCuracy
=]
]
L

0654 |
0 10 50
h
Fig 8. Training U validation analysis
4.6.3 Comparison of the proposed model.
Tablg@omparison of the proposed model
Reference e Year Accuracy
(%)
Bhavekar et al [24] To>TM 2022 95.06
Dileep et al C-BiLSTM 2023 94.78
¢ Bayes (NB) 2022 88.7
Swarm-ANN 2023 95.78
XGBoost 2022 91.8
DPN-131 + LIME 2024 97.80
Table 7 and the presentation of the suggested model with recent models from previous studies. The models

e, with Dileep et al. (2023) using a C-BiLSTM to achieve 94.78% accuracy and Nandy et al.
arm-ANN model to slightly surpass it at 95.78%. Older techniques, such as Li et al.'s Naive Bayes

4.7 Challenges and Limitations

ne of the main challenges in combining Local Interpretable Model-Agnostic Explanations (LIME) with Dual Path
etworks (DPN-131) for cardiovascular disease detection and classification is balancing interpretability and model
complexity. Although LIME is useful for the contained interpretability of model forecasts, it may fail to capture global
behavior, particularly in complex models like DPN-131. Moreover, the robustness of LIME explanations depends on
feature importance and data quality, which can affect medical reliability. The dual-path architecture also significantly



enhances computational demands, requiring considerable resources and time, thus limiting scalability in real-world,
resource-constrained healthcare environments.

Comparison of the proposed model
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In conclusion, the arrangement of LIME and DPN-
categorizing cardiovascular illnesses. This model img

Ul
.
extraction and LIME's explainability, providing eX 3 i
alP’clinicians identify crucial aspects of cardiovascular health,

requests. Our study determines that this technique cal
improving diagnostic precision and therapy planning. FUN@RI research could refine and broaden this paradigm to cover
pre transfer learning methods to adapt DPN-131 for other

other complex medicinal conditions. Future studies should €
medical image association tasks, thereby ex its usability beyond cardiovascular diseases to other areas of healthcare

and maximizing its analytic perspective.
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