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Abstract 

Advancements in medical imaging and data acquisition have led to an exponential increase in high-dimensional, heterogeneous 

cancer data, necessitating scalable and intelligent diagnostic frameworks. In response, we propose a Modified Multimodal Deep 

Belief Network (MMDBN) architecture, built entirely upon Clipped Restricted Boltzmann Machines (CRBMs) with modified 

Contrastive divergence and augmented with a Cross-Modality Attention Fusion (CMAF) mechanism. This architecture is optimized 

for distributed big data environments, enabling real-time, high-throughput analysis of brain, breast, and bone cancer modalities. 

The Clipped RBM layers ensure bounded activation dynamics for robust unsupervised feature learning, mitigating instability and 

overfitting in large-scale training scenarios. CMAF adaptively weighs modality-specific representations per instance, improving 

generalization and interpretability, especially under incomplete or noisy modality conditions. Fine-tuning of the stacked network 

leverages supervised learning to optimize discriminative capacity across modalities. Empirical evaluation on benchmark medical 

datasets demonstrates the superiority of the proposed model, achieving 96.78% classification accuracy, with an AUC-ROC of 94.80, 

outperforming conventional DBN, CNN, and SVM-based baselines. This work highlights a significant advancement in deep 

multimodal learning for oncology, bridging the gap between data-intensive computation and clinically relevant cancer diagnosis. 
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1. Introduction

In recent years, the convergence of deep learning and big data analytics has revolutionized the landscape of medical 

image analysis, particularly in cancer detection and classification. With the exponential growth of imaging modalities 

such as MRI, mammography, and X-ray, healthcare institutions now possess vast volumes of heterogeneous data 

pertaining to various cancer types, including brain, breast, and bone cancers. Among various types, brain, breast, and 

bone cancers represent critical categories due to their high mortality rates and the complexity of their medical imaging 

data. These cancers often exhibit heterogeneous characteristics, making it difficult to generalize traditional machine 

learning models or manual diagnostic approaches. For instance, brain tumors might show subtle texture variations on 

MRI, breast lesions may differ across density classes on mammograms, and bone abnormalities can appear faint or 

fragmented in X-ray scans. This diversity calls for intelligent systems capable of deep feature abstraction and 

multimodal integration. To address this, the intersection of deep learning and big data technologies has opened up new 

avenues in medical imaging research[1], [2]. 

In this context, deep learning has emerged as a transformative technology, especially for medical image analysis. 

Unlike classical approaches that rely on handcrafted features, deep learning models can automatically learn 

hierarchical representations from raw input data. Deep learning models, especially unsupervised and semi-supervised 

architectures, have demonstrated exceptional capabilities in learning latent features directly from raw data without 

manual intervention. Among them, the Restricted Boltzmann Machine (RBM) and Deep Belief Networks (DBN) are 

particularly suited for pretraining layers in deep architectures due to their ability to model high-dimensional probability 
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distributions[3]. These models have proven to be highly effective in tasks such as tumor detection, segmentation, 

classification, and survival prediction[4].However, applying deep learning to heterogeneous cancer datasets presents 

several unique challenges: 

• The data is often unlabeled, particularly in large hospital archives.

• Different modalities (MRI, mammogram, X-ray) vary in resolution, noise patterns, and semantics.

• Cancer features are subtle and highly localized, requiring attention-based models to enhance interpretability.

• High-dimensional data demands scalable computing environments, typically supported by big data

frameworks like Hadoop, Apache Spark, and GPU clusters.

To address these issues, this research proposes a novel deep learning architecture that integrates: 

• Cross-Modal Attention Fusion (CMAF) for aligning and fusing heterogeneous features from multiple

imaging types.

• Clipped Restricted Boltzmann Machine (CRBM) based unsupervised pretraining to learn initial

representations for brain, breast, and bone image modalities.

• A fine-tuned EM-DBN model for final classification and decision-making.

• Contrastive Divergence for optimizing CRBM training even in unlabeled, large-scale environments.

By leveraging CMAF, the model focuses selectively on modality-specific and cross-modal patterns, enhancing 

discriminative performance. This is crucial in cancer diagnosis, where different cancers may share visual traits but 

still require class-specific precision for accurate classification[5]. 

The use of big data environments enables this architecture to scale efficiently across terabytes of imaging data, making 

it viable for clinical deployment in large hospital networks or regional health data repositories. However, extracting 

meaningful insights from such complex, multi-modal, and often unlabeled datasets remains a significant challenge 

Deep learning model, especially unsupervised and semi-supervised architectures, have demonstrated exceptional 

capabilities in learning latent features directly from raw data without manual intervention. Among them, the Restricted 

Boltzmann Machine (RBM) and Deep Belief Networks (DBN) are particularly suited for pretraining layers in deep 

architectures due to their ability to model high-dimensional probability distributions. 

To harness the full potential of heterogeneous cancer datasets, we propose a robust framework that integrates Cross-

Modal Attention Fusion (CMAF) with RBM-based pretraining and Modified Multimodal Deep Belief Network (MMDBN) 

for final classification. The CMAF mechanism enables the model to learn shared and complementary features across 

different imaging modalities, enhancing the discriminative power of the learned representation. Leveraging a big data 

environment, the model is capable of handling large-scale, distributed datasets with efficient training and inference. 

Tools such as Apache Spark, Hadoop Distributed File System (HDFS), and GPU-accelerated training engines ensure 

that computational scalability and performance are maintained[6], [7], [8]. 

This research addresses the critical need for intelligent, scalable solutions to improve early detection and accurate 

classification of cancer, particularly where labeled data is limited and modality-specific patterns are deeply embedded. 

By focusing on brain, breast, and bone cancer datasets, our model demonstrates the applicability of multimodal deep 

learning systems in real-world medical scenarios. 

2. Literature survey

The emergence of deep learning has revolutionized medical image analysis, offering powerful tools for tumor 

detection, segmentation, and classification across various cancer types. Numerous studies have explored diverse 

architectures and learning strategies for analyzing complex and heterogeneous biomedical data. 
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Deep learning has become a cornerstone in addressing complex computer vision challenges due to its exceptional 

capability for hierarchical feature extraction and adaptability to diverse datasets. In the domain of medical imaging, 

particularly brain tumor segmentation, Convolutional Neural Networks (CNNs) have demonstrated outstanding 

performance. Among these, encoder–decoder architectures have emerged as the dominant framework for both 2D and 

3D segmentation tasks. Prominent examples include 3D U-Net, Attention U-Net, and V-Net, which leverage spatial 

encoding and decoding pathways to capture fine-grained tumor boundaries while maintaining contextual 

understanding. In this study, a Computer-Aided Diagnosis (CAD) system was developed for breast cancer detection 

using a hybrid approach that combines a Deep Belief Network (DBN) for unsupervised pretraining with a supervised 

backpropagation neural network. The network utilizes the Levenberg–Marquardt optimization algorithm for efficient 

training, with the initial weights derived from the DBN’s layer-wise pretraining phase (referred to as DBN-NN 

architecture). This hybrid framework was evaluated on the Wisconsin Breast Cancer Dataset (WBCD), achieving a 

classification accuracy of 99.68%. The results demonstrate a significant performance improvement over many 

previously reported methods, highlighting the effectiveness of integrating unsupervised feature learning with 

supervised fine-tuning in medical diagnostics[9]. 

This study evaluates the Klein-Nishina electronic cross-section, atomic cross-section, and Compton mass attenuation 

coefficient (σ/ρ) for various human tissues—bone, lung, soft tissue, brain, and fat—across photon energies of 50 keV, 

140 keV, 364 keV, 1.25 MeV, 4.784 MeV, and 6.0 MeV. Using the Klein-Nishina formula, it was observed that eσ 

consistently decreases with increasing photon energy. In contrast, aσ exhibits a non-monotonic trend due to variations 

in the effective atomic number (Z) of the tissues. The behavior of σ/ρ is more complex and generally increases with 

the Z/A ratio for all tissues except cortical bone, where it decreases due to its higher atomic number and a 

disproportionate increase in atomic mass (A). These findings provide critical insights for improving dose accuracy 

and image quality in radiographic diagnostics and radiation therapy planning[10]. 

Brain metastases (BMs) most commonly originate from primary tumors in the lung and breast. Early detection of BMs 

plays a crucial role in improving patient survival and guiding effective treatment strategies. While numerous studies 

have investigated individual clinical or radiological indicators, there is a lack of comprehensive research that integrates 

all potential surgical predictive factors. To date, no single study has systematically considered a combination of 

clinical, radiological, and surgical variables to improve the prediction and early recognition of BMs. A unified 

approach could significantly enhance diagnostic accuracy and optimize treatment outcomes[11], [12]. 

The integration of modern medical technologies and information systems has catalyzed the emergence of medical big 

data, playing a transformative role in data-driven cancer care. While big data holds immense potential, challenges 

such as data fragmentation, inconsistent quality, and limited interoperability hinder effective data sharing. Recent 

studies highlight how big data technologies, combined with AI methods enable the extraction of meaningful patterns 

from large-scale, heterogeneous cancer datasets. This review categorizes existing literature into three primary 

application types, assesses current advancements, and discusses ongoing challenges and future directions for 

integrating big data into cancer diagnostics and treatment[5], [13]. 

Training Restricted Boltzmann Machines (RBMs) typically relies on Markov Chain Monte Carlo (MCMC) sampling, 

which, when truncated as in Contrastive Divergence (CD), introduces bias in the log-likelihood gradient estimate. 

This can hinder learning performance. The Population-Contrastive-Divergence (pop-CD) algorithm introduces a novel 

approach inspired by Population Monte Carlo (PMC) methods to reduce this bias and provide consistent gradient 

estimates. Pop-CD retains similar computational costs to CD while offering improved performance in terms of log-

likelihood and bias reduction. However, it suffers from increased gradient variance, necessitating smaller learning 

rates. Moreover, on RBMs with many hidden units, pop-CD still encounters notable bias and variance issues. 

Therefore, while promising, pop-CD may not yet be suitable for large-scale RBM training without further 

refinement[14], [15], [16]. 

Early and accurate diagnosis of lung cancer remains a challenge due to the limitations of current classification 

techniques, which often suffer from long processing times and lower performance, particularly in early-stage 

detection. To address these issues, a novel classification framework is proposed that combines Gabor filters with an 

Enhanced Deep Belief Network (E-DBN) architecture. This E-DBN integrates two cascaded Restricted Boltzmann 
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Machines (RBMs): a Gaussian-Bernoulli (GB-RBM) followed by a Bernoulli–Bernoulli (BB-RBM), enabling more 

effective feature extraction from lung CT images[14], [17], [18]. 

3. Methodology 

This methodology presents a framework for cancer classification using an Modified Multimodal Deep Belief Network 

(MMDBN), constructed entirely with Clipped Restricted Boltzmann Machines (CRBMs) and incorporating a Cross-

Modality Attention Fusion (CMAF) mechanism. The goal is to enable accurate classification across brain, breast, and 

bone imaging modalities within a distributed big data environment. Clipped RBMs are trained using Contrastive 

Divergence, an efficient approximation algorithm that accelerates the learning of model parameters by minimizing the 

difference between observed and reconstructed data distributions. During the pretraining phase, the MMDBN stack is 

initialized layer-wise using Clipped RBMs[19], [20]. Each RBM performs an unsupervised feature extraction task, 

where the input data undergoes a forward pass from the visible to the hidden layer using learned weights. In this phase, 

important patterns and representations are captured. This is followed by a reconstruction phase, wherein the hidden 

representations are mapped back to the visible layer. The clipping operation is applied during both encoding and 

decoding to suppress extreme values, minimize noise, and preserve the integrity of the learned features. 

The Cross-Modality Attention Fusion (CMAF) module is strategically applied after pretraining to align and integrate 

features across the three imaging modalities. CMAF learns the relative importance of each modality per input sample 

and dynamically emphasizes the most informative features. This fusion step enhances the discriminative power of the 

model, especially in cases where one or more modalities are noisy or partially missing. 

 

 

 

 

          Figure .1 MMDBN Architecture for 3 modalities 
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Finally, the pretrained MMDBN is fine-tuned end-to-end using supervised learning to optimize classification accuracy. 

The model (fig.1) is evaluated on benchmark cancer datasets and deployed within a parallelized big data framework 

to ensure scalability, reduced processing time, and real-time diagnostic capability. The image reconstruction process 

(fig.2) in a Clipped RBM involves a forward pass from the visible layer to the hidden layer, followed by a 

reconstruction phase in which the hidden representations are mapped back to the input space, with activations clipped 

to a bounded range to enhance stability and performance. 

 

 

 

Figure .2 Layer wise Reconstruction of image for Brain  

 

 

 

      3.1 Data Collection and Preprocessing 

• Sources: This study employs publicly available imaging datasets for the diagnosis and analysis of brain, 

breast, and bone cancers using various modalities, including MRI, mammography, X-ray, and PET scans.For 

breast cancer prediction, the Wisconsin (Original) Breast Cancer Dataset is utilized. It comprises 699 

instances, each characterized by 11 attributes and a class label indicating benign or malignant status.To assess 

the effectiveness of brain cancer treatments, eight benchmark datasets are incorporated, including BRATS 

(2012, 2013, 2014, and 2015) and ISLES (2016 and 2017), which provide annotated MRI scans for brain 

tumor segmentation and lesion evaluation.For bone cancer diagnosis, X-ray images obtained from the Indian 

Institute of Engineering Science and Technology (IIEST), Shibpur, are used to facilitate the detection and 

classification of bone abnormalities. 

• Preprocessing Steps: To ensure consistency and enhance model performance, a comprehensive image 

preprocessing pipeline was applied. All input images were first resized to uniform dimensions (128×128 

pixels) to standardize spatial resolution across datasets. Intensity normalization was then performed using Z-

score normalization to bring pixel intensity distributions to a common scale, reducing inter-sample variability.       
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3.2    Modality-Specific Feature Learning with Stacked Clipped RBMs 

           For each cancer imaging modality: 

• Train a stack of Clipped RBMs layer-wise in an unsupervised fashion. 

• The Clipped RBM uses bounded activations to maintain numerical stability and prevent gradient saturation. 

• Output of each stack ℎ𝑚 (for modality ℎ𝑚 ) is a deep, non-linear representation of that modality’s data. 

      This stage results in: 

• ℎ𝐵𝑟𝑎𝑖𝑛  ℎ𝐵𝑟𝑒𝑎𝑠𝑡  ℎ𝐵𝑜𝑛𝑒  are learned feature embeddings for each modality. 

• During the unsupervised pretraining of CRBMs for each imaging modality m (e.g., MRI, CT, X-ray), the 

modality-specific scaling factor ∝𝑚 is computed (Equation 1) to normalize input features and adapt learning 

dynamics based on data characteristics. This factor is typically calculated as: 

                                                                         ∝𝑚=
1

𝜎
                                                                                   (1) 

 

    3.3 Cross-Modality Attention Fusion (CMAF) 

          To effectively integrate multiple modality-specific features: 

Step 1: Pass each ℎ𝑚 through an attention gate 

                     ∝𝑚= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑚ℎ𝑚 + 𝑏𝑚)                                                                                                  (2) 

Step:2 Modulate the modality features using attention weights: 

                             ĥ _m = α_m ⊙ h _m                                                                                                                 (3) 

Step 3: Fuse into a unified multimodal representation: 

                               𝐻𝑓𝑢𝑠𝑒𝑑 = ∑ ℎ𝑚𝑚∈(𝑏𝑟𝑎𝑖𝑛,𝑏𝑟𝑒𝑎𝑠𝑡,𝑏𝑜𝑛𝑒)                                                                                                         (4) 

The resulting fused representation captures the most salient features across all modalities, with each feature weighted 

by its instance-specific importance as defined through the Cross-Modality Attention Fusion mechanism. This 

attention-driven fusion is guided by Equations (2), (3), and (4), where Equation (2) computes the preliminary attention 

scores, Equation (3) normalizes them across modalities, and Equation (4) generates the final fused embedding by 

aggregating modality-specific features based on the learned attention weights. 

Algorithm for Training of classifier 

Input: Preprocessed datasets:𝐷𝑏𝑟𝑎𝑖𝑛𝐷𝑏𝑟𝑒𝑎𝑠𝑡𝐷𝑏𝑜𝑛𝑒 

Output: Trained EM-DBN classifier 

1: For each modality m ∈ {brain, breast, bone} do 

2:  Train stacked Clipped RBMs on D _m to learn h _m 

3:  Compute attention weight:  ∝𝑚= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑚ℎ𝑚 + 𝑏𝑚) 

4:  Compute attention-weighted feature: ĥ _m = α_m ⊙ h _m 

5: end for 

6: Fuse features across modalities: H _fused = ∑m ĥ _m 
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7: Initialize MMDBN with Clipped RBM layers: 

8:  Layer1 ← Clipped RBM (input: H _fused) 

9: Layer2 ← Clipped RBM (input: Layer1 output) 

10:  Optional deeper layers as required 

11: Attach classifier  

12: Fine-tune MMDBN end-to-end: 

13:  while loss not converged do 

14:   Forward propagate inputs 

15:   Backpropagate errors 

16:   Update weights 

17:   end while    

18: Evaluate model on test data using classification metrics 

 

4. Result and Comparative Analysis  

This section presents the experimental results of the proposed Modified Multimodal Deep Belief Network (MMDBN) 

with Clipped RBMs and Cross-Modality Attention Fusion (CMAF), evaluated on multiple cancer imaging datasets 

(brain, breast, bone). Performance is compared against state-of-the-art baseline models and traditional fusion 

strategies. 

        4 .1 Evaluation Metrics 

   To assess classification performance, we employ standard evaluation metrics commonly used in medical image 

analysis, as summarized in Table 1. The performance of the classification model is evaluated using several key 

metrics. Accuracy (ACC) reflects the overall correctness of the model by measuring the proportion of correctly 

classified instances among all samples. Sensitivity, also known as Recall or the True Positive Rate, indicates the 

model’s effectiveness in identifying actual positive (cancerous) cases, while Specificity or the True Negative Rate 

measures its ability to correctly classify negative (non-cancerous) instances. Precision evaluates the proportion of 

correctly predicted positive cases out of all samples predicted as positive. To balance precision and recall, the F1 

Score, which is the harmonic mean of the two, provides a comprehensive view of model performance. 

Additionally, False Positive Rate (FPR) and False Negative Rate (FNR) are used to assess misclassification risks 

by quantifying the rates at which negative cases are incorrectly classified as positive and vice versa. Lastly, the 

Area Under the ROC Curve (AUC-ROC) serves as a robust metric to summarize the trade-off between the true 

positive rate and false positive rate, offering insight into the model’s discriminative power. 
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Figure. 3 Comparison Graph for Performance metrics 

       

 

 4.2 Performance Comparison 

        The proposed MMDBN + CMAF architecture outperforms all baseline models across all evaluation metrics. The 

inclusion of CMAF contributes significantly to improving both sensitivity and specificity, especially in cases where 

one or more modalities are weak or noisy. The F1 Score and AUC-ROC improvements highlight the model's 

robustness and reliability, which is critical in clinical diagnostic applications[21], [22]. Notably, the model maintains 

performance even with incomplete modality input, thanks to the attention-based fusion mechanism (fig.3). 

       

(a)                                                                                                  (b) 

Figure. 4 Loss graph (a) Before regularization and (b) After regularization 
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           Table 1 Performance Comparison with existing models 

Model Accuracy Sensitivity Specificity F1 Score AUC-ROC 

Traditional DBN[18] 89.12 86.1 87.9 84.32 88.1 

SVM[23] 86.3 84.7 83.9 82.30 87.2 

CNN[24] 89.5 87.2 86.8 85.12 90.5 

CMAF-Net[25] 90.6 87.22 86.34 85.90 89.1 

MDBN[4] 91.8 90.1 89.3 89.74 92.2 

CMAF + GAN[26] 92.6 90.2 91.7 89.93 94.13 

MMDBN(w/o CMAF) 93.02 90.5 89.4 86.72 90.7 

Proposed  96.78 93.20 94.64 92.12 94.80 

 

4.3 Convergence Speed 

    EM-DBN achieves faster convergence compared to the standard CD method. The persistent nature of mCD 

reduces the need for frequent chain resets, making the training process more efficient. As the number of iterations 

increases, the loss function value continues to decrease, and the regularized recognition model can rapidly 

converge, as illustrated in fig.4. In contrast to the loss function value on the verification set prior to regularization, 

which is 1.6, the loss value after regularization is more consistent at 0.5. It demonstrates that network performance 

can be optimized by regularizing recognition. 

5. Conclusion 

This study introduces a powerful and scalable multimodal learning framework for cancer classification using EM-

DBN with Clipped RBMs and CMAF. The proposed approach effectively addresses challenges of modality fusion, 

interpretability, and data heterogeneity. By combining unsupervised pretraining and supervised fine-tuning within a 

big data environment, the model significantly improves diagnostic accuracy and robustness. The use of clipped 

activations enhances stability during training, while CMAF enables adaptive weighting of modality-specific features. 

Comparative analysis against traditional and deep learning methods confirms the superiority of the proposed system. 

Future work will focus on extending the model to additional cancer types and deploying it in clinical decision support 

systems. 
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