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Abstract —
In the last few years, the union of modern imaging technology and Al has given rise to agrlcul . Pri most
promising of its uses is Al-powered models in agricultural pest imaging, giving ne est | ication,

categorization, and monitoring. The world’s food security and farming yields are at rig
often, this necessitates undue need for pesticides that degrade the environment and
into play for detecting pests in a new way before they turn invasive, relying less on ¢
in sustainable agricultural methods. Deep learning (DL), a subfield of Al especially de
seemed especially promising, particularly in the highly precise and highly producti\w
i

pests, and, too
an be brought
g'and perhaps even ushering
d for image recognition, has
@A) Of pest detection. In this
Convolutional Neural Networks
ITs)) is introduced. To address the
challenges from real world datasets such as background clutter and imag pwpoint differences, as well as other
proposed framework is based on a
cientNetB3, and standalone ViTs using
able, intelligent solution for next-generation crop
iculture objectives.

study, the hybrid model known as ConvViT (fusing the local detail extractio

framework that shows superior accuracy than traditional
a curated agricultural pest image dataset. This approac
protection by presenting a set of Al capabilities alig
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Precision Farming, Image-Based Pest Detection, Hybrid A

ation, Deep Learning, ConvViT, CNN, Vision Transformer,
Mtecture, Sustainable Agriculture.

INTRODUCTION

i stal depends much on agriculture. Instead, one of the most urgent problems
ing danger that pests provide, which greatly lowers crop output and quality [1].

omoted. Particularly, DL, a branch of Al best suited for picture recognition, has shown great promise in highly
accurate and efficient automation of pest detection [5]. Widely used in many agricultural imaging applications, CNNs are
type of DL model especially good at understanding intricate visual patterns [6]. CNNs have proven adept at capturing
ine-grained local features such as wing venation, color patterns, or body morphology. At the same time, ViTs excel at
modeling global dependencies across image regions. These complementary capabilities present a unique opportunity for
hybrid architectures to unlock a deeper semantic understanding of pest imagery under diverse environmental conditions.



We introduce a novel hybrid model, ConvViT, that is based on the linkage of the local detail extraction ability of CNNs
with the global contextual reasoning ability of ViTs. ConvViT is developed to resolve the issues of background clutter,
having different perspectives, and inconsistent image quality in the real-world pest dataset to improve pest classification
accuracy and robustness. By aligning Al capabilities with the goals of sustainable agriculture, the proposed approach offers
an innovative, scalable solution for intelligent crop protection in the era of smart farming.

Our key contributions include:

1. This study introduces a comparative DL framework utilizing three advanced architectures, Reg
EfficientNetB3, ViT and proposed hybrid ConvViT Model to classify agricultural pest species precisq
framework aims to enhance real-time decision-making in precision farming.

2. Leveraging the Agricultural Pests Image Dataset from Kaggle, the study meticulously curated and
with comprehensive preprocessing steps to ensure data integrity and model compatibili
resizing, normalization, corruption checks, and exploratory data visualization.

3. Advanced data augmentation strategies were implemented to simulate real-y
model's generalization. Furthermore, Error-Level Analysis (ELA) was

4. Although trained on 12 pest categories, the model’s performance was straWgad@lfly evaluated on the 8 most
ggricultural impact.

analyzed in Section 4, which also evaluates the comparison model's Mce. Jction 5 brings the study to a close by
outlining the main conclusions and suggesting possible ligasma in

REVIEW

Through a focus on potential uses in precision farming, pest 3rol, irrigation, and crop management, this literature review
investigates the integration of Al in modern Iture. It emphasizes important developments, case examples, and typical

constraints, including high costs, data reli al difficulties.
Aijaz et al. [7] focused on how preci e learning (ML), and robots can be used to improve output, resource
efficiency, and sustainability and talk I has changed agriculture. They put together current research and case

studies to show Al's potentia % they found that wineries were able to increase yields by 25% and save 20%

¥ to. They put together a summary of the research to show how autonomous systems
urce optimization, and decision-making. For example, Al-driven irrigation uses 20% less

solve problems like soil degradation, irrigation inefficiencies, and disease identification in Indian agriculture
nd analysis and Crop Management. They automated soil analysis, maximized irrigation, and produced predictions using
I0T sensors, UAVs, and artificial intelligence algorithms. Working with Microsoft, including the FARMWAVE platform,
llegedly raised yields by 30—40%. Furthermore, Hashem et al. [11] are used in agriculture mostly centered on pest and
disease identification research on Al. The research on technologies enabling early diagnosis, real-time monitoring, and
predictive analytics including 10T, (ML), sensor networks, and computer vision which the authors compiled highlights
Important research showing Al's effectiveness including sensor-driven high-accuracy pest detection and image-based
disease classification in banana crops. Emphasizing Al's part in decision support systems and scalability, methods included



case studies and methodical evaluations of publications with peer review. Gupta et al. [12] examined how artificial
intelligence is being used in plant sciences with an eye on precision agriculture, disease detection, genomics, and
phenotyping. To underline artificial intelligence technologies like ML, 10T sensors for environmental monitoring, and
blockchain for data integrity, the authors combined previously published studies. Techniques included methodical study of
case studies and peer-reviewed papers with very accurate samples. Spagnolo et al. [13] looked at how IoT and artifici
intelligence may maximize agricultural methods through real-time data analysis, predictive modeling, and automati
With a case study of a smart farm in India and a farmer questionnaire, the authors mixed-methodically investigated lo
sensor data soil moisture, weather stations, drones, and Al-driven analytics ML for disease diagnosis, and yield predigaas
Thirty percent water savings, eighteen to twenty-five percent production increases, and forty percent pesticide ref#
were among the notable gains shown. Patil et al. [14] looked at how artificial intelligence technologies ML, IoT,
and predictive analytics might help to advance precision agriculture for climate resilience. Emphasizing

monitoring, weather forecasting, insect detection, and genomic crop breeding. Though particular
empirical validations are not given, the approach consists of a qualitative assessment of A
enabled irrigation systems, and Al-driven disease detection models.

Moreover, in Al-Powered Revolution in Agricultural Pest Imaging, there is limited
methods.

ing traditional

1. Al-driven agricultural systems are not available for smallholders and farmars pw-income areas as their
hardware and software infrastructure frequently require large upfro

2. High-quality, real-time data from loT devices, UAVs, and sens
performance. Particularly in rural locations with inadequate ¢gn
data compromises model accuracy and scalability.

3. More specifically in rural or underprivileged

knowledge hinder the efficient adoption and

Il. RiODOLOGY

This study employs DL-based models, inclugi
for automated pest classification using th
with transformations like flipping and
represents the overall methodology of

ResNet50, E¥icientNetB3, ViT and Proposed Hybrid ConvViT Model
ultural Pests Image Dataset. The dataset was preprocessed, augmented
lit into training, validation, and testing sets. Figure 1 graphically
assification.

3.1 Experimental Data: In
comprising a total of 5,494
Earthworms, Earwigs, Gras
the Flickr API, a populari
agricultural Q)

e employed the Agricultural Pests Image Dataset, sourced from Kaggle,
spanning 12 pest categories, including Ants, Bees, Beetles, Caterpillars,

ebsite that ensures the visual information is genuine and representative of actual
\ artificially produced or excessively edited examples. For large-scale training
processes, gach uniformly reduced to a maximum dimension of 300 pixels (width or height) to maintain
computin i9 rving significant visual aspects. This dataset's compact nature and class-wise distribution
make it an i for experimentation across various computer vision architectures and ML pipelines.

asses: beetle, grasshopper, earthworms, ants, earwig, snail, catterpillar, and weevil. This selection was
to class imbalance, lower sample representation in specific categories (e.g., bees, moths, wasps, slugs), or

some samples of the dataset.

.2 Data Preprocessing: To begin our pest classification process, we first organized the dataset by converting image file
locations and the class labels that go with them into a well-organized data frame. The path of every image file was preserved
in the 'Filepath' column, and the 'Label' column was assigned the corresponding pest class extracted from the folder
structure. Preprocessing, visualization, and model training were among the latter processes facilitated more easily by this
simplified form.
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Figure 4: Visual representation of a random sample from the dataset

e used the ‘ImageDataGenerator’ Utility to normalize and prepare the images in a format appropriate for the model and
scale the pixel values suitably. The images were resized to a uniform shape of 224x224 pixels and organized into RGB
olor mode, supporting consistent feature representation across samples.To ensure data integrity, we ran a corruption check
on the whole dataset, using the PIL package to find any damaged or unreadable images. The balance among the 12 pest

classes was visually evaluated using a label distribution plot in Figure 3, which offered information on class representation
and any imbalances.



Besides, we randomly sampled 16 images and visualized them in a 4x4 grid layout, and each image was depicted alongside
its corresponding label, presenting an intuitive glance at the dataset's intra-class and inter-class visual diversity. In addition
to basic inspection, we utilized Error-Level Analysis (ELA), which was frequently employed to reveal hidden
manipulations or quality inconsistencies. The ‘compute_ela_cv()’ function generated ELA images by compressing the
original image at varying JPEG quality levels and computing pixel-wise differences. To demonstrate the slight variation
in image fidelity, we created a grid of ELA images spanning declining quality levels using a randomly chosen pest ima
Figure 4 displays the random sample from the dataset.

3.4 Data Augmentation: We implemented an implementation technique to improve the model's generalization cap
and reduce the possibility of overfitting. This method provides subtle time adjustments to the images while {
enriching the training set. 224 x 224 pixels. Each image was first resized from the input data. The values of pixe
standardized to the [0, 1] range, which allows for numerical stability and quicker convergence.

Next, we replicated real-world variability by applying a series of randomized changes. The mod .
orientation changes by including small rotations (within £10%) and horizontal flips to account for i Brance
of issues. Additionally, random zooming and contrast adjustments were involved, sug

scale changes and varying lighting conditions generally encountered in natural agric @

3.5 Model construction: In this study, we leverage ResNet50 [15], EfficientNetB iT and Proposed Hybrid
ConvViT Model to accurately and efficiently classify agricultural pest images. ResNet5U\g@lizes deep residual learning to
overcome vanishing gradients and extract complex features across layers. With a simpljied S@gn that consistently scales
depth, width, and resolution, EfficientNetB3 provides good accuracy with otawaller umber of parameters and
lower computational cost. ViT is used for its ability to capture long-ran encies and global contextual features,
making it ideal for precise alignment and representation in agricultural p lysis.

3.5.1 ResNet50: A residual neural network (ResNet-50) is used ¢
followed by a fully connected layer with a softmax Iz . ver, ResNet builds the network by stacking the
remaining connections on top of each other. ResNejd
reliable and transferable feature representations th3
particular classification tasks, especially in scenarios
model. The model in this work is based on the ResNet50 ar
to improve training in deep neural networks.

tly enharfce performance and reduce training times for
ndant training data. Figure 5 shows the block of the ResNet
gcture [18], which introduces the concept of residual learning

y

weight layer

X
identity

relu

Y

weight layer

H(x) = F{x)+x

relu

Figure 5: Block of the ResNet architecture

Instead of learning a direct mapping H(x) from input x, a residual block learns a function F(x) such that the final output
becomes:
y=F(x)+x @



Here, x is the input, F(x) represents the output of a series of layers, and the term +x is a shortcut connection that allows the
input to skip these layers and be added directly to the output. This method allows the network to maintain low-level features
while learning complex patterns and helps prevent the vanishing gradient issue in very deep architectures. The residual
function F(x) is often expressed as:

F(X) = W,.0 (W;.x)

Where, W, and W, are convolutional weight matrices, and ¢ is a non-linear activation function such as ReLU. Aft
computing F(x), the shortcut adds x directly to it, resulting in the final output:

Y = o(F(x)*+x)

In this project, a pretrained ResNet50 backbone is employed with frozen weights (from ImageNet),
classification head is added, including data augmentation, dense layers with ReL U activations, dropout fg
and a softmax output layer for multiclass prediction over 12 categories.

on classification of
hlays t fficientNetB3

3.5.2 EfficientNetB3: EfficientNetB3 is used in this study to facilitate the intelligen
agricultural pests, assisting in developing Al-powered precision farming systems.4
model’s framework.

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

stem »  Module 1 —* Module 2 ™ Module 2 —» Module 2 Module 2 ™ Module 2 ¥ Final Layers

Module 3 Module 3 Module 3 Module 3 Module 3
k.
Add — Add Add Add —
v v
Module 3 Module 3
¥
Add — | Add Add — Add —

3 3 x4
eneral architecture of the EfficientNetB3 model

EfficientNet is renowned fo
the network's depth lth

pound scaling technique, which uses a compound coefficient @ to equally modify
t resolution r. The scaling strategy follows the connection:

®  subjectto o. Z.y? = 2 (5)

etB3 maintains a better balance between computing cost and accuracy, which makes it perfect
used in environments with restricted resources, such as farms and mobile edge devices.
rchitecture leverages inverted bottleneck blocks and depthwise separable convolutions, enhancing
n from complex pest imagery with fewer parameters [19] Using Leaky ReLU as the activation function
s [earning stability, and the activation function is defined as:

f(x)={x’ ifoO} (6)

0x, ifx <O

ith 0 € [0.01,0.03], a small gradient flow is allowed when activations are negative which supports better convergence and
generalization, particularly in diverse agricultural datasets. EfficientNetB3 improves the accuracy of pest classification
models by learning discriminative pest-related characteristics under various lighting and background circumstances.



3.5.3 ViT: In the transformative landscape of precision agriculture, where image-driven insights are central to sustainable
crop protection, the ViT offers a pioneering shift in image recognition by replacing the spatial constraints of CNNs with a
self-attention-driven framework [20]. ViT separates every input image x € R¥X"*C into fixed-size patches, flattens them
and embeds each patch as a token:

Xpatches = 1X1,X2,+-- XN}, Zog = [Xas X1E; XE; ..., XNE] 4+ Epos

These tokens are then processed using multi-head self-attention (MSA) layers, allowing the model to capture both shor
and long-range dependencies across the image. Unlike traditional CNNs, which rely on local receptive fields and ma
designed filters, ViT learns from the data itself—without enforcing any task-specific inductive bias:

= MSA (LN(z_1)) + z_1, z141 = MLP (LNz)) + z

This architecture proves especially effective in agricultural pest imaging, where identifying subtle
symptoms such as Irregular t8xture patterns leaf edge deformatlon or plgment 1nc0ns1stenc:1es is crj

part of actual pest monitoring systems.

3.5.4 Proposed Hybrid ConvViT Model: Automatic pest detection is a crucial aspe
and sustainable agriculture, and the continuous development of artificial intelligencegy i processing has revealed
game-changing possibilities. With the ability to function with accuracy andai 'm&:ologlcal disturbance, intelligent

This study introduces a hybrid ConvViT model that integrates the u tion power of CNNs with the global
dependency modeling capacity of ViTs to address tQhesile inhergmerin conventional CNNs and maximize
classification performance under complex imaging i . ConvViT framework is designed to capture

cessive convolutional and max-pooling layers, effectively
est morphology. Figure 7 illustrates the architecture of the

the hybrid structure extracts hierarchical features thro%
capturing detailed textures, shapes, and edges relevant 18
proposed ConViT model.

Let, an input image | € RF*W*C pe procesflid he CNN produce local feature maps:

Focnn = Maxpool (o (W, *1 + b.)) 9)

where, W, and b, denote the
The resultant local features |
linearly embedded im

el and bias, ¢ represents a non-linear activation.
h passed to the ViT, which restructures the spatial map into a sequence of flattened,

Zo = [Xas; X1E; X2E; ..., xNE] + Epos (10)

ing the modeling of global dependencies and long-range spatial relationships across the image:
= MSA (LN(Zl_l)) + Z1—1, Z141 = MLP (LNZ[)) + Z) (ll)

tenation strategy is employed to harmonize local and global information. The global class token from ViT
obally averaged pooled (GAP) output of the CNN are concatenated into a unified feature representation:

feoncat = [GAP (Fenn) [l Xas] (12)

his incorporated vector f,,,..q: 1S passed through a fully connected layer and a softmax activation to produce the final
multi-class classification output:

5} = Softmax (Wf fconcat + bf) (13)

where W, and by are trainable weights and bias parameters, respectively.



Convolutional Neural Networks (CNNs)

| m H 17—

| | | |
| I | I 1 I N
Maxpooling

Convolution Maxpooling Convolution

Wision Transformer (ViT)

Predicted Class

Multi-head ™
attention arm

Multi-Head
attention

Linear prediction of flattened patches

i 3x3
Pooling Size 2x%x2
nvolution Layers 3
Filter Size 64
Dropout 0.2
Activation Function RelLU
ViT
Learning Rate 0.0001
Patch Size 16 x 16

\ Embedding Size 768
Attention Heads 12

Transformer Layers 8

MLP Hidden Layer Size 3072

Dropout 0.1
Optimizer AdamW

Batch Size 32

Epochs 100

The model processes raw input images by normalizing pixel values and transforming labels into tensors. Feature maps
obtained via CNN are transferred directly into the ViT module, bypassing traditional ViT patch splitting, thereby allowing
attention computation on semantically enriched representations rather than raw pixel patches. This hybrid model presents
a novel, scalable approach to enhancing classification robustness in agricultural pest diagnostics. The dataset was split into



80% for training and 20% for testing, with 10% of the training data used for validation. Hyperparameters were optimized
via grid search. Categorical cross-entropy served as the loss function, and argmax was applied to output probabilities for
final class prediction. Table 1 presents the optimized parameters of the models.

IV. RESULT AND ANALYSIS

In this section, the results of this experimental work and the performance of the proposed framework for the agricultura
pest classification using Al are presented. Rigorous tests on the diversity dataset of different pest species have been caus
out to validate the model as an effective tool to enhance precision farming and sustainable crop protection. It eval
classification performance using accuracy, precision, recall, and F1-score. Further, the proposed approach based d
and ViT has also been compared with other state-of-the-art models such as ResNet50 and EfficientNetB3 to a
superiority of the proposed approach. Next, there are subsections that give much more detailed disc
performance, learning behaviors, and comparative metrics, accompanied by appropriate visualizations,

4.1 Experimental Setup

All experiments were conducted on a personal computer with an Intel® Core™ i7 p
SSD. The model was developed and trained using TensorFlow 2.x within a Python
10 operating system. The training pipeline was implemented in Jupyter Notebook
optimize computational efficiency. The InceptionVV3 model, pre-trained on ImageNet, VWg@employed with input images
resized to 224x224x3. The batch size was 32, and the model was trained for 100 epogés. ), the SGD algorithm with
learning rate = 0.01, momentum = 0.9, and weight decay = 1x107#, fine-tunjaaua itlﬁm optimizer with learning rate =
opy loss, and early stopping is applied
balanced learning, validation, and
15% for validation, and 15% for

6 G M, and 256GB
t runniNgpon a Windows
PU acceleration enabled to

with a patience of 5 epochs to avoid an over fit and keep the best
unbiased evaluation, the dataset was strategically divided into 7 fo
testing.

4.2 Evaluation Metrics
Several standard evaluation metrics, including accura cision, recall, and F1-score, were employed to assess the
effectiveness of the DL-based models. These metrics prov comprehensive view of the model's performance regarding
correct classification and error minimization. Jrue Positive ), False Positive (FP), True Negative (TN), and False

Negative (FN) were also calculated to eval e models' error analysis.

TP+ TN
TP+ TN + FP + FN

Cy =

Precision =
TP + FP
TP
Recall =
Tp + FN

_ Precision x Recall
Fl-score=2 X ———
Precision + Recal

ariso
analysis was made to evaluate and quantify a diverse set of DL architectures toward agricultural

training, validation, and testing accuracies. All three accuracy performance metrics exhibit clearly
Proposed Hybrid ConvViT performs better than all other models. With this, it achieves a training

iT and EfficientNetB3 perform moderately well, and ViT has a testing accuracy of 84.2% compared to 81.9% from
EfficientNetB3. This is to show that transformer-based architectures like ViT nicely learn the deeper structure of the
features in the placenta imagery. Still, even though the ConvViT hybrid approach leverages the feature extraction power
of convolutional networks as well as the global attention mechanism from transformers, it gains much in performance. But
the evaluation on ResNet50 and EfficientNetB3 models shows that the accuracy gap between training and validation




amounts to a relatively lower generalization compared to ConvViT. On the contrary, the minimal performance gap in the
proposed model highlights the stability and effectiveness of the proposed model for precision agriculture applications, as
it is tolerant to the greatest amount of error in this sector.

Figure 8 also visually gives a clearer comparison of the training, validation, and test accuracies of all four models. It 4
clear, as illustrated in the figure, that the Hybrid ConvViT outperforms its counterparts, especially in terms of validati
and testing performance, allowing it to tackle diverse pest imagery efficiently. Aside from making very clear that th
proposed hybrid ConvViT outperforms anything else in generalization, this visualization also serves to confirm tha
hybrid model could potentially be a viable solution to real-time, Al-powered pest detection with the use of p
agriculture, which in turn will play an essential role in implementing sustainable crop protection practices.

Table 2: Training, validation, and testing accuracies for different models in pest image classifj

Model Training Accuracy Validation Accuracy T
(%) (%)
ResNet50 92.5 83.2
EfficientNetB3 92.7 84.5
ViT 93.1 85.6
Proposed Hybrid
ConwViT 94.7 89.5

M ResNet50 EfficientNetB3 ViT Prop d ConvViT
™~
< &
m
[+3]
ot
[+3]
[+]
I~
N ~ %
R - 3

n performance for pest identification using the ResNet50 model for eight different classes is given
s of accuracy, precision, recall, and F1-score are well-known evaluation metrics for a good model, in the
ow good the model is at detecting different pest categories in agricultural settings. For some classes,
snail, earwig, and caterpillar, the ResNet50 model performs well and has a precision and recall greater than
the beetle class achieving the highest precision value (0.95) and F1-score (0.91). This means that the model can
etermine these specific pest categories very well, making few errors in guessing the true name of an insect or disease.

he problem is that while the model classifies grasshopper and weevil reasonably well with 0.40 precision and 0.45 recall
(grasshopper) and 0.35 precision and 0.33 recall (weevil), it fails dramatically in classifying grasshopper and weevil. Such
lower metrics indicate that it is hard for the model to learn discriminative features for these classes, as many classes are
imbalanced and highly similar between them. Finally, the weighted average here is 0.80, precision of 0.78, recall of 0.75,
and F1-score of 0.77. These scores represent a reasonably good level of performance, but the variation across classes can



indicate how the model might improve, for example, advanced data augmentation, class balancing techniques, and adding
an attention mechanism to improve its ability to distinguish subtle differences in the pest imagery.

Table 3: Classification Report for the ResNet50 Model

Class Accuracy | Precision | Recall | F1-Score

beetle 0.95 0.88 0.91

grasshopper 0.4 0.45 0.42

earthworms 0.89 0.8 0.84

ants_ 0.80 0.87 0.79 0.83

earwig 0.92 0.9 0.91

snail 0.95 0.96 0.95

catterpillar 0.93 0.91 0.92
weevil 0.35 0.33
Weighted Average 0.80 0.78 0.75

The classification performance of the EfficientNetB3 model for the recognition of pest

same 8 target classes. Compared with the ResNet50 model, this model achieves a%im ement in the overall and
0

class-wise performance metrics and has a very high score in precision, reca F re for most categories.
Table 4: Classification Report for the gffi tBJModel
Class Accuracy | Prgfion F1-Score

beetle 0. 0.92 0.95

grasshopper 0.5 0.55 0.52

earthworms 0.95 0.9 0.92
n . . .

a ts_ 0.819 0.94 0.91 0.92

earwig 1 0.98 0.99

0.98 0.99 0.98
0.98 0.96 0.97
0.45 0.4 0.42
0.819 0.8475 | 0.8262 | 0.8338

For example, the model has g ecision and recall for earwig (Precision 1.00, Recall 0.98, F1 score 0.99) and snail
(Precision 0.98 Rec P.98), which means that EfficientNetB3 can easily separate out those classes with
ctric values for caterpillar, beetle, ants, and earthworms also indicate that the model is
ifferent types of insects. Although we still found that the grasshopper and weevil are

feature learning due to class imbalance or data quality issues. The average accuracy for the
del is 0.819, with a precision of 0.8475, a recall of 0.8262, and an F1-score of 0.8338. Besides ResNet50,

able 5 shows the performance metrics of the ViT model on eight pest categories, presenting a big advantage in
lassification accuracy and consistency over what has previously been evaluated. ViT takes advantage of attention
echanisms to learn relationships and dependencies over long distances, reflected in its better performance metrics. The
testing accuracy of the ViT model reaches 0.842, which means that the model can find good patterns in the training data
and generalize well to unseen instances. This high accuracy is also backed up by great weighted averages of precision
(0.8725), recall (0.8562), and F1-score (0.8625), which makes it the strongest standalone DL model in this comparative
study, and before integrating the hybrid architecture.



Table 5: Classification Report for the ViT Model

Class Accuracy | Precision | Recall | F1-Score
beetle 0.96 0.93 0.95
grasshopper 0.6 0.65 0.62
earthworms 0.96 0.92 0.94
ants 0.97 0.95 0.96
earwig 0.842 0.99 0.97 0.98
snail 0.98 0.97 0.97
catterpillar 0.97 0.96 0.96
weevil 0.55 0.5 0.52

Weighted Average 0.842 0.8725 | 0.8562 | 0.8625

VIiT exhibits extremely high precision and recall for the majority of the insect classes on ample,
the VIiT can accurately predict that ants (Precision: 0.97, Recall: 0.95, F1-score: 0.9 on: 0.99, Recall:
0.97, F1-score: 0.98), and earthworms (Precision: 0.96, Recall: 0.92, F1-score: 0.94& isible (subtle)

variations on some parts of their bodies. Similarly, all metric scores for beetle, snail, al"g@aai@P1llar are more than 0.95. As

Overall, ViT shows good potential for classifying all classes, give hitecture’s competence in processing
global image features. And the average metrics on botl ormance than both ResNet50 and EfficientNetB3,
and the ability to perform pest classification highly ¢ del used. The classification performance of the
proposed hybrid ConvViT, which is formulated by t Pmbination of the features of CNNs and ViTs, is presented
in Table 6. The proposed hybrid architecture makes fu Of the power of feature extraction available in CNNs and the

s of accuracy®the highest of all evaluated models is 0.87 for ConvViT
d average precision (0.9125), recall (0.8962), and F1-score (0.9012)
ying diverse pest species. When we look at the performance of the
, and cgterpdfar detection, the precision, recall, and F1-score values are 1.0 for all
and distinct classes are classified with exceptional fidelity, this shows
| features, as well as broad spatial relationships. It also does great on other
Recall: 0.97, Fl-score: 0.98) and earthworms (Precision: 1.0, Recall: 0.95, F1-
e good performance of Beetle also in all metrics, which indicates the model's

overall testing. Additionally, these values
underline its better classification perfo

: Classification Report for the proposed hybrid ConvViT Model

Class Accuracy | Precision | Recall | F1-Score
beetle 1.0 0.95 0.97
grasshopper 0.7 0.75 0.72
earthworms 1.0 0.95 0.97
antsj 0.7 1.0 0.97 0.98
earwig 1.0 1.0 1.0
snail 1.0 1.0 1.0
catterpillar 1.0 1.0 1.0
weevil 0.6 0.55 0.57

Weighted Average 0.87 0.9125 | 0.8962 | 0.9012

Moreover, for grasshopper and weevil, which were previously performing poorly in other models, this hybrid approach
gives improved metrics. The weevil, although still not as good as grasshopper, however records precision of 0.6, recall of



0.55 and F1 score of 0.57 and this upward of performance may be attributed to a compounded architectural power to handle
feature diversity better. Finally, the proposed ConvViT model is far superior to all other architectures in almost every
category, suggesting its robustness, scalability, and feasibility for practical agricultural pest detection. Figure 9 also
provides further visualization supporting this analysis by providing a comparison of ConvViT versus ResNet50,
EfficientNetB3, and VIiT, very clear in demonstrating the superiority of the ConvViT model in terms of precision farmi
requirements.

| Accuracy Precision Recall Fl-score
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Figure 9: Comparison of classification performance fe I-powered models in pest image classification

ConvViT Model

st-performing model (Hybrid ConvViT) across 12 epochs to
ehavior of the best-performing model. Figure 10(a) shows
(b) shows the loss curves.

4.4 Accuracy and Loss Curves Analysis for Prop
We also analyzed the training and validation curves of
further understand the learning dynamics and the generaliza
the training and validation accuracy trend as and Figure

From Figure 9(a), it is evident that th
validation accuracy starts at about
the model had learned these discrimin
well. However, there is a si
consistent and stable.

CUBCcY keeps increasing from about 25% to about 90%, however, the
and ris out 88%, then decreases slightly in the last epoch. This implies that
features from the training data early on and then generalized to the mid-epochs
rfitting in the slight dip in validation accuracy, but overall, the trend is still
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Figure 10: Training and validation accuracies and losses over epochs for the proposed hybrid ConvViT model



Secondly, Figure 10(b) depicts a sharp decrease in both training and validation losses through the first few epochs of
training, with training loss dropping from approximately 2.3 to below 0.2 and validation loss stabilizing at around 0.5. The
training loss is decreased while the validation loss is fluctuating slightly at the end, which agrees with the observed
validation accuracy drop in its corresponding curve. However, this pattern is quite common in DL models trained on
moderately imbalanced datasets whose performance in some minority classes slightly fluctuates after prolonged trainin

All in all, these curves verify that the proposed hybrid ConvViT model is a well-adapted stimulus to learn, having stron
convergence characteristics and a high level of generalization. This also clearly demonstrates the model’s ability t

meaningful representations with little overfitting.

4.5 Precision Analysis

false alarms in real-world pest detection systems where there are many FPs.

Precision Comparison Across Different Models
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rasshopper and weevil using the ResNet50 model is much lower, as it struggles particularly. On beetle
(0.95), its performance is decent, but its inconsistent performance indicates that it may lack resilient feature
capabilities for small or visually ambiguous classes. With high precision values (above 0.90) in six classes,
fficientNetB3 has better performance than ResNet50 while still not beating grasshopper (0.50) and weevil (0.45). In most
categories, we find that ViT, with its attention mechanism powers, defeats both ResNet50 and EfficientNetB3, but still
annot reach the consistent precisions on all classes of the hybrid ConvViT.

4.6 Recall Analysis
Figure 4 is the recall comparison across the same 8 pest classes for the 4 models. The recall metric helps us to recall whether
the model can completely detect all the actual positive instances (proportion of TPs out of all the actual positives). Recall



value of a high value means less of FNs, leading to the importance of this measure when it comes to pest detection, due to
it spelling possible crop damage or ecosystem imbalance in case a real pest is missed.

Recall Comparison Across Different Models
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Figure 12: Recall comparison of various DL els a erent pest classes

th ld ConvViT performing best and attaining near-
Pnail, and catterpillar, where it had a perfect performance

and grasshopper (0.75), showing a strong sign of enhanced@eralization and robustness in terms of pest detection with
arbitrary visual characteristics. Out of the 4, \@al comes in as ™Me second best with high levels of recall (greater than 0.90)
for most classes, such as earthworm, ant, espectively, at 0.92, 0.95, and 0.93. It, however, does not perform as
well as ConvViT in more ambiguou
shows reasonable performance ove

indicates a limitation to the narrow variability for certain classes. Weevil (0.33) and grasshopper (0.45) have the
lowest recall for ResNet50, i te shallow learning capacity or sensitivity to data imbalance for these specific
classes. Clearly, this figure M he proposed ConvViT architecture succeeds in avoiding FN resulting in a more

reliable solution in sitgations a¥sed detection can have severe repercussions. The high precision together with its
good recall m&git

In Figure, s combined in consolidating the F1-scores for each pest class. It is a harmonic mean of precision
and recal i ric whose value balances both FPs and FNs, and is called the F1-score. If class distribution is not
bal ision and recall are equally important, it is very useful. The hybrid ConvViT model is once again superior

1.57) and grasshopper (0.72), which still outperform the other models. The high F1 scores indicate that the
pable of balanced and reliable classification for a wide variety of pest categories.

Commendably, ViT does well in ants (0.96), beetle (0.95), and earthworms (0.94). The slight inconsistencies in classifying
isually less distinct pests are again reflected in their scores for weed (0.52) and grasshopper (0.62). Similar to
EfficientNetB3, EfficientNetB4 performs well on snail, catterpillar, and earwig, but has some weaknesses in the
aforementioned challenging classes. ResNet50 provides an acceptable F1-score in a few classes, but overall it has poor
results in F1-score on most of the classes, especially in the grasshopper and weevil classes, with an F1-score below 0.50.



This analysis further verifies the superiority of the proposed hybrid ConvViT in maintaining a harmonious balance among
the balance between precision and recall, i.e., achieving both accuracy and completeness in pest classification. In fact, the
high F1 scores maintained across most classes guarantees effectiveness in real agricultural settings with these tradeoffs
being essential.

F1-Score Comparison Across Different Models
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4.8 Error Analysis for the proposed Hybrid ConvViT
A confusion matrix, as shown in Figure 14, sed to perform an error analysis to adequately evaluate the performance
and reliability of the proposed hybrid Con | in agricultural pest image classification. This analysis does a good
job of exposing the strengths and weal sification behavior of this model in TP, FP, TN, and FN values for
each pest class.

T

This confusion matrix show

’ ConvViT model has almost perfect classification ability for most of the pest
categories. In particular, theg@odel pe

med perfectly for the beetle, earwig, snail, and caterpillar. For all of these classes,
ues of 1 for each class, meaning all samples from these classes were correctly

, misclassified one sample as ants (FN = 1), and had a slight overlap in its feature representation for these
e same way, the ants class produced one sample correctly predicted (TP = 1) and one misclassified as a
= 1), leading us to suspect visual similarity among these pest types.

dditionally, for the weevil class, the confusion matrix of predictions shows that no prediction was made (TP =0, FP =0,
N = 0), in line with the fact that there are no true samples for this class in the test dataset. However, interestingly, the
model does not make any FP predictions across any pest category, which is a great strength of the proposed method,
meaning that the proposed approach is highly reliable in avoiding incorrect classifications of negative samples.

Overall, the results justify the usefulness and effectiveness of the transformer-based hybrid model for the efficient
classification of different agricultural pests. With very few misclassification errors, excluding the earthworms and ants



classes, the model showed very good results in the prediction. However, the level of tolerance to these minor errors is
allowable in the context of real-world agricultural environments in which some pest species are quite similar visually.
Therefore, the design of pest detection and classification based on the proposed model is found to be very effective, and it
helps enlarge the basis of precision farming and sustainable crop protection systems.

Confusion Matrix

beetle 0 0 0 0 0 0 0
grasshopper 0 0 0 0 0 0 0 0
earthworms 0 0 0 0 0 0
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Figure 14: Confusion matrix representing@ie clagaawise prediction performance of the proposed hybrid CovViT model

gMmultural pest images.
4.9 Comparative Analysis

Table 7 highlights a comprehg® n of the proposed Hybrid ConvViT model to existing state-of-the-art models
published in the literature f hg pest classification tasks. The models used in the above are ProtoNet, MADN,
and RCNN. Classificati ic is used to make the comparison in which is based on the direct measure of the

overall correc T models.

Table 7 between the proposed Hybrid ConvViT model and existing pest classification models
Reference Model Accuracy (%)
[21] ProtoNet 86.33
[22] MADN 75.28
[23] RCNN 67.79
Proposed | Hybrid ConvViT 87.0

able, we found that our proposed Hybrid ConvViT outperforms other methods in accuracy of 87.0%. On the
contrary, in comparison to the next best performing model, the ProtoNet model proposed by Gomes and Borges [21] with
6.33% accuracy can be improved in relative terms by 0.77%. The gain appears modest, but the significance of it arises
rom the fact that such improvements in such imbalanced and complex pest datasets are meaningful in terms of better
generalization and classification stability. A final performance result of 75.28% was achieved by the model in Peng et al’s
research [22], where the MADN architecture was used, which implied that the proposed model improves over this baseline
by approximately 11.72%. The combination of convolutional and transformer-based mechanisms proves to be fruitful as
they are able to capture both local as well as global feature representations of pest images. Furthermore, the accuracy of



the RCNN model by Xu et al. [23] is the lowest, with a value of 67.79%. In particular, the absolute improvement of the
proposed Hybrid ConvViT over the baseline was as high as 19.21%, which indicates a large improvement in classification
capability. Overall, this comparative analysis demonstrates that by employing the Hybrid ConvViT, we obtain the state-
of-the-art performance and also show an outstanding accuracy improvement compared to the standard DL approaches, as
well as with recent works in this context.

V. CONCLUSION
The subject of classification of agricultural pest images has been shown in this study to be capable of leveraging a ngye

solutlons the growth of the
systems incorporating 10T

smart agriculture through promoting the development of lightweight and edge-deployaX
datasets in this regard to include more pest species and life stages, and potentially multim®
and sensor data for total agriculture monitoring.
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