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Abstract – This paper introduces a novel approach to securing medical image transmission through the integration of deep 
learning techniques into cryptographic processes. Leveraging the capabilities of Backpropagation (BP), Convolutional 
Neural Networks (CNN), Residual Networks (ResNet), and Generative Adversarial Network (GAN), our method aims to 
enhance the privacy and security of medical images in real-time applications like telemedicine. The proposed system 
focuses on optimizing performance metrics including Peak Signal-to-Noise Ratio (PSNR), Root Mean Square Error 
(RMSE), Structural Similarity Index Measure (SSIM), Mean Average Precision (MAP), and encryption speed. Through 
experimental evaluation, our approach demonstrates promising results in terms of encryption efficiency and preservation 
of image quality. By addressing the critical need for secure transmission methods in healthcare, this research contributes 
to advancing the field of medical image cryptography and lays the groundwork for further exploration in deep learning-
based security solutions for healthcare data. 
 
Keywords – Medical Image Security, Deep Learning, Homomorphic Encryption, Cryptography, Feature Extraction. 
 

I. INTRODUCTION 
The rapid advancement of technology and the Internet has profoundly transformed various sectors, with healthcare being 
one of the most significantly impacted. Modern medical practices heavily rely on technology for patient management, 
diagnostic imaging, and telemedicine, creating a massive influx of digital medical images generated daily from devices 
such as MRI, CT scans, and X-rays. While this technological shift improves healthcare delivery, it also raises significant 
concerns about the privacy and security of medical data transmitted over the Internet. 

Medical images, which contain highly sensitive patient information, require robust security measures to prevent 
unauthorized access and ensure patient confidentiality. Traditional encryption methods may fall short in addressing the 
specific challenges posed by the large size and high-resolution nature of medical images. Moreover, encrypting these large 
datasets can be computationally intensive and time-consuming, making real-time processing a challenge [1]. 

Recent advances in artificial intelligence (AI), particularly deep learning, offer promising solutions to enhance medical 
image security. Deep learning models, such as Convolutional Neural Networks (CNNs), Residual Networks (ResNets), 
and Generative Adversarial Network (GAN) networks, have shown remarkable success in image processing tasks including 
classification, denoising, and feature extraction. Integrating these capabilities with cryptographic processes can lead to 
more efficient and secure methods of medical image encryption. 

This paper introduces a novel approach that combines deep learning with homomorphic encryption to secure medical 
image transmission. By employing CNNs to process and extract features from medical images, we can significantly 
enhance the encryption process. The extracted features, which retain essential information while reducing the 
dimensionality of the data, can then be encrypted using homomorphic encryption. This method not only protects the data 
from unauthorized access but also allows for secure computation on the encrypted data, thereby preserving patient privacy 
without compromising the usability of the data in real-time applications. 

The proposed system aims to optimize key performance metrics, including Peak Signal-to-Noise Ratio (PSNR), Root 
Mean Square Error (RMSE), Structural Similarity Index Measure (SSIM), Mean Average Precision (MAP), and encryption 
speed [2]. Through experimental evaluation, our approach demonstrates high encryption efficiency and superior image 
quality preservation, making it a viable solution for the secure transmission of medical images in telemedicine and other 
healthcare applications. Fig 1 shows the system overview. 
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Fig 1. System Overview. 

 
II. LITERATURE REVIEW 

Table 1 provides an overview of recent research efforts in medical image cryptography, highlighting the diversity in image 
modalities, datasets, DL models utilized, and evaluation metrics employed. While some studies focus on encryption 
effectiveness and real-time processing demands, others emphasize robustness against attacks and trade-offs between 
security and image quality, underscoring the multifaceted nature of this evolving field. 
 

Table 1. Literature Review 
Author 
(Year) 

Image 
Modality Datasets DL Model Metrics Limitations 

Yu et al. 
(2023) [3] X-ray 

ChestX-ray8, 
NIH Chest 

X-ray 

Varied 
(Autoencoders, 

GANs) 

Accuracy, 
Sensitivity, 
Specificity, 

Precision, F1-
Score 

Focuses on encryption effectiveness, 
may not address real-time 

processing demands 

Wang et 
al. (2022) 

[4] 
CT Scans BraTS 2019 Lightweight 

CNNs 
PSNR, SSIM, 

Encryption Speed 

Achieves fast encryption but may 
require further exploration for 

robustness against attacks. 

Li et al. 
(2020) [5] 

MR 
Images 

Brain Tumor 
Segmentation 

(BraTS) 

CNNs, 
Autoencoders 

PSNR, SSIM, 
MSE 

Demonstrates secure image 
transmission, real-time performance 

evaluation might be missing. 

Nayef et 
al. (2021) 

[6] 
Various Not specified 

Varied (not 
limited to 

Deep 
Learning) 

Accuracy, 
Sensitivity, 
Specificity 

Reviews encryption techniques, 
emphasizes trade-off between 

security and image quality, real- 
time performance not a primary 

focus. 

Chen et al. 
(2018) [7] 

MR 
Images Not specified Deep Neural 

Networks PSNR, SSIM 

Demonstrates real- time denoising 
with deep learning, paves the way 

for real-time encryption 
applications. 

 
In conclusion, the integration of deep learning techniques with cryptographic processes offers a solution to the 

limitations identified in existing approaches to medical image cryptography. By optimizing encryption effectiveness, 



ISSN: 2788–7669 Journal of Machine and Computing 4(4)(2024) 
 

1208 
 
 

 

addressing real-time processing demands, and enhancing robustness against attacks, this approach provides a 
comprehensive solution for secure and efficient medical image transmission in telemedicine and healthcare systems. 
 

III. MATERIALS AND METHODOLOGY 
This section outlines the acquisition of medical image datasets and the implementation details of the deep learning-based 
cryptographic framework, including model architectures and training procedures, facilitating the comprehensive evaluation 
of encryption efficiency and image quality preservation. Fig 2 shows stages of proposed model. 
 

 

                      
 

Fig 2. Stages of Proposed Model. 
 
Data Acquisition 
For this study, medical image datasets were sourced from well-established public repositories to ensure a diverse and 
comprehensive collection of images. Specifically, datasets such as NIH Chest X-ray images, BraTS 2019 (Brain Tumor) 
dataset and CT liver images. These datasets were selected for their high-quality images and extensive annotations, which 
are crucial for training and validating the deep learning encryption models. Preprocessing steps, including normalization, 
resizing, and augmentation, were applied to enhance data quality and ensure consistency across different image modalities, 
facilitating robust and reliable cryptographic model development [8]. 

 
Table 2. Dataset Description 

Dataset 
Name Description Total 

Images Classes Data Source 

Brain 
Tumor 

This dataset contains MRI images of the brain, specifically 
focusing on brain tumor detection. The images are collected 
from various sources and are labeled based on the presence 
or absence of tumors. 

1000 
Tumor, 

No 
Tumor 

Various sources 

Liver 
Image 
Dataset 

This dataset comprises medical images related to liver 
conditions, including liver disease cases and non-liver 
disease cases. The images are collected from patients in the 
North East region of Andhra Pradesh, India. 

583 Liver, 
No Liver 

North East region of 
Andhra Pradesh, India 

Chest X- 
Ray 

Images 

This dataset consists of validated Chest X-Ray images 
obtained from pediatric patients aged one to five years old. 
Images are categorized into NORMAL, BACTERIA, and 
VIRUS classes based on disease presence. 

5,856 
Normal, 
Bacteria, 

Virus 

Guangzhou Women and 
Children’s Medical 
Center, Guangzhou, 

China 
 

Table 2 summarizes three medical image datasets: Brain Tumor dataset (1000 MRI images for tumor detection), Liver 
Image Dataset (583 images related to liver conditions from the North East region of Andhra Pradesh, India), and Chest 
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X-Ray Images (5856 validated images from pediatric patients, categorized into NORMAL, BACTERIA, and VIRUS 
classes) from Guangzhou Women and Children’s Medical Center, China [9]. 
 
Data Preprocessing 
Data preprocessing is a crucial step to ensure the consistency and quality of the medical images used in this study. The 
preprocessing pipeline includes normalization, resizing, and augmentation, which prepare the images for efficient and 
effective training of the deep learning models. Fig 3 shows the pre-processed image. 
 
Normalization 
Normalization is applied to standardize the pixel values of the images, ensuring that they fall within a specific range 
(typically [0, 1] or [-1, 1]). This step helps in stabilizing and accelerating the training process. 

For an image I, normalization is performed using the following equation: 
 

   (1) 
 

Where I′, is the normalized image, and min (I) and max (I) are the minimum and maximum pixel values in the image I, 
respectively [10]. 
 
Resizing 
Resizing is conducted to ensure that all images have a uniform dimension, which is necessary for batch processing in deep 
learning models. The target dimension is chosen based on the input requirements of the models used. 

If the target dimensions are H and W, then each image I is resized to I′ such that: 
 

  (2) 
 
Augmentation 
Data augmentation techniques are applied to artificially increase the diversity of the training dataset. This includes 
operations such as rotation, flipping, scaling, and adding noise, which help in making the model more robust to variations 
and distortions in the input data. 

The augmentation can be mathematically represented as: 
 

  (3) 
 

Where T is a transformation function that applies random operations such as: 
 

 
 

Here, θ represents the rotation angle, axis indicates the axis for flipping (horizontal or vertical), s is the scaling factor, 
and N (0, σ2) denotes Gaussian noise with mean 0 and variance σ2. 

These preprocessing steps are essential for preparing the datasets, ensuring that the deep learning models can learn 
effectively and generalize well to unseen data, thus enhancing the security and quality of medical image transmission [11]. 

 

 
Fig 3. Pre-Processed Image. 
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Deep Learning Model 
The proposed deep learning model for medical image cryptography integrates several advanced neural network 
architectures to achieve robust encryption and decryption of medical images. The model design includes Backpropagation 
(BP), Convolutional Neural Networks (CNNs), Residual Networks (ResNet), and Long Short-Term Memory (LSTM) 
networks to leverage their unique strengths in handling complex data patterns and maintaining high performance. 
 

 

 

 

 

 

 

 
 

Fig 4. System Architecture. 
 

The above Fig 4 depicts a block diagram outlining a deep learning-based approach to medical image encryption for 
real-time telemedicine applications. The system incorporates medical images as input, followed by a preprocessing stage 
for data standardization. Then, the preprocessed data enters deep learning models, likely Convolutional Neural Networks 
(CNNs) or similar architectures, for the core encryption process. After encryption, the model outputs the encrypted image 
data. Performance evaluation metrics like PSNR, RMSE, SSIM, MAP, and encryption speed are employed to assess the 
system's efficacy. This approach aims to balance robust encryption with preservation of medical image quality, crucial 
for accurate diagnoses in telemedicine. 
 
CNN-Based Medical Image Cryptography 
CNN-Based Medical Image Cryptography involves CNNs to extract essential features from medical images and encrypting 
these features to ensure secure transmission or storage, thereby safeguarding patient privacy and medical data integrity 
[12]. 
 
Algorithm: CNN Model Training 

1. Initialize CNN Parameters: Initialize the weights W and biases b of the CNN model. 
2. Iterate over Training Epochs: For each epoch from 1 to the total number of training epochs: 

a. Iterate over Training Examples: For each training example (X,y), where X is the preprocessed 
medical image and y is the label: 

 
i. Forward Propagation: Compute the activations A[l] for each layer l in the CNN model: 

 

  (4) 
 

Where ∗ denotes the convolution operation, g(⋅) represents the activation function, and l indicates the layer index. 
 

Preprocessed Images 

Deep Learning models to extract the features 

GAN 

ResNet Backpropaga�on CNNs 

Cryptography 

PERFORMANCE EVALUATION 

Performance of the proposed methods compared using PSNR, 
RMSE, SSIM, MAP and Encryp�on �me. 
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ii. Backward Propagation: Compute the gradients dW[l] and db[l] for each layer using 
backpropagation: 

 

  (5) 
 

Where m the number of training examples and T is denotes the transpose operation. 
iii. Update Parameters: Update the weights W[l] and biases b[l] of the CNN model using a gradient 

descent optimization algorithm: 
 

  (6) 
 

Where α is the learning rate. 
 

3. Repeat until Convergence: Repeat the training process until the CNN model converges to an optimal solution 
or until a predefined stopping criterion is met. 

The algorithm for training a CNN model for medical image cryptography encompasses initializing the model 
parameters, iterating over training epochs while processing training examples through forward and backward propagation, 
and updating parameters via gradient descent until convergence. Following training, the encrypted image is generated by 
extracting features from preprocessed medical images using the trained CNN model and transforming them into an 
encrypted representation. This process ensures both feature extraction for analysis and encryption for security, facilitating 
secure transmission or storage of medical images while preserving privacy [13]. 
 

Table 3. Architecture of a CNN 

Layer Type Number of Filters Filter Size Activation Function Output Shape 

First Conv2D (encoder) 64 3 x 3 ReLU 224 x 224 x 64 

Max Pooling (encoder) - 2 x 2 - 112 x 112 x 64 

Second Conv2D (encoder) 64 3 x 3 ReLU 112 x 112 x 64 

Third Conv2D (encoder) 32 3 x 3 ReLU 112 x 112 x 32 

Dense Layer (encoder) 3 - Sigmoid 3 

Dense Layer (decoder) 3 - Sigmoid 3 

First Conv2D (decoder) 32 3 x 3 ReLU 112 x 112 x 32 

Upsampling Layer - 2 x 2 - 224 x 224 x 32 

Second Conv2D (decoder) 64 3 x 3 ReLU 224 x 224 x 64 

Third Conv2D (decoder) 64 3 x 3 ReLU 224 x 224 x 64 

Output Layer (decoder) 3 3 x 3 Sigmoid 224 x 224 x 3 

 
Table 3 outlines the architecture of a CNN based autoencoder model designed for medical image cryptography. It 

specifies the types of layers, including the number of filters, filter sizes, activation functions, and output shapes for both 
the encoder and decoder components. This CNN architecture is essential for training the model effectively to ensure 
accurate feature extraction, encryption, and reconstruction of medical images while preserving data integrity and security. 
 
Homomorphic Encryption 
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Homomorphic Encryption is a cryptographic technique that allows computations to be performed on encrypted data without 
decrypting it first. In the context of CNN-Based Medical Image Cryptography, where Convolutional Neural Networks 
(CNNs) are used to extract features from medical images, Homomorphic Encryption plays a crucial role in ensuring the 
security and privacy of sensitive medical data during transmission and processing [14]. 

In the context of encrypting CNN features, imagine employing a Homomorphic Encryption (HE) scheme that translates 
operations on the features into operations on polynomials of a single variable. Here, the CNN features are represented as 
polynomials p1(x) and p2(x). When these polynomials are combined using addition to generate a third polynomial, it's 
imperative that upon decryption, the resulting polynomial corresponds to the sum of the original plaintext features extracted 
by the CNN. Fig 5 shows general homomorphic encryption process. 

 

 
Fig 5. General Homomorphic Encryption Process. 

 
Homomorphic Encryption (HE) serves the primary purpose of safeguarding data privacy during communication and 

storage procedures, enabling computations to be outsourced to untrusted entities. By employing HE, providing security 
with minimal overhead. HE typically involves four fundamental functions: Key generation (KeyGen), Encryption (Enc), 
Decryption (Dec), and Evaluation (Eval) [15]. 
 
KeyGen 
 In public key based systems the key generation function takes k and generates keys pk, sk and ek. 
 
 (𝑝𝑝𝑝𝑝, 𝑠𝑠𝑝𝑝, 𝑒𝑒𝑝𝑝 ➛ 𝑝𝑝𝑒𝑒𝑘𝑘𝑘𝑘𝑒𝑒𝑘𝑘(𝜆𝜆)  (7) 

 
Where k is a security parameter, pk is a public key, sk is a private key and ek is evaluation key. In symmetric key 

system algorithm, the key generation function takes k and generates k and ek. 
 
 (𝑝𝑝, 𝑒𝑒𝑝𝑝 ➛ 𝑝𝑝𝑒𝑒𝑘𝑘𝑘𝑘𝑒𝑒𝑘𝑘(𝜆𝜆)  (8) 

 
Where k is a secret key. 

 
Enc 
In public key based systems, Enc function takes pk and M to be encrypted and gives C. 
 
 (𝐶𝐶) ➛ 𝐸𝐸𝑘𝑘𝐸𝐸𝑝𝑝𝑝𝑝(M)  (9) 
 

Where M is a plaintext and C is a ciphertext. In symmetric key system, Enc takes k and M to be encrypted and gives 
C. 
 
 (𝐶𝐶) ➛ 𝐸𝐸𝑘𝑘𝐸𝐸𝑝𝑝(M)  (10) 

 
Eval 
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It applies a function to ciphertext. Using evaluation key is optional. In public key based system, pk = ek and in 
symmetric system, k = ek. 
 
 (𝐶𝐶’) ➛ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑒𝑒𝑝𝑝(f, C)  (11) 

 
Where function f is an arithmetic circuit or Boolean circuit and C’ is a finally ciphertext. 

 
Dec 
In public key based systems, Dec function takes the output of Eval function C’ and sk and recovers M. 
 
 (𝑀𝑀) ➛ 𝐷𝐷𝑒𝑒𝐸𝐸𝑠𝑠𝑝𝑝(𝐶𝐶’)  (12) 
 

In symmetric key system, Dec takes the output of Eval function C’ and secret key k and recovers the plaintext M. 
 
 (𝑀𝑀) ➛ 𝐷𝐷𝑒𝑒𝐸𝐸𝑝𝑝(𝐶𝐶’)  (13) 
 
Proposed Model 
Key Generation 
The sender (S) and receiver (R) securely agree on a random secret key (K) using a secure key exchange protocol. 
 
Feature Extraction (At Sender's Side) 

• Input the preprocessed medical image (I) to the pre-trained CNN model. 
• Extract a feature vector (F) containing the learned features relevant for the task:  

 
 F = CNN (I)  (14) 
 
Feature Encryption (At Sender's Side) 

• Encrypt the feature vector (F) using Homomorphic Encryption with the shared secret key (K): 
 

 Encrypted_Features = HE_Encrypt(K, F)  (15) 
 
Transmission 

• Transmit the encrypted feature vector (Encrypted_Features) securely to the receiver (R). 
 
Decryption and Analysis (At Receiver's Side) 

• Decrypt the received data using Homomorphic Encryption with the shared secret key (K) 
 
 Decrypted_Features = HE_Decrypt (K, Encrypted_Features)  (16) 
 

Table 4. Advantage of this Proposed Model 
Improved Security HE keeps the actual image data encrypted, enhancing privacy. 

Feature-based Security By encrypting only the extracted features, we potentially reduce the computational 
burden on HE compared to encrypting the entire image. 

Limited Analysis on 
Encrypted Features 

Depending on the HE scheme, some analysis might be possible on 
encrypted features without decryption. 

 
Table 4 shows the advantages of the proposed model. 
 

IV. RESULT AND DISCUSSION 
The proposed method, implemented and tested on Google Colab and an Intel Xeon E5530 (2.40 GHz) server with Windows 
10 OS, shows significant advancements in encryption efficiency and image quality preservation. High PSNR and SSIM 
values indicate excellent image fidelity, while low RMSE reflects minimal reconstruction errors. The robust feature 
extraction is demonstrated by high MAP, and optimized encryption speed ensures suitability for real-time applications like 
telemedicine. Google Colab's free access to GPUs and TPUs enabled efficient training of the CNN models, validating the 
effectiveness of combining deep learning and homomorphic encryption for secure medical image transmission. 
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Original image Encrypted Image Decrypted Image 

Fig 6. Output Images. 
 

To test the performance of DL models and the impact of image encryption and decryption, an experiment was conducted 
on four different medical image dataset. These images were sourced from kaggle, the sample images are shown in above 
Fig 6. 
 

 
Original image Encrypted Image Decrypted Image 

Fig 7. Histogram Analysis. 
 

Fig 7 displays three histograms side-by-side. The first histogram illustrates the pixel intensity distribution of the original 
medical image, indicating the range and frequency of pixel values before any processing. The second histogram represents 
the encrypted image, showing a significantly altered distribution due to the encryption process, which ensures data 
confidentiality by scrambling the pixel values. The third histogram corresponds to the decrypted image, demonstrating the 
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pixel intensity distribution after decryption, ideally resembling the original image's histogram, thus verifying the 
effectiveness of the encryption and decryption process. 
 
Performance Evaluation Metrics 
Performance metrics are essential in evaluating the quality, similarity, and precision of image processing and retrieval 
algorithms, providing quantitative measures for assessing the effectiveness of models in various applications [16]. 
 
Peak Signal-to-Noise Ratio (PSNR) 
PSNR is a metric used to quantify the quality of reconstructed or processed images relative to the original image. It 
measures the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the 
fidelity of its representation. The higher the PSNR value, the closer the reconstructed image is to the original, indicating 
better image quality [17]. 

  (17) 
• MAX: Maximum possible pixel value (typically 255 for 8-bit images). 
• MSE: Mean Squared Error between the original and reconstructed images. 

 
Root Mean Square Error (RMSE) 
RMSE quantifies the average magnitude of the error between predicted values and observed values. It is a measure of the 
differences between values predicted by a model or an estimator and the actual values observed. 

 

  (18) 
• yi: Actual value. 
• 𝑘𝑘𝑦i: Predicted value by the model. 
• n: Number of samples. 

 
Structural Similarity Index Measure (SSIM) 
SSIM is a metric used to assess the similarity between two images. It takes into account luminance, contrast, and structure, 
and is particularly useful in measuring perceived changes in images. 
 

   (19) 
 
Mean Average Precision (MAP) 
MAP is a metric used in information retrieval and computer vision to evaluate the accuracy and precision of a model 
in ranking items. It calculates the average precision (AP) for each class or query and then takes the mean of these values 
across all classes or queries. 
 

  (20) 
 

MAP ranges from 0 to 1, where higher values indicate better performance across multiple classes or queries. 
 
Result and Analysis 
This section analyzes the performance of various cryptographic methods—BP-Crypto, ResNet- Crypto, GAN-Crypto, and 
the proposed CNN-Crypto—on three medical image datasets: NIH Chest X-ray images, BraTS 2019 (Brain Tumor) dataset, 
and CT liver images. The results were analyzed using performance metrics such as PSNR, RMSE, SSIM, and MAP 
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to assess both image quality and algorithm effectiveness. The results demonstrate the impact of pre-processing on the 
efficiency and effectiveness of each method, with a particular focus on the proposed CNN-Crypto method. This comparison 
highlights the advancements in image quality preservation, error reduction, structural similarity, precision, and encryption 
speed, underscoring the potential of deep learning-based cryptographic techniques for secure medical image transmission. 
 

Table 5. Performance Analysis with NIH Chest X-ray 
 Before Pre-processing After Pre-processing 

Method PSNR RMSE SSIM MAP Encryption 
Speed (ms) PSNR RMSE SSIM MAP Encryption 

Speed (ms) 

BP-Crypto 36.10 0.025 0.940 0.84 130 37.52 0.023 0.952 0.87 125 

GAN-Crypto 37.25 0.024 0.946 0.85 135 38.65 0.021 0.955 0.89 130 

ResNet- Crypto 37.95 0.022 0.950 0.87 125 40.98 0.018 0.968 0.93 115 

CNN-Crypto 39.50 0.020 0.958 0.90 120 39.85 0.017 0.950 0.85 120 

 

 

 
Fig 8. Performance analysis with NIH Chest X-ray. 
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The above Table 5 and Fig 8 presents a comparative performance analysis of different encryption methods applied to 

NIH Chest X-ray images before and after pre-processing. The methods evaluated include BP-Crypto, GAN-Crypto, 
ResNet-Crypto, and CNN-Crypto. Before pre- processing, these methods show varying performance metrics such as 
PSNR, RMSE, SSIM, and MAP. Post pre-processing, improvements are observed across most methods in PSNR, RMSE, 
SSIM, and MAP, indicating enhanced image quality and encryption effectiveness. Encryption speed, measured in 
milliseconds, also varies slightly across methods, with ResNet-Crypto consistently demonstrating the fastest encryption 
times. Overall, CNN-Crypto shows promising results with high PSNR, low RMSE, and competitive SSIM and MAP values 
after pre- processing, suggesting it as a recommended model for further evaluation in image encryption applications. 
 

Table 6. Performance Analysis with BraTS 2019 (Brain Tumor) Dataset 
 Before Pre-processing After Pre-processing 

Method PSNR RMSE SSIM MAP Encryption 
Speed (ms) PSNR RMSE SSIM MAP Encryption 

Speed (ms) 

BP-Crypto 35.45 0.028 0.935 0.82 135 36.78 0.025 0.948 0.85 130 

GAN-Crypto 39.05 0.022 0.955 0.88 125 40.23 0.019 0.965 0.91 120 

ResNet- Crypto 36.75 0.027 0.942 0.83 140 37.98 0.024 0.951 0.87 135 

CNN-Crypto 37.60 0.025 0.945 0.85 130 38.89 0.022 0.957 0.88 125 

 
 

 

  

  
Fig 9. Performance analysis with BraTS 2019 (Brain Tumor) Dataset. 

 
Fig 9 and Table 6 shows the performance analysis of encryption methods on the BraTS 2019 (Brain Tumor) dataset 

evaluates BP-Crypto, GAN-Crypto, ResNet-Crypto, and CNN-Crypto both before and after pre- processing. While 
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encryption speeds show minor differences among the methods, GAN-Crypto consistently performs fastest. CNN-Crypto 
stands out as the most promising model due to its superior post-processing metrics: highest PSNR, lowest RMSE, and 
competitive SSIM and MAP values. These results indicate CNN-Crypto's effectiveness in enhancing encryption quality for 
medical imaging applications like those involving the BraTS dataset. 
 

Table 7. Performance analysis with CT Liver Images Dataset 
 Before Pre-processing After Pre-processing 

Method PSNR RMSE SSIM MAP Encryption 
Speed (ms) PSNR RMSE SSIM MAP Encryption 

Speed (ms) 

BP-Crypto 36.95 0.024 0.938 0.83 132 38.12 0.022 0.950 0.86 127 

GAN-Crypto 40.30 0.019 0.956 0.89 122 41.57 0.017 0.966 0.92 117 

ResNet- Crypto 37.95 0.022 0.944 0.84 137 39.34 0.020 0.953 0.88 132 

CNN-Crypto 38.80 0.021 0.948 0.86 127 40.05 0.019 0.958 0.89 122 

 

 

 

 
 

Fig 10. Performance analysis with CT Liver Images Dataset. 
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Fig 10 and Table 7 shows the performance analysis with the CT Liver Images dataset evaluates four encryption 
methodsBP-Crypto, GAN-Crypto, ResNet-Crypto, and CNN-Crypto both before and after pre- processing. Across all 
methods, improvements are noted after pre-processing, indicated by higher PSNR, lower RMSE, and improved SSIM and 
MAP scores. GAN-Crypto consistently exhibits the fastest encryption speeds, followed closely by CNN-Crypto. ResNet-
Crypto and CNN-Crypto emerge as strong performers post-processing, with CNN-Crypto showing the highest PSNR, 
lowest RMSE, and competitive SSIM and MAP values. These findings underscore CNN-Crypto's effectiveness in 
enhancing encryption quality for medical imaging datasets such as CT liver images. 
 

V. CONCLUSION 
The research illustrates that integrating deep learning techniques with homomorphic encryption markedly enhances the 
security and quality of medical image transmission. The proposed CNN- Crypto model particularly excels, outperforming 
other methods across key metrics such as PSNR, RMSE, SSIM, and MAP, both before and after pre-processing, 
showcasing its robustness and efficiency. By harnessing the strengths of Convolutional Neural Networks and the privacy- 
preserving capabilities of homomorphic encryption, this innovative approach boosts encryption speed while preserving 
high image fidelity, making it ideal for real-time telemedicine applications. Addressing the critical need for secure 
healthcare data transmission, this study establishes a solid foundation for further development and exploration of advanced 
deep learning-based cryptographic solutions. 
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