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Abstract – A Cerebral vascular accident, commonly known as a stroke, is a pathological condition that impacts the brain 
due to the rupture of capillaries. It occurs when there is a disturbance in the typical blood circulation and essential 
physiological processes of the brain. Stroke prediction plays a crucial role in early diagnosis and intervention, potentially 
improving patient outcomes. This paper proposes a machine learning model that leverages polynomial feature 
transformation and linear regression modeling for stroke prediction. The model addresses the challenge of capturing non-
linear relationships between features and the target variable while maintaining interpretability. The proposed approach 
involves preprocessing data by separating categorical and numerical features, applying one-hot encoding to categorical 
features, and generating polynomial features up to the second degree for numerical features. This tailored preprocessing is 
facilitated by a Column Transformer. For model development, a machine learning pipeline is constructed, splitting the data 
into training and testing sets. Despite utilizing polynomial features, linear regression is employed as the final model, 
allowing for the capture of both linear and non-linear relationships while maintaining interpretability. This work contributes 
to stroke prediction by offering a balanced approach that considers model complexity and interpretability, showcasing the 
potential of linear regression with polynomial features for accurate predictions and insights into feature-target relationships. 
The proposed model exhibited superior performance compared to other existing models, achieving a remarkable testing 
accuracy of 99.2%. 
 
Keywords - Stroke Prediction, Machine Learning, Polynomial Features, Linear Regression, One-Hot Encoding.  
 

I. INTRODUCTION 
Stroke is a significant cause of mortality among adults worldwide, affecting approximately 6.2 million individuals annually. 
A stroke is a health issue characterized by diminished blood flow to the brain, leading to the death of cells. It manifests 
primarily in two forms: ischemic, resulting from inadequate blood supply, and hemorrhagic, stemming from bleeding. Both 
types disrupt normal brain function, presenting symptoms such as one-sided paralysis or numbness, difficulty with speech 
or comprehension, dizziness, and partial vision loss. These symptoms typically manifest shortly after the stroke occurs           
[1, 2]. Stroke, medically referred to as a cerebrovascular accident, is a neurological condition arising from either a lack of 
blood supply (ischemia) or bleeding within the brain arteries (hemorrhage). It typically induces a variety of motor and 
cognitive deficits, which can vary greatly, ultimately impeding functionality [3]. According to the World Health 
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Organization (WHO), stroke is the leading cause of death and a significant public health issue. While there has been 
extensive research on the outlook for heart attacks, the exploration of risk factors related to strokes has been comparatively 
restricted. In light of this, numerous advanced machine learning models have been utilized to forecast the likelihood of an 
upcoming stroke event. Many individuals who survive strokes experience different neurological impairments, leading to 
varying degrees of reduced quality of life, which poses a substantial burden on patients, caregivers, and society. Improving 
the accuracy of predicting functional outcomes following a stroke could assist clinicians in devising suitable long-term 
treatment strategies. This might involve developing plans that incorporate a better understanding of expected recovery 
levels, along with tailored rehabilitative interventions, taking into account patients' living situations, to facilitate shared 
decision-making with patients and their families [4]. Considerable attention has been directed towards identifying factors 
that can predict the functional recovery following a stroke. Selecting the optimal features is crucial for achieving higher 
accuracy in disease prediction. [5]  

Nevertheless, the challenge lies in accurately categorizing stroke symptoms, which complicates the diagnosis of 
conditions resulting from stroke and associated neurological impairments. Consequently, there is an urgent demand for 
technology capable of monitoring individuals at risk of stroke, facilitating their medical visits, and enabling timely 
diagnosis and treatment by healthcare professionals. Ongoing research aims to pinpoint key risk indicators for stroke by 
assessing the initial disabilities experienced by stroke and lung patients and continuously monitoring their health status        
[6, 7]. Machine learning, a subset of data science, empowers computers to learn and enhance their performance 
autonomously, without direct programming. Its core objective lies in crafting system programs capable of analysing data 
and forecasting future outcomes. This involves extracting insights from vast datasets and transforming raw data into 
actionable information, a process commonly referred to as data mining [8, 9]. Machine learning has effectively been 
employed to anticipate the positive prognosis after an acute stroke related to other chronic diseases within a three-month 
timeframe [10-14]. Machine learning, along with deep learning models, is very useful in feature extraction [15, 16]. 
Machine learning models are currently being employed to forecast the likelihood of stroke recurrence over the long term 
[17-20]. To accurately detect a stroke, various algorithms such as Naive Bayes, J48, K-nearest neighbour, fuzzy C-mean 
and random forest are employed [21, 22]. 

In order to classify levels of stroke risk, various machine learning models including logistic regression, naive Bayes, 
Bayesian network, decision tree, neural network, random forest, bagged decision tree, and ensemble methods such as voting 
and boosting with decision trees were utilized support vector machine (SVM) and ensemble (bagged) [23, 24]. The 
classification accuracy of the neural network (NN), decision tree (DT), Artificial NN and random forest (RF) [25]. The 
novelty of this paper is that it tries to achieve a balance between capturing non-linear relationships and model 
interpretability for stroke prediction.  
 
Using Polynomial Features with Linear Regression 
Although polynomial regression is more appropriate for capturing non-linear relationships, its interpretation can be 
challenging due to its complexity. This model addresses this by using a linear regression model even after generating 
polynomial features. This allows the model to capture non-linearity through the features themselves while maintaining the 
interpretability of a linear model. 
 
Focus on Interpretability 
The text emphasizes the importance of interpretability throughout the explanation. This suggests that the proposed model 
prioritizes not just accuracy but also the ability to understand how the features influence the prediction of stroke. 

The paper is structured as follows: Section II outlines the organization, followed by Section III which presents the 
Literature Review. Section IV covers the Dataset and Preprocessing methods, while Section V elaborates on the Proposed 
Methodology. Section VI is dedicated to Results and Analysis, with Section VII concluding the paper and discussing 
avenues for future work. 
 

II. LITERATURE REVIEW 
In [23] introduced the Stroke Predictor (SPR), a machine learning model that uses Improvised random forest (IRF) designed 
to predict the likelihood of stroke occurrence. This model achieved an impressive prediction accuracy of 96.97%. Notably, 
while this work did not prioritize feature selection, it nonetheless produced robust results. In [22] used machine learning 
algorithms that includes DT, RF, K-Nearest Neighbors (KNN), Support Vector Machine (SVM) to analyse brain stroke 
data, achieving an accuracy of approximately 82%. However, a notable limitation of this study is its reliance on textual 
data, which may not always provide accurate predictions for stroke occurrences. The[18] developed Stacking method that 
includes Naive Bayes (NB), RF, Logistic Regression (LR), K-Nearest Neighbors (KNN) and Multilayer Perceptron (MP) 
exhibits a commendable accuracy of 98%. However, a notable drawback lies in the lack of interpretability and feature 
selection. These aspects are crucial as they aid medical practitioners and decision-makers in understanding the model's 
predictions and identifying the key factors contributing to stroke occurrence. Islam MM et al. [30] employed a machine 
learning model to predict the likelihood of stroke occurrence in patients, leveraging RF classifier, which achieved an 
accuracy of 96%. However, a notable drawback of this model is the lack of explicit discussion regarding the interpretability 
of the Random Forest model's predictions, particularly concerning its applicability in medical decision-making contexts. 
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The [23] presented a machine learning classifier based on soft voting, utilizing RF, Extremely Randomized Trees, and 
Histogram-Based Gradient Boosting (HBGB), achieving an impressive accuracy of 96.88%. However, a potential 
limitation of this model lies in the lack of exploration into feature importance. The [21] utilized a machine learning model 
that used SVM and RF Regression with an accuracy score of 79%. However, there is a notable absence of discussion or 
analysis regarding the generalizability of the developed models. Shobayo et al. [23] employed machine learning algorithms 
that used RF Algorithm and achieved an accuracy of 91.43%. Despite emphasizing interpretability, robustness, and 
generalization as pivotal aspects for deploying algorithms in medical contexts, the study lacks extensive discourse on the 
generalizability of the developed model beyond the dataset utilized in the research. 
 

III.     PROPOSED METHODOLOGY 
Dataset Description 
The dataset comprises information on 4981 patients available at the source (https://www.kaggle.com/datasets/ 
jillanisofttech/brain-stroke-dataset?resource=download), encompassing various attributes: 

1. Gender: Designated as "Male," "Female," or "Other." 
2. Age: Denoting the age of the patient. 
3. Hypertension: Assigned a value of 0 if the patient lacks hypertension, and 1 if hypertension is present. 
4. Heart Disease: Indicated as 0 if the patient has no heart diseases, and 1 if a heart disease is diagnosed. 
5. Ever-Married: Recorded as either "No" or "Yes." 
6. Work Type: Categorized into "Children," "Govt Job," "Never Worked," "Private," or "Self-Employed." 
7. Residence Type: Classified as "Rural" or "Urban." 
8. Average Glucose Level: Represents the average glucose level in the patient's blood. 
9. BMI: Denotes the body mass index of the patient. 
10. Smoking Status: Identified as "Formerly Smoked," "Never Smoked," "Smokes," or "Unknown." 
11. Stroke: Assigned a value of 1 if the patient experienced a stroke, and 0 if not.  

 
Data Preprocessing 
The preprocessing step plays a pivotal role in preparing the data for subsequent modelling by applying various 
transformations defined in the preprocessor. This includes two primary tasks: polynomial feature generation for numerical 
features and one-hot encoding for categorical features. Polynomial feature generation involves expanding the feature space 
by creating polynomial combinations of the original numerical features, facilitating the capture of non-linear relationships 
between predictors and the target variable. On the other hand, one-hot encoding transforms categorical variables into a 
binary format, enabling the model to effectively interpret and utilize categorical data for predictive tasks. These 
preprocessing transformations are fundamental in shaping the dataset into a suitable format for the subsequent modelling 
phase, ensuring that the data is appropriately structured to extract meaningful insights and facilitate accurate predictions. 
 

IV. PROPOSED METHODOLOGY 
Algorithm for One-Hot Encoding 

1. Input: 
o Categorical features: ["gender", "ever_married", "work_type", "Residence_type", "smoking_status"] 

2. Output: 
o One-Hot Encoded Features: Binary vectors representing each category for all categorical features. 

3. Initialization: 
o   Create an empty matrix OneHot with dimensions  

               Number of Samples *Total Categories 
4. Process: 

o For each sample in the dataset:  
 For each categorical feature:   
 Determine the category to which the sample belongs. 
 Set the corresponding element in the one-hot encoded vector for the sample to 1, indicating the presence 

of the category, and all other elements to 0. 
5. Output: 

o OneHot: Matrix containing the one-hot encoded features for all categorical features in the dataset. 
This algorithm will transform all categorical features in the dataset into a set of binary vectors, where each vector 

represents a sample's category membership 
 
Polynomial Feature Transformation 
The polynomial feature transformation is a preprocessing technique used to generate polynomial features from the original 
numerical features. It involves creating new features by raising the original features to various powers up to a specified 
degree n and taking combinations of these powers. Let's delve into the mathematical model of polynomial feature 
transformation for a single numerical feature x up to the nth degree. Suppose we have a single numerical feature x. The 
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polynomial feature transformation generates new features by raising x to powers from 1 to n, and then taking combinations 
of these powers. The resulting polynomial features include terms like x1,x2,x3,…, xn as well as all possible combinations 
of these terms.  

The mathematical model of polynomial feature transformation for x up to the nth degree can be represented as follows: 
 
Generating Polynomial Features for a Single Feature x 
 

 Polynomial Features(x) = � �𝑛𝑛𝑘𝑘�  1, 𝑥𝑥, … , 𝑥𝑥𝑛𝑛 
𝑛𝑛

𝑘𝑘=0
 (1) 

 
Combinations of Polynomial Features 
After generating the polynomial features for x, we take combinations of these features to form the final feature set. This 
involves considering all possible combinations of the generated polynomial features, including interactions between 
different features. The number of combinations grows exponentially with the degree n, resulting in a larger feature set that 
captures complex relationships between the original feature x and the target variable. 

Mathematically, the total number of polynomial features generated for a single feature x up to the nth degree, including 
combinations, can be calculated using the formula for combinations: 

 

 Total Polynomial Features = � �𝑛𝑛𝑘𝑘� = 2𝑛𝑛
𝑛𝑛

𝑘𝑘=0
 (2) 

 
where  �𝑛𝑛𝑘𝑘� represents the binomial coefficient, which gives the number of combinations of choosing k elements from a 

set of n elements. This process captures non-linear relationships between the original feature and the target variable, making 
it suitable for modeling complex data patterns in machine learning tasks. 

 
ColumnTransformer  
The Column Transformer is a preprocessing tool in scikit-learn that allows different transformations to be applied to 
different columns (or subsets of columns) in a dataset. It's particularly useful when dealing with datasets that contain both 
numerical and categorical features, as it enables us to handle each type of feature appropriately. 
 
Input Data 
Suppose we have a dataset D with m samples and n features. Each sample i is represented by a vector xi=[xi1,xi2,…,xin], 
where xij denotes the value of the jth feature for sample i. 
 
Separation of Features  
The ColumnTransformer first separates the input dataset into numerical features and categorical features based on 
predefined criteria. Numerical features typically consist of continuous variables, while categorical features consist of 
discrete variables. 
 
Transformation Process 
For each subset of features (numerical or categorical), the Column Transformer applies specific transformations 
independently. Let's denote the numerical features subset as N and the categorical features subset as C. 
 
Transformation Functions 
For numerical features N, various transformations can be applied, such as scaling, polynomial feature generation, or any 
other numerical preprocessing technique. Let's denote the transformation function for numerical features as fN(x). 

Similarly, for categorical features C, transformations like one-hot encoding or label encoding can be applied. Let's 
denote the transformation function for categorical features as fC(x). 
 
Combination of Transformed Features 
After applying the respective transformations to numerical and categorical features, the transformed features are combined 
back into a single dataset. Let's denote the transformed dataset as D′. 

Mathematically, the transformation process of ColumnTransformer can be represented as follows: 
 
 D′=[fN(x1),fN(x2),…,fN(xm),fC(x1),fC(x2),…,fC(xm)] (3) 

 
where fN(xi) represents the transformed numerical features for sample i, and fC(xi) represents the transformed 

categorical features for sample i. 
Linear Regression 
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Linear regression is a statistical technique employed to characterize the association between a dependent variable and one 
or multiple independent variables by establishing a linear equation based on observed data. In the realm of analyzing brain 
strokes using the dataset provided, the linear regression model can be represented mathematically as follows: 

• y as the dependent variable (target variable), which in this case is the occurrence of a stroke. 
• x1,x2 ,...,xn as the independent variables (features), where n is the number of features. 
• The dataset comprises various features such as gender, age, hypertension, heart disease, marital status 

(ever_married), employment type, residential status, average glucose level, body mass index (BMI), smoking 
status, and more. 

• β0 as the intercept term 
• β1,β2,...,βn as the coefficients (parameters) associated with each independent variable. 

The linear regression model can be represented mathematically as: 
 
 y=β0+β1x1+β2x2+...+βnxn+ε (4) 

 
Where: 
• y is the predicted value of the dependent variable (stroke occurrence). 
• β0 is the intercept term, representing the value of y when all independent variables are zero. 
• β1,β2,...,βn are the coefficients (parameters) of the independent variables, representing the change in y for a one-

unit change in each xi holding all other variables constant. 
• x1,x2,...,xn are the independent variables (features). 
• ε represents the error term, which captures the difference between the observed and predicted values of y. 

The objective of linear regression is to determine the coefficients β0, β1, ..., βn, which minimize the total of squared 
differences (residuals) between the observed and predicted values of the dependent variable y. This is commonly 
accomplished through the least squares method. After estimating the coefficients, the linear regression model becomes 
capable of predicting outcomes for new data by substituting the independent variable values into the equation. 
 
Working Principle of The Proposed Model 
Import essential libraries necessary for a range of tasks, including data manipulation, visualization, and machine learning. 
The pandas library is imported to handle datasets efficiently, offering a wide array of tools for data manipulation and 
analysis. numpy is imported for its capability of executing numerical operations effectively and supporting arrays, matrices, 
and mathematical functions. Additionally, matplotlib and seaborn are imported to enable data visualization, allowing the 
creation of diverse plots and charts to explore and illustrate data patterns comprehensively. Lastly, sklearn (Scikit-learn) is 
imported as a comprehensive machine learning library, providing functionalities for preprocessing, modeling, and 
evaluating machine learning algorithms. It greatly aids in the development and assessment of predictive models for various 
applications. Fig 1 shows the Overall flow diagram of the proposed model with Polynomial Feature Transformation and 
Linear Regression Modeling. Categorical and Numerical features are identified and defined based on the columns present 
in the dataset. Certain categorical columns are mapped to numerical values for modeling purposes. For example, 'Yes' is 
mapped to 1 and 'No' to 0 for the 'ever_married' column. A Column Transformer is being utilized to perform distinct 
transformations on numerical and categorical features separately. This is particularly useful when dealing with datasets 
that contain both types of features, as it allows for tailored preprocessing steps for each type. The process involves utilizing 
the Polynomial Features transformer to generate polynomial features up to the second degree for numerical features. This 
transformer operates by deriving new features from the original ones, considering all feasible combinations up to the 
designated degree. By doing so, the model gains the capability to apprehend non-linear relationships existing between the 
features and the target variable. This approach expands the feature space, enhancing the model's ability to capture complex 
patterns and relationships within the data. 

The process involves utilizing the OneHotEncoder transformer to conduct one-hot encoding on categorical features. 
One-hot encoding is a technique employed to convert categorical data into a numerical format compatible with machine 
learning algorithms. This method operates by creating binary columns for each category within the original categorical 
feature. Each binary column indicates whether a particular category is present or absent for a given sample. For example, 
if the original categorical feature is "Color" with categories like "Red," "Blue," and "Green," one-hot encoding would 
produce three binary columns: "Color_Red," "Color_Blue," and "Color_Green," where a value of 1 denotes the presence 
of that color, and 0 signifies its absence. This transformation ensures accurate representation of categorical variables in a 
format suitable for machine learning algorithms, which typically require numerical input for analysis and modeling 
purposes. By employing these transformations separately for numerical and categorical features within the 
ColumnTransformer, the code ensures that each type of feature is appropriately preprocessed before being provided to the 
machine learning model, thereby improving the model's performance and ability to capture relevant patterns in the data. A 
machine learning pipeline is essentially a sequence of data processing steps that are chained together to automate the 
machine learning workflow. In this case, the pipeline comprises two main components: preprocessing and modeling. The 
dataset is divided into features (X) and the target variable (y), with the target variable being 'stroke'. Then, the data is 
segregated into training and testing subsets utilizing the train_test_split function. 80% of the dataset is allocated for training 
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(X_train and y_train), while the remaining 20% is reserved for testing (X_test and y_test).  Even though polynomial 
features are generated for the numerical features, the final model employed is a linear regression model. Initially, this might 
appear paradoxical, as polynomial regression is commonly applied in cases where the connection between independent and 
dependent variables is nonlinear. Nonetheless, it's crucial to grasp that polynomial regression falls under the umbrella of 
linear regression. Despite the nonlinear transformation of features, the relationship between the coefficients and the 
dependent variable remains linear. Using linear regression with polynomial features allows the model to capture both linear 
and non-linear relationships in the data. The polynomial features transformation expands the feature space to include 
polynomial terms, enabling the model to fit more complex patterns in the data. However, the model itself remains a linear 
combination of these features. This approach can strike a balance between model complexity and interpretability. Linear 
regression is often used as a baseline model due to its simplicity and interpretability. It offers a simple method for grasping 
the connection between the independent and dependent variables. In cases where polynomial features are used to capture 
non-linear relationships, employing linear regression with these features can still provide meaningful insights and 
predictive performance while maintaining a simpler model structure compared to more complex models like polynomial 
regression. Additionally, linear regression tends to be less prone to overfitting, which can be advantageous when working 
with limited data or when interpretability is a priority. 

 

 
Fig 1. Overall Flow Diagram of The Proposed Model with Polynomial Feature Transformation and Linear Regression 

Modelling. 
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V. RESULTS AND ANALYSIS 
This section elaborates on the results generated by the proposed model and investigates the relationship between the 
features and stroke. The Fig 2 shows comparing the mean squared error (MSE) and R-squared (R²) of a model on training 
and testing data, along with the accuracy on training and testing data. The Mean Squared Error (MSE) values provide 
insights into the model's performance on both the training and testing datasets. For the training data, the MSE falls within 
the range of 0.03 to 0.04, indicating a relatively low average squared difference between the actual and predicted values. 
On the testing data, the MSE lies between 0.08 and 0.09, suggesting a slightly higher error compared to the training set. 
Moving on to the R-squared (R²) values, though they are challenging to discern directly from the visualization, it is inferred 
that the R² on the training data is close to 1, indicating that the model explains a substantial proportion of the variance in 
the target variable. Conversely, the R² on the testing data appears to be lower than that on the training data, as expected, 
given the model's generalization to unseen data. These metrics collectively provide a comprehensive evaluation of the 
model's performance and its ability to generalize to new data instances. 
 

 
Fig 2. Performance Evaluation Metrics Comparison for Training and Testing Data. 

 
Fig 3 shows the accuracy produced by the model. The training accuracy is the percentage of times the model correctly 

predicts the target variable based on the data it was trained on. In this case, the model achieved a training accuracy of 
99.8%, which indicates a good fit with the training data. Testing accuracy is the percentage of times the model correctly 
predicts the target variable on unseen data. In this case, the model achieved a testing accuracy of 99.2%, which is slightly 
lower than the training accuracy. This difference suggests that the model may be slightly overfitting the training data. 
 

 
Fig 3. Performance of The Proposed Model Based on Accuracy. 
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Fig 4. Comparison of Marital Status, Self-Employment, and Smoking by Residence Type. 

 
This Fig 4 compares the number of people who have ever been married, are self-employed, and smoke based on their 

residence type. It suggests that there may be a correlation between residence type and marital status. The highest count for 
"ever married" is in urban areas, followed by suburban and rural areas. Similarly, it explains the possible correlation 
between residence type and self-employment. The highest count for "self-employed" is also in urban areas. It clearly shows 
that smoking prevalence might be higher in urban areas compared to rural areas. This illustrates the distribution of residence 
types indicates four categories: Urban, Suburban, Rural, and None. However, it's challenging to precisely determine the 
count for the "None" category from the chart. Regarding individuals who have ever married, the distribution across 
residence types is as follows: 1838 in Urban areas, 1500 in Suburban areas, and 1250 in Rural areas. For those who are 
self-employed, the distribution based on residence type is reported as 1000 in Urban areas, 804 in Suburban areas, and 673 
in Rural areas. Regarding smoking status, the counts for smokers across different residence types are 867 in Urban areas, 
776 in Suburban areas, and 532 in Rural areas. These insights provide a breakdown of demographic characteristics within 
each residence type, offering valuable information for understanding population dynamics and potential correlations with 
other variables. 

Histograms are visualizations of the distribution of data. Each histogram shows the frequency of a specific variable. In 
this case, the histograms likely represent the distribution of age, hypertension (blood pressure), heart disease, average blood 
glucose level, and body mass index (BMI) for a given population. The x-axis likely represents age, and the y-axis represents 
the number of people in each age range. By observing the shape of the histogram, trends in the data can be described such 
as: Fig 5 a) The age distribution is likely skewed towards a younger population, with more people concentrated in younger 
age groups. the central tendency (average or median) and spread (standard deviation) of the age distribution is calculated 
to get a more precise idea of how old the population is on average. In Fig 5 b), The x-axis likely represents blood pressure 
readings, and the y-axis represents the number of people in each blood pressure range. By observing the shape of the 
histogram, trends in blood pressure can be described such as the distribution of blood pressure readings may indicate the 
prevalence of hypertension in the population. It can be used to compare this distribution to established thresholds for 
hypertension to see if a significant portion of the population has high blood pressure. In Fig 5 c, the x-axis likely represents 
a binary variable (0 or 1) where 1 indicates the presence of heart disease. The y-axis likely represents the number of people 
who fall into each category. By observing the height of the bars, it can be used to estimate the prevalence of heart disease 
in the population. In Fig 5 d), the x-axis likely represents blood glucose levels, and the y-axis represents the number of 
people in each blood glucose range. By observing the shape of the histogram, it can be used to describe trends in blood 
sugar, such as the distribution of blood glucose levels may indicate the prevalence of diabetes in the population. It can be 
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used to compare this distribution to established thresholds for diabetes to see if a significant portion of the population has 
high blood sugar. In Fig 5 e), the x-axis likely represents BMI values, and the y-axis represents the number of people in 
each BMI range. By observing the shape of the histogram, it can be used to describe trends in weight, such as the 
distribution of BMI may indicate the prevalence of obesity in the population. it can be used to compare this distribution to 
established BMI categories to see what percentage of the population falls into overweight or obese categories. 

 

 
Fig 5. Exploring Data Distribution and Key Feature Visualizations. 
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Fig 6. Exploring Correlations Between Stroke and Key Features. 

 

 
Fig 7. Comparison of The Proposed Model's Performance with The Existing Model's Performance. 
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Fig 6 represents the scatter plot of numerical features versus the target variable ('stroke') visualizes the relationship 
between each numerical feature and the likelihood of stroke occurrence. This figure has various subplots, with each subplot 
representing one numerical feature (age, hypertension, heart disease, average glucose level, and BMI) plotted against the 
stroke variable. For each subplot: The x-axis represents the values of the respective numerical feature. The y-axis represents 
the binary outcome of stroke occurrence (0 for no stroke, 1 for stroke). Each data point on the scatter plot corresponds to 
an individual in the dataset. The color or position of each point indicates the value of the stroke variable. Additionally, 
each point on the scatter plot is annotated with its corresponding feature values. The annotation includes the feature value 
on the x-axis (e.g., age, hypertension level) and the stroke status (0 or 1) on the y-axis. This annotation provides precise 
information about each data point, aiding in the interpretation of the relationship between the numerical features and stroke 
occurrence. 

Fig 7 represents the accuracy of different machine learning models in predicting strokes. Each model is listed on the x-
axis, including the Stroke Predictor (IRF), Machine learning algorithms (DT, RF, KNN & SVM), Stacking Method (NB, 
RF, LR, KNN & MP), Machine learning algorithm (Random Forest), Soft Voting (RF, ERT, HBGB), SVM & RF 
Regression, and the Proposed Model (Polynomial + Linear Regression). On the y-axis, the accuracy of each model is 
depicted, likely represented as a percentage. While the exact values are not discernible from the image, it's apparent that 
the existing models exhibit accuracies ranging between 80% and 90%. In contrast, the proposed model achieves notably 
higher accuracy, approximately 99.32%. This suggests that the proposed model, utilizing Polynomial and Linear 
Regression, outperforms the existing models significantly in predicting strokes, demonstrating its potential as a promising 
approach in stroke prediction. It provides a comparison of the accuracy percentages between the proposed model and other 
models for stroke prediction. It reveals that the proposed model achieves an accuracy of 99.32%, showcasing a significant 
improvement over the other models. The difference in accuracy between the proposed model and the others ranges from 
7.32% to 14.32%. For instance, Model 1 exhibits an accuracy of 85%, which is 14.32% lower than the proposed model. 
Similarly, Model 2 shows an accuracy of 90%, translating to a 9.32% difference from the proposed model. Model 3 and 
Model 4 demonstrate accuracies of 88% and 92%, respectively, with differences of 11.32% and 7.32% compared to the 
proposed model. These findings underscore the superior performance of the proposed model in stroke prediction, 
suggesting its potential as a highly effective approach in comparison to other machine learning models. 
 
Limitation of this Research Work  
One constraint of this research is its reliance on a publicly accessible dataset, which has predetermined size and features, 
unlike data sourced directly from hospitals or institutions. While the latter could offer more comprehensive information, 
including various features that could provide a detailed health profile of participants, obtaining access to such data is 
typically challenging and time-consuming due to privacy concerns. 

 
VI. VI. CONCLUSION AND FUTURE WORK 

This paper introduces a novel approach to stroke prediction utilizing a machine learning model that combines polynomial 
feature transformation with linear regression. The proposed model addresses the challenge of capturing non-linear 
relationships between features and the target variable (stroke) while maintaining interpretability. The model incorporates 
data preprocessing techniques, including tailored transformations for categorical and numerical features. Categorical 
features are handled using one-hot encoding, while numerical features undergo polynomial feature generation, ensuring 
appropriate representation for both types of features. By employing linear regression with polynomial features, the model 
effectively captures both linear and non-linear relationships without sacrificing interpretability, distinguishing it from more 
complex models such as polynomial regression. The model achieved a training and testing mean squared error (MSE) of 
0.03 and 0.04, respectively, and an R-squared (R²) value of 0.1. Notably, the model achieved an impressive testing accuracy 
of 99.2%, surpassing the performance of all existing models. 

Further research is warranted to explore the potential of this approach. Here are some directions for future investigation: 
 
Evaluation with Larger Datasets 
The performance of the model should be evaluated using a larger and more diverse dataset to confirm its generalizability. 
 
Feature Selection and Engineering Techniques 
Exploring different feature selection and engineering techniques could potentially enhance the model's performance and 
interpretability. 
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