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Abstract – For the purpose of ensuring a secure, dependable and affordable performancealong with clean energy in 
electric vehicles, the estimation of the precise state of charge of LIB is very important. In this article, Gaussian Process 
Regression with different kernel functions-based SOC prediction is proposed and their performance with good health and 
well-beingare evaluated and analyzed. A useful benefit of employing GPR is the ability to quantify and estimate 
uncertainties, allowing for the evaluation of the SOC estimate's dependability. The kernel function serves as a crucial 
hyperparameter that improves GPR performance. GPR considers the temperature and voltage of the battery, which are 
independent of one another, as their respective input parametersthat relates Industry, innovation and infrastructure where 
target-dependent variable is battery SOC. Initially, the training process involves determining the ideal hyperparameters of 
a kernel function to accurately represent the characteristics of the data. The accuracy of predicting SOC of the battery is 
evaluated using test data. According to the simulation outcomes, the squared exponential kernel function-based GPR 
estimates SOC with high accuracy and lower RMSE and MAE which ensures energy efficiency and quality education. 
 
Keywords – State of Charge, GPR, Kernel Function, RMSE, LIB-Lithium Ion Battery, Energy Efficiency and Quality 
Education.  
 

I. INTRODUCTION 
The energy crisis, vehicle emissions, and other associated issues have gained prominence since the turn of the 21st 
century as related to SDG8-Decent work and economic growth, and as a result, there is now general agreement that 
carbon emissions must be reduced as stated in SDG11-for Sustainable cities and communities. Ecologically sustainable 
automobiles demonstrate that transportation has facilitated the emergence of unprecedented growth opportunities [1]. The 
global interest in new energy cars is attributed to its "zero-emission" characteristic. Moreover, the technological 
advancement of fully electric vehicles (EV)is remarkably rapid. The major factor contributing to this issue is the core 
energy storage technology used in EV, specifically the lithium-ion battery (LIB) [2]. With its superior features of large 
capacity, prolonged cycle life, greater specific energy and power density, and intrinsic absence of memory effect, LIB are 
expected to supplant alternative battery chemistry and emerge as the most favoured energy source for EV. Table 1 
presents a statistical comparison of LIB and alternative battery chemistry. Implementing specialized management 
strategies for LIB is essential to reduce the degradation of battery efficiency and avoid the risk of serious malfunctions or 
explosions [3]. 
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Table 1. Comparison Of Various Batteries Used in EV Application 

  
Accurate monitoring of the state of charge (SOC) of the battery is crucial for enhancing battery efficiency and 

prolonging battery life [3]. SOC is stated as the ratio of the available useful capacity to the rated battery capacity when 
the LIB is completely charged.Due to the fact that it has the ability to prevent the battery from being overcharged or 
discharged, a precise SOC estimate is essential for the battery management system [4].Through the examination of the 
measurable parameters of the battery, such as its voltage, current, and temperature, it is possible to infer the SOC in 
retrospect. Variables such as the deterioration of the battery, differences in the temperature of the surrounding 
environment, a variety of vehicle operating situations, and other components of uncertainty may have an impact on this 
estimate. Therefore, accurately determining theSOC is an intricate and challenging task [5]. 

Traditionally, the most common methods for estimating SOC are the lookup table [6] and the Ahmethods [7]. These 
approaches are well recognized to have specific constraints.  To analyse the SOC curve related with open-circuit voltage 
(OCV), it is necessary to maintain a static situation for a longer period of interval. Conversely, Coulomb counting 
techniques seek to ascertain the underlying SOC by taking into account the accumulated inaccuracy. Advanced 
methodologies, such as adaptive filtering algorithms, in conjunction with diverse modelling of battery, are frequently 
used to compute the SOC of a battery by taking into account of the LIB parameters [8,9]. For instance, the Kalman Filter 
[10, 11], as well as the Particle Filter [12], and H infinity filter [13]. Despite significant advancements in contemporary 
sensor technology, it remains unfeasible for model based and filter-based methods to accurately quantify SOC outside 
laboratories under controlled conditions [14]. The primary high-order algorithms used for predicting SOC are data-based 
schemes. SOC estimation commonly utilizes machine learning approaches such as deep neural networks [15] and AI 
algorithms includingSupport Vector Machines [16], Ensembler [17] and Extreme Learning Machine [18]. 

The major drawback of this algorithms is that they does not explicitly quantify the uncertainty in estimation. Gaussian 
Process Regression (GPR) method provides a versatile and resilient framework for estimating the SOC forecast 
probability distribution, as opposed to a single point estimateGPR is trained offline using the prior battery data and 
further used to predict the SOC online. An intrinsic advantage of GPR is its capacity to provide analytically controllable 
deduction utilizing complex closed-form equations. Moreover, this approach is crucial data based method that removes 
the necessity of comprehending the physical battery composition. Henceforth, this method can be utilized with ease in 
order to compute the SOC of a wide variety of battery types that are equipped with a variety of chemical compositions 
[19-20]. This paper intends to examine the effectiveness of the SOC estimate approach for LIB batteries using GPR. 

 Lead 
acid 

Nickle 
Cadmium  

Nickle Metal 
hydride 

LIB 

LFP NMC LTO LCO LMO 

Specific 
Power(W/kg) 80-100 120-150 150-450 180-220 180-270 VH 220-330 160-230 

Specific 
energy(Wh/kg) 30-50 35-80 60-120 120-200 150-220 60-110 120-220 250-360 

Cycles(*100) 3 to 5 8 to 20 3 to 15 20-80 20-25 40-90 10 to 22 VH 

Efficiency ~75 ~80 ~85 ~92 ~94 ~95 ~92 ~95 

Self-discharge rate Medium High High Less Less Very 
Less Less Very 

Less 
Memory effect Less High High Very 

Less 
Very 
Less 

Very 
Less 

Very 
Less 

- 

Cost(EUR/kWh) ~255 ~540 ~M-H ~425 ~985 ~625 ~M-H ~M 

Operating Range (-20±45) (0±50) (0±50) (-20±40) (-20±50) (-40±60) (-20±45) (-40±85) 

Toxicity High High Less Less Medium Less Medium Less 

Recycling level Complete Partial Partial Partial Partial Partial Partial - 
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Furthermore, we investigate the influence that the selection of the kernel function has on the precision of the estimation 
performed. 

This paper includes five sections including introduction. Section 2 explains the GPR and the section 3 discuss the 
proposed GPR based SOC estimation. Section 4 presents an examination and analysis of the obtained results, followed 
by a conclusion drawn in section 5. 

 
II. GAUSSIAN PROCESS REGRESSION 

The Gaussian process (GP) regression is a regularly used probabilistic predictive model for regression tasks [21]. Under 
the premise that the function to be learned is obtained from a Gaussian process, this approach is considered non-
parametric. Adopting this assumption enables the model to produce predictions with a well specified degree of 
uncertainty, which is advantageous for tasks such as active learning and decision making that consider uncertainty. 

Formally, the GP regression model may be expressed mathematically as follows. D  enote the input data points 
x1,x2,...,xn, where xi∈Rd is a vector with d dimensions. Designate y1,y2,...,yn as the output values, where (yi∈R) is a scalar. 
The GP regression model postulates that the function (f), which establishes the relationship between the inputs 
parameters and target outputs, is derived from a GP characterized by a mean (μ) and a covariance (k). The probability 
distribution of (f) at a particular test point set(x*) is denoted as  

 
 𝑓𝑓(𝑥𝑥∗)~𝑁𝑁(𝜇𝜇(𝑥𝑥∗),𝐾𝐾(𝑥𝑥∗, 𝑥𝑥∗))  (1) 

 
Kernel functions are commonly specified to define the mean and covariance. Table 2 lists the kernel functions 

utilized in GPR. 
 

Table 2. Various Kernel Functions Of GPR 

Exponential  𝑘𝑘(𝑥𝑥, 𝑥𝑥 ,) = 𝑒𝑒𝑥𝑥𝑒𝑒 𝑥𝑥−𝑥𝑥,

𝑙𝑙
 

Squared Exponential 𝑘𝑘(𝑥𝑥, 𝑥𝑥 ,) =𝜎𝜎2𝑓𝑓exp [−1
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Matern 5/2 
𝑘𝑘(𝑥𝑥, 𝑥𝑥′) =
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𝑙𝑙
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Matern 3/2 
𝑘𝑘(𝑥𝑥, 𝑥𝑥′) =

𝜎𝜎2 �1 +
√3∥𝑥𝑥 − 𝑥𝑥′∥

𝑙𝑙
� exp �−
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�
 

Rational Quadratic 𝑘𝑘(𝑥𝑥, 𝑥𝑥′) = 𝜎𝜎2 �1 +
∥𝑥𝑥 − 𝑥𝑥′∥2

2𝛼𝛼𝑙𝑙2
�
−𝛼𝛼

 

  
With the help of Bayesian inference, the GPR model determines the distribution of (f) being probably responsible for 

the generation of the training data (x, y). The posterior distribution of (f) is calculated from the data as follows: 
 
 𝑒𝑒(𝑓𝑓|𝑥𝑥,𝑦𝑦) = 𝑒𝑒(𝑦𝑦|𝑥𝑥, 𝑓𝑓)𝑒𝑒(𝑓𝑓)𝑒𝑒(𝑦𝑦|𝑥𝑥) (2) 
 

Given the function f, the equation (y|x,f) represents data probability., where The marginal probability of the data is 
p(y|x) and the prior distribution of f is p(f). Upon obtaining information on the posterior distribution of function f, the 
model can make predictions at further test points x* by computing the posterior predictive distribution, which is properly 
defined as:  
 
 𝑒𝑒(𝑓𝑓∗|𝑥𝑥∗,𝑦𝑦, 𝑥𝑥) = ∫ 𝑒𝑒(𝑓𝑓∗|𝑥𝑥∗, 𝑓𝑓)𝑒𝑒(𝑓𝑓|𝑦𝑦, 𝑥𝑥)𝑑𝑑𝑓𝑓 (3) 
 

This distribution offers a quantification of the inherent uncertainty in the forecast, therefore proving valuable for 
applications such as active learning and decision making that takes into account uncertainty.  Exact specification of the 
prior mean and prior covariance is required. The specification of the covariance is provided as a kernel object. The 
optimizer maximizes log-marginal-likelihood to improve kernel hyper-parameters during fitting. This maximization 
procedure is a non-convex optimization with several local optima, necessitating the restart of the optimizer many times. 
The first iteration begins with the initial hyper-parameters, and follow iterations employ randomly chosen hyper-
parameters within the permissible range.  
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III. PROPOSED GPR BASED SOC ESTIMATION 

 
Fig 1. Proposed GPR Based SOC Estimation Methodology. 

 
This section outlines the specifics of the process for estimating the SOC using GPR. As stated in reference [22], the 

SOC is defined as remaing available capacity of battery. Specifically, the completely depleted battery measures a SOC of 
0%, which subsequently rises during the charging process. Accordingly, the completely charged battery achieves a SOC 
of 100%. As illustrated in Fig 1, the approach primarily has two components, namely training and testing. The suitable 
hyperparameters of the chosen kernel are estimated during the training phase by the conjugate gradient method. 
Significantly, eliminating the characteristic sample mean standardizes the training dataset SOC values to zero. 
Subsequently, the SOC is calculated in real-time by analyzing battery parameters namely current, voltage, and 
temperature [23-24]. In more technical terms, actual SOC is equivalent to estimated SOC. The trained GPR model with 
reduced error is tested using the new data sets considered under various environmental temperatures [25]. 
 

IV. SIMULATION RESULTS AND DISCUSSION  
McMaster University in Hamilton provides training and testing data. This study tested a freshly developed 3Ah LG HG2 
cell in an eight-cubic-foot thermal chamber utilizing a 75 amp, 5-volt Digatron Firing Circuits Universal Battery Tester 
channel. This methodology guaranteed that the measurements of voltage and current were precise within a range of 0.1% 
of the whole scale. The training dataset comprises a single run of experimental data obtained during a driving cycle, in 
which the battery-powered electric automobile was kept at a constant temperature of 25 degrees Celsius. An estimated 
200,000 data points are designated for training purposes, with 30000 specifically dedicated for validation. Each set of 
four experimental data sequences from driving cycles at -10°C, 0°C, 10°C, and 25°C has about 20,000 data points. The 
dataset is normalized using min-max normalization before GPR model training and testing. R squared, and MAE are 
used to evaluate the suggested machine learning algorithms. After creating the model using the training dataset, 
performance measures were calculated using test data. To reduce overfitting, K-fold cross-validation was devised. K is 7 
due to dataset limits. This study uses MATLAB 2024A's machine learning tool for assessment.   

An evaluation of the performance of GPR with a Matern52 kernel function is conducted by examining the graph in 
Fig 2. This graph illustrates the correlation between the minimum objective and the number of function evaluations. The 
minimum objective is the lowest value attained based on the objective function. As the number of function evaluations 
rises, the minimum objective may demonstrate either a fast or gradual convergence rate. Effective optimization is 
indicated by the convergence of both observed and estimated minimal objectives to a similar value. Examining the graph, 
it is evident that the projected objective function has a persistent trend of both growth and decline until the fifth iteration. 
Later, the observed and estimated values of the function converge to the same value. The maximum number of function 
evaluations conducted is 30. 
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Fig 2. Function Evaluations Vs Minimum Objective Plot Ofgpr with Matern 52 Kernel. 

 

 
Fig 3. Objective Function Model of GPR With Matern 52 Kernel. 

 
Depicted in Fig 3 is the objective function model of GPRMatern 52 kernel. The observed data points represent the 

ensemble of input variables (current, voltage and temperature) that make up the objective function. The model mean is 
the prediction of the output for a given input using the existing model. Each next point dictates the inputs that are 
selected for the next optimization, and the next feasible point is chosen by meeting all the optimization requirements. 

Similar to GPR with matern52 kernel, GPR is trained with squared exponential and rational quadratic kernel function 
and their training performance are plotted in Fig 4 to 7. Fig 5 shows Objective Function Model of GPR with Squared 
Exponential Kernel. 

 

 
Fig 4. Function Evaluations Vs Minimum Objective Plot of GPR with Squared Exponential Kernel. 
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Fig 5. Objective Function Model of GPR with Squared Exponential Kernel. 

 

 
Fig 6. Function Evaluations Vs Minimum objective plot of GPR with Rational Quadratic Kernel. 

 

 
Fig 7. Objective Function Model of GPR With Rational Quadratic Kernel. 
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Based on the Fig 6 and 7, it is evident that the calculated objective and observed objective reach convergence at 
eighth function evaluations, but fail to converge beyond that point. Significantdisparity exists between the minimum 
observed objective and the computed minimum objective, suggesting a poor fit. Fig 8 shows Prediction of SOC using 
GPR with Matern52 kernel for Testing Datasets At –Various Ambient Temperature. Fig 9 shows Prediction of SOC 
using GPR With Squared Exponential Kernel for Testing Datasets at Various Ambient Temperature. Fig 10 shows 
Prediction of SOC using GPR with Rational Quadratic Kernel for Testing Datasets at Various And 25°C Ambient 
Temperature. 

 

 
Fig 8.  Prediction of SOC using GPR with Matern52 kernel for Testing Datasets At –Various Ambient Temperature. 

 

 
Fig 9. Prediction of SOC using GPR With Squared Exponential Kernel for Testing Datasets at Various Ambient 

Temperature. 
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Fig 10. Prediction of SOC using GPR with Rational Quadratic Kernel for Testing Datasets at Various And 25°C Ambient 

Temperature. 
 

 
Fig 11. RMSE plot of SOC Prediction Using GPR with Matern52 kernel During Testing. 

 

 
Fig 12. RMSE plot of SOC Prediction Using GPR with Squared Exponential Kernel During Testing. 
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Fig 13. RMSE Plot of SOC Prediction Using GPR With Rational Quadratic Kernel During Testing. 

 
The RMSE is used as the performance metric to evaluate the testing performance of GPR in the presence of different 

kernel functions. Figs 11-13 presents the visual representation of the findings. The data presented in Figs 11-13 
conclusively demonstrate that the GPR with aMatern52 kernel function effectively evaluates the SOC of the battery with 
a reduced prediction error. 
 

V. CONCLUSION 
A GPR-based SOC estimate approach for Li-ion batteries is tested utilizing multiple kernel functions. The impact of 
kernel function selection on estimating precision is examined in this work. Simulation findings show that the GPR 
calculates SOC accurately with an RMSE of less than 0.02 using the Matern 52 kernel for a changing charging-
discharging pattern with fluctuating ambient temperature. Furthermore, when employing the squared exponential and 
rational quadratic methods for a constant charge-discharge current profile, the RMSE is approximately 0.025, surpassing 
that of the Matern52 kernel.  The objective of our future work is to improve the method for SOC using the 
GPRframework. This will be achieved by including the decrease in battery capacity, therefore effectively tackling the 
problem of battery aging. 
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