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Abstract – The intended effect of the investigation is to provide sophisticated prediction and decision-making models in 
order to optimize service delivery and improve the Quality of Experience (QoE) for users. This research tackles the 
problems that are associated with job offloading in edge computing settings. In order to reduce service latency and improve 
overall performance, the Bi-Directional Long Short-Term Memory (B-LSTM) model is used. This model provides the 
ability to forecast task creation and server load. In order to accommodate the particular qualities of different devices, the 
Selective Objective Offloading Decision (SOOD) approach is presented. This method makes use of the TOPSIS 
methodology to turn server assessment into a decision-making issue that involves several criteria. A considerable increase 
of 98.4% in user quality of experience is achieved by the SOOD paradigm. In addition, the Rapid Offloading Decision 
(ROD) model is presented in order to manage unexpected work patterns. This is accomplished by using the log information 
of surrounding devices, which results in instantaneous and dependable offloading choices. Through the usage of prediction 
algorithms and selective decision-making, this research gives a complete strategy to improving the efficiency of edge 
computing. The goal of this technique is to maximize the utilization of servers and the user experience. 
 
Keywords – IoT, Deep Learning, B-LSTM, QoE, SOOD. 
 

I. INTRODUCTION 
Computational nodes are devices that process the data that they generate or acquire from the environment. These devices 
can be things like cell phones, laptops, desktops, Internet of Things (IoT) devices, sensor devices, etc. Due to recent 
developments in the configuration of these devices, the processing of the data mostly happens with the devices. But data 
analysis demands higher levels of processing, like fast Cloud computing has transformed contemporary businesses by 
offering crucial infrastructure and processing services, allowing devices to assign jobs to the cloud for processing and 
storage. In order to improve the availability and performance of services, edge computing deploys servers in close proximity 
to customers, resulting in decreased latency, lower energy use, and similar advantages to those provided by cloud computing. 
Nevertheless, in order to maximize server efficiency and enhance the Quality of Experience (QoE) for users, the process of 
job offloading to the edge must be carefully and strategically organized. Effective task prediction on the device and load 
prediction on the server are necessary for this. Conventional methods often result in longer service delays because of the 
time required to evaluate server status when a job is initiated. In order to tackle this issue, the Bi-Directional Long Short-
Term Memory (B-LSTM) model is used to forecast task creation and server load. Although generic offloading solutions 
provide a comprehensive solution, they fail to consider the unique characteristics of individual devices. In order to address 
this constraint, the suggested approach is the Selective Objective Offloading Decision (SOOD) technique, which use the 
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to assess server factors and convert them into a 
multi-criteria decision-making issue. The SOOD model has exceptional performance, attaining a 98.4% enhancement in user 
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Quality of Experience (QoE) in comparison to other models. Cloud settings are still faced with challenges due to irregular 
work patterns in specific devices, notwithstanding the gains made. In order to address this issue, the Rapid Offloading 
Decision (ROD) model is used, which leverages log data from nearby devices to provide prompt and dependable resolutions 
for devices that deviate from the norm. The ROD model efficiently manages unforeseen and limited occurrences, hence 
improving the precision of the offloading process. This study introduces a thorough strategy for transferring workloads to 
edge settings. It combines prediction algorithms and ranking approaches to enhance service delivery efficiency while 
ensuring a high quality of experience. response, heavy storage, and big data analysis. However, devices fail to achieve the 
desired output by the deadline due to their limitations in computation and storage. Cloud computing emerges as a solution 
to combat these challenges. Cloud technology will provide users with computer resources on client specific needs and on 
basis of price per service. The cloud provides services like storage, processing servers, networking, intelligence, and data 
analytics [1]. This facilitates the rapid development of the organisation by providing an instant platform according to the 
evolution of the application[2][3]. The overhead associated with the management of resources is transferred from the users 
to the cloud service providers. 
 
SaaS 
A method of providing applications and software’s over the Internet as a service is known as "Software as a Service" (or 
SaaS). Hosted service and on-demand software are some of the names for SaaS; all state that accessing software through a 
browser without owning it. The users will be able to utilise the software applications remotely through the internet facility. 
The client can benefit a lot with less investment and also avoid complicated software and hardware management by simply 
using software over the Internet instead of developing and monitoring the product. SaaS services are managed by a third-
party vendor and delivered to their users. Examples of SaaS are email, Google Workspace (formerly GSuite), Dropbox, and 
Salesforce. GoToMeeting, etc. 
 
PaaS 
PaaS (Platform as a Service) uses a similar delivery model to SaaS, with the exception that it offers a platform for developing 
software rather than delivering software over the internet. Since this platform is delivered over the internet, developers are 
free to focus on creating the software rather than having to worry about infrastructure, storage, software updates, or operating 
systems. PaaS clouds are frequently used by experts in the field of coding to quickly create, modify, and test new computing 
programs. Example: Windows Azure, Heroku, Google App Engine, OpenShift Users who use PaaS can manage and develop 
applications on a shared cloud platform without having to create and maintain the infrastructure typically needed for the 
process. Fig 1 shows  Types of Cloud Computing. 
 

 
Fig 1. Types of Cloud Computing. 

 
IaaS 
In IaaS (Infrastructure as a Service), the hardware related to information technology is provided to the users so that it can be 
accessed remotely. A flexible service among all in cloud service is IaaS. Services for construction of the organization and 
productions of products are provided for lease by IaaS cloud providers. These IaaS components and services are available 
online for businesses. The user essentially rents the infrastructure and has access via an API (Application Programming 
Interface) or dashboard. IaaS is used for accessing and managing computer, networking, storage, and other services. Instead 
of having to purchase hardware outright, IaaS enables businesses to buy resources as needed and on demand. Examples are 
Rackspace, Cisco Metacloud, and Google Compute Engine (GCE). 
 
XaaS 
The abbreviation "XaaS," or "Everything as a Service," is one phrase you’ll probably hear more often in the world. XaaS 
refers to adaptable, customised apps and services that are entirely controlled by users and the data they supply through 
widespread input gathering devices like smart devices and IoTs. By utilising the data created over the cloud, businesses may 
develop more quickly, improve their customer interactions, and extend the limit of the customer purchase. XaaS is a crucial 
resource for the digitalized robotic enterprise. 
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The QoE of the device in the network is the major objective of developing the model. Each and every device has unique 
needs, and satisfying them is the ultimate goal. The overall performance of the network is increased by proper offloading 
decisions for individual devices. The energy of the device and load balance of the server have also been optimised by utilising 
machine learning and genetic algorithms. Selective offloading of decision-making for computational nodes yields a better 
solution than decision for the entire network. 

The task type is predicted for the device in advance; this will help prepare the server in advance and also make a decision 
on where to offload. The prediction is made based on the past history of the device and by analysing its request type and 
time. B-LSTM (Bi-Directional Long Short-Term Memory) is a learning algorithm that predicts the future upon analysis of 
past input. It takes input in both directions (forward and backward) and provides accurate predicted output. Load prediction 
on the server side has also been done to provide data for decision-making. 

 
Supervised Learning 
Supervised learning is learning the relationship between input data and output patterns by predicting the output based on the 
previous learned pattern. Training data are used to find the pattern and output for the new input data [4]. Support Vector 
Machine (SVM), Apriori, Neural Networks, Linear Regression, Particle Swarm Optimization (PSO), etc. are some of the 
well-known supervised algorithms. 
 
Unsupervised Learning 
Unsupervised learning is a model of learning without any initial training dataset. It usually reduces the dimension of the 
dataset by grouping them into labels based on the similarities, attributes, and differences [5]. Unsupervised algorithms are 
more complex than supervised algorithms, but they perform better in situations where prior knowledge is limited. K-means, 
Analytic Hierarchy Process (AHP), Hidden Markov Model (HMM), and clustering are some of the well-known unsupervised 
algorithms. 
 
Reinforcement Learning 
Reinforcement learning is a learning method based on the trial-and-error technique that consists of an agent and an 
environment. Agents act as learners and as decision-makers based on inferences from the environment [6]. Decision making 
functions in agents have policy functions that reward and punish based on the action of the previous state, which in turn 
supplies feedback for the next state. 
 
Prediction and Analysis Methods 
Cloud computing technology uses machine learning algorithms to solve a variety of issues. It offers suggestions for 
enhancing the cloud network’s overall operation by analyzing the network’s operation and forecasting numerous future 
events [7]. Offloading techniques involve choosing a server to handle the task; the server could be a device, an edge server, 
or a cloud server. ML algorithms support decision-making by examining network workflow and feedback from devices and 
servers. To identify the in-depth analysis of the task processing and modify the server selection based on feedback, ML 
algorithms like Deep Reinforcement Learning (DRL) and Convolutional Neural Networks (CNN) are implemented. An 
analysis model based on machine learning is implemented to eliminate security related issues. 

Predictive model is also been achieved by using machine learning algorithms. By taking consideration on historical and 
recent information on system, predictive modelling uses machine learning and data interpretation to predict and give Intel 
on events occurs in future [8]. Decisions regarding offloading are based on a variety of variables, the values of which change 
over time. Analyzing changes and predicting future values will provide data for the algorithms that make decisions. Some 
of the problems that are resolved by using prediction models include task generation, load prediction, and path finding. In 
cloud computing, prediction algorithms like decision trees, K-means, random forests, and time series models are frequently 
used. 

Individual devices are noted for their task requests, and the offloading decision is made by considering the server status 
by agent. Deep reinforcement learning on the status of the server and the experience of the device is monitored and stored. 
A penalty and reward are given based on the experience of the device and their request. A constant update of this status is 
forwarded to the agent for use in the decision-making algorithm. The ranking of the server for the device request by applying 
the TOPSIS algorithm picks the appropriate server. The ranking of servers is done by taking the priorities of the device 
request and then obtaining the values for servers from the agent. 

Rapid offloading decisions are applicable in certain scenarios where a new device joins the network and needs offloading 
decisions without conducting any analysis. This has also been used by devices with energy constraints, which need a fast 
result for offloading without compromising the result. A rapid decision is made with the help of a simple request from the 
neighbouring devices and cross verifying the received response. Network optimization is achieved, and the quality of the 
experience on the device is also increased by the proposed model. 

 
II. RELATED WORK 

Cloud computing is the on-demand servicing of customers throughout the world in different categories through the internet. 
Offloading tasks from the devices to the cloud for the needs of storage, processing, security, monitoring, controlling, and 
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many other services. Cloud server performance is improved by adding two new ideas Edge and Fog computing. Fog servers 
and Edge servers contribute to the fast connectivity of devices to the cloud by reducing the latency in communication and 
bringing almost every resource closer to the users. The selection of the server determines the quality of the experience on 
the devices. Many factors determine the selection process in a network, and many methods have also been developed. 

Zhao et al. [9] used an Auto Regressive Integrated Moving Average Back Propagation Selective Offloading model 
(ABSO) is used to find the computation capability of the edge nodes and select the best node for offloading. Selective 
offloading is done by this model, which uses linear prediction and non-linear prediction using Autoregressive Integrated 
Moving Average (ARIMA) and Back Propagation (BP) algorithms. The prediction of load and resource capacity of the 
servers is given by this model, which provides an accurate value for selecting the best server. A back propagation based 
neural network is developed to identify the fault and advance to the next round of prediction. 

For a multi-site heterogeneous cloud environment, Goudarzi et al. [10] implied a genetic algorithm to find by offloading 
to save energy and increase completion time. An initial population is created based on available servers that have limitations 
in completing the task in a timely manner, and then, based on training and prediction, their weightage is updated to analyse 
their limitations in solving the next task provided to them. The proposed Genetic Algorithm (GA) permits some random 
jumps when searching for the global optimum to avoid the local optimum problem and reduce the convergence time towards 
a global optimum. Reinforcement learning helps in each step of the algorithm to provide progressions for achieving the 
global optimum. 

Rodriguez et al. [11] applied the PSO algorithm to their consideration of obtaining a timely response for deadline-based 
tasks. They modified the PSO algorithm by adding parallel processing of virtual machines for each different task in a request. 
To address the heterogeneity problem, they utilised multiple Virtual Machines (VM) to perform different tasks in parallel.  

A similar solution is given by Huynh et al. [12] to solve the offloading problem in mobile edge computing by splitting 
the offloading problem into two: one computation resource allocation and a second computation offloading decision. Joint 
resource allocation and offloading models are used in multi-user, multi-server mobile edge computing by utilising the meta-
heuristic PSO algorithm. The first problem of computation resource allocation is solved using Karush–Kuhn–Tucker 
conditions, which will solve the energy consumption problem of devices. Binary PSO is applied for solving the computation 
offloading decision problem, which decides whether to offload to a remote server or solve within the device using available 
resources. 

The hybrid quantum behaved particle swarm technique was implemented by Dai S et al. [13] with two requirements: 
first, the total subcarrier is restricted; and second, the completion time must be smaller than the time required for local 
computing. The mixed integer nonlinear programming model with the shortest completion time is formulated. As the 
objective function is nonlinear and the constraints have integer terms, the problem is extremely complex. Two conditions 
are linked as the second condition is solved by the water filling algorithm, which in turn helps to solve the first condition. A 
hybrid quantum based PSO algorithm is developed to solve the objective problem and provide the shortest time to 
completion. 

In the work by Darbanian et al. [14], the best Fog Device is selected for the module placement based on the features and 
parameters of fog devices internal configuration. Authentication, confidentiality, integrity, availability, capacity, speed, and 
cost are the criteria that were used for classification of fog devices. Classifiers like Decision Tree, Random Forest, Extra-
trees, and AdaBoost are implemented to categorise the devices. Overall, better response time is increased by the classification 
of Fog Devices. 

Partial offloading for Augmented Reality (AR) tasks is done by using heuristic algorithms, and an integer-based PSO 
algorithm is developed by Liu et al. [15]. Partitioning the heavy tasks into subtasks and offloading them partially to the edge 
side and other less computational tasks to the user device itself a heuristic graph-based algorithm is used to cluster the tasks 
and send them to the edge; this will reduce the delay on multiple tasks. Improved PSO algorithm is used to find optimal 
solution by taking CPU allocated to the task and their distance and velocity of the particle. 

Similarly, Hui Qi et al. [16] applied three learning algorithms at different levels to achieve the overall performance of 
the multi-tier cloud architecture. First, k means algorithm is used to cluster the physical machines based on their availability 
in close range; second, the best cluster for a particular task is selected by using deep reinforcement learning, which uses the 
metric from the first algorithm; and the third step involves finding the optimal machine to serve the offloaded task is find by 
using the improved PSO algorithm. This model applies learning machine in cloud and also in edge to perform the proposed 
operation. 

 
III. METHODOLOGY 

Offloading Prediction Model 
A prediction model's objective is to find patterns in previous data and use those patterns to predict future occurrences with 
accuracy. Simple linear regression models and more sophisticated machine learning models like neural networks and 
decision trees can all fall into this category. Predicting the tasks or workloads that should be transferred from a device or 
system to a remote resource, such as a cloud server or edge computing device, is known as offloading prediction. Offloading 
is a popular method in distributed computing that boosts efficiency and uses fewer resources. A number of variables, 
including the present workload on the device, the processing power of the remote resource, the state of the network, and the 
priorities of the device, must be taken into account in order to create accurate offloading forecasts. To construct offloading 
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prediction models that analyse these variables and foretell which tasks should be delegated for optimum performance and 
resource utilisation, machine learning methods can be applied. These models can be improved over time to increase accuracy. 
They can be trained on historical data or in simulated situations. 
 
Recurrent Neural Networks 
A class of neural networks termed Recurrent Neural Networks (RNNs) is useful for modeling sequence data. RNNs can 
process input sequences using their internal state (memory), in contrast to feedforward neural networks. RNNs are recurrent 
in nature since they act on the similarly for all the information taken, and the outcome of the current input depends on the 
outcome of the prior computation. Prior to being sent to the following unit, the output is processed. By combining both 
inputs, the outcome is ultimately selected. The output from the neuron is decided by the input data and the output from the 
previous neuron, as this procedure helps in remembering the context of the information pattern. Prediction is achieved by 
using the pattern and upcoming input of the system.  

Fig 2 Illustrates how the RNN process the input of each state and predict the output using the previous state analysis. 
Application of RNN includes speech recognition, forecasting, and virtual assistant’s software’s.  weight of the input and 
hidden state are also been used to tune the prediction process. Tanh function is used for modeling the activation unit, which 
uses -1 to +1 as range for values.  

Any unfolding RNN is trained across a number of time steps, and the error gradient is determined as the total of all 
gradient errors over timestamps.  Since the chain rule is used to calculate the error gradients, the multiplicative term 
dominates over time, which has an explosive or disappearing effect on the gradient. Gradient clipping can be used to stop 
gradients from bursting. The gradients are clipped, as the name implies, if they cross a predetermined threshold. However, 
the issue of vanishing gradients still exists. Using relu and tanh makes this model slow and hard to process the inputs with 
long sequence.  
 
Long Short-Term Memory 

 

 
Fig 2. RNN Architecture [17]. 

 
Recurrent neural networks (RNN) can process time sequence data because they can simulate the connections between 

the initial and final states [17]. Unfortunately, the "long dependency" problem in the basic RNN architecture prevents the 
RNN from processing a lengthy sequence. LSTM network, which can learn long-term dependencies, thereby offers better 
prediction. In addition to the standard RNN cell, the LSTM cell's architecture includes three gates, a hidden state, and a 
hidden state, as shown in Fig 3. 

 

 
Fig 3. LSTM Architecture [17]. 
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The crucial characteristic is that those straightforward LSTM networks can store data that can be used for next cell 
operations. Long-term state is used by LSTM, which records, reads, and discards items meant for long-term storage as they 
traverse the network. The output produced as a result of current execution is preserved by the short-term state. Accessing, 
storing, and rewriting decisions are made based on an activation function. Arriving new pieces of data are either kept or 
discarded depending on the output and forget gates' decisions. The memory of the LSTM block and the state of the output 
gate produces the model decision. The output is then used as an input by the network once more to create a recurrent 
sequence. Four neural networks, often known as cells, and different memory building elements make up the chain structure 
of the LSTM. Cells and gates both play a role in memory modification and information retention. Three gates are present: 
 
Forget Gate 
The purpose of forget gate is to clear unwanted information in the cell state. The Weights of the inputs (present cell-xt and 
previous cell -ht-1), are multiplied for calculating the output on that stage. The result decides whether to store or clear the 
information from the cell state. Value 1 indicates related information, that can be processed further, and value 0 indicates 
unwanted information, that has to be cleared.  
 
Input Gate 
Initial input and information from the previous cell state are processed by the input gate. The sigmoid function is used to 
control the inputs ht-1 and xt, to filter the information as in the forget gate process. The tanh function, is implemented to 
create vector form from the two inputs. Finally, the product of vector and output of gate yield valuable information for the 
next gate or output gate.  
 
Output Gate 
The output gate processes the input from previous gates and produces output according to it. Using the inputs ht-1 and xt, 
the information is then filtered by the values to be remembered. Activation functions are applied to clarify the irregularities 
in inputs. Output gates also provide input for the next state by processing inputs and regulating the functions for obtaining 
the desired output. 

LSTM is implemented for workload prediction. Initially, each server in the cluster has its collected workload traces. The 
workload prediction model examines these traces and forecasts changes in workload throughout the ensuing period. The 
load balance server is then updated with a new allocation schedule. An LSTM-based encoder-decoder network and an output 
layer make up the model's two halves. In order to encode the time sequence data into the context vector, the encoder must 
first receive the time sequence data. The intermediate prediction results for the output layer are then produced iteratively by 
the decoder. The output layer then outputs the workload prediction values. 
 
B-LSTM Prediction Model 
B-LSTM is prediction model used to find patterns in sequential data by taking two hidden layers for increasing the accuracy. 
It considers both the past and future data for the prediction of future data. Forward hidden layer 𝐻𝐻𝑡𝑡

𝑓𝑓  and backward hidden 
layers 𝐻𝐻𝑡𝑡𝑏𝑏  takes the input in forward and backward order respectively and the output of this layer is combined and send to 
next layer.  

Forward layer is expressed as 
 
  𝐻𝐻𝑡𝑡

𝑓𝑓 = tanh �𝑊𝑊𝑥𝑥ℎ
𝑓𝑓 𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎ

𝑓𝑓 𝐻𝐻𝑡𝑡−1
𝑓𝑓 + 𝑏𝑏ℎ

𝑓𝑓� (1) 
 

Here 𝐻𝐻𝑡𝑡−1
𝑓𝑓 is the forward hidden state input, W is the weight matrix (𝑊𝑊𝑥𝑥ℎ

𝑓𝑓  is the weight merging input (x) to hidden layer 
(H)) in forward direction, 𝑏𝑏ℎ

𝑓𝑓  is a forward bias vector. 
Backward layer is expressed as 

 
  𝐻𝐻𝑡𝑡𝑏𝑏 = tanh �𝑊𝑊𝑥𝑥ℎ

𝑏𝑏 𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎ
𝑏𝑏 𝐻𝐻𝑡𝑡+1𝑏𝑏 + 𝑏𝑏ℎ𝑏𝑏� (2) 

 
Where 𝐻𝐻𝑡𝑡+1𝑏𝑏 is the backward hidden state input, W is the weight matrix (𝑊𝑊𝑥𝑥ℎ

𝑏𝑏 is a weight merging input (x) to hidden layer 
(H)) in backward direction, 𝑏𝑏ℎ𝑏𝑏 is a backward bias vector. 

Output is calculated as 
 

  𝑦𝑦𝑡𝑡 = 𝑊𝑊ℎ𝑦𝑦
𝑓𝑓 ℎ𝑡𝑡

𝑓𝑓 + 𝑊𝑊ℎ𝑦𝑦
𝑏𝑏 ℎ𝑡𝑡𝑏𝑏 + 𝑏𝑏𝑦𝑦2 (3) 

 
Where 𝑊𝑊ℎ𝑦𝑦

𝑓𝑓  gives the output of forward weighted matrix and 𝑊𝑊ℎ𝑦𝑦
𝑏𝑏  gives the output of backward weighted matrix. 

Learning rate is set as 0.01 as at 0.0001 the convergence rate is less and t a k e s  longer time to obtain optimal, at 0.1 
the fluctuation of loss is high which fall to false output. Fig 4 shows Working of B-LSTM. 

 



ISSN: 2788–7669 Journal of Machine and Computing 4(4)(2024) 

1085 
 
 
 

 
Fig 4. Working of B-LSTM [101]. 

 
Device Task Prediction 
A decision-making process is required in computational offloading systems following task generation, and there will be 
some lag time between task generation and the decision-making process. Despite being a dynamic and random process, task 
generation will have a strong relationship with time because of its long-term nature. As a result, the tasks are predicted for 
user device network time slot based on user device history, and service packages are loaded in advance of the actual tasks 
arriving (e.g., allocate the best computation server in advance through the decision model).  From the devices task 
information T1, T2, · · · Tn, the model is trained to predict more accurate value of the next task Tn+1. Hence, the model is 
effective in prediction only if | Tn+1 - T`n+1 |=0, i.e., predicted and actual values are more or less equal. 

Devices are initially set with priorities based on their requirements for edge service. Apart from general constraints like 
energy, delay, cost, etc., devices can set their operation-oriented priorities. For instance, healthcare device requests for 
storage are set with accuracy, reliability, and delay. A request for processing a scan report needs image processing; in that 
case, priority is set with accuracy, service type, and service time. [18] All devices are set priority for their request in 𝑟𝑟𝑖𝑖 ∈
 𝑓𝑓𝑓𝑓𝑓𝑓(𝑑𝑑𝑖𝑖). where 𝑓𝑓𝑓𝑓𝑓𝑓(𝑑𝑑𝑖𝑖). contains all possible predefined request types. Tasks produced by the devices according to certain 
parameters satisfy the SLA requirements. Different devices have various parameters, each with a different priority. Table 1 
displays many task-specific parameters, together with information on the parameters' priorities. This demonstrates that tasks 
are only satisfied when their unique parameter list is met. 

 
Table 1. Request Type of Different Application 

Type Priority Applications 
t1=Type of service 
t2=delay t3=cost per CPU 
t4=cost per storage 
t5=failure rate 
t6=accuracy 
t7=security 
t8=load 

(t4,t1,t2) Storage 
(t4,t2,t6) Medical record access 
(t2,t5,t1) Banking, critical application 
(t8,t2,t5) Continuous access application 
(t7,t6,t5) Privacy application 
(t2,t8,t2) General applications 
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Tasks are characterised in many ways; task identification is the first step in a prediction model. A task is allocated to the 
computational or storage server based on its nature. Tasks that are needed to store the data are simply satisfied by a server 
with a lower cost per storage, a high access rate, and security. Tasks that concern processing the data and real-time interaction 
are of different types. Identifying the type of task and setting the parameter for prediction will increase the accuracy of the 
offloading process. Fig 5 shows the process of task allocation based on the prediction of future tasks by the model. Upon the 
arrival of the real task, the error between the real task generated and the predicted task is compared with the threshold value. 
If the error is within the limit, then the task is offloaded as per the decision made by the agent; otherwise, a decision is made 
for the task using the ranking algorithm. The limit and the data from the new job are added to the model's training set. 

 

 
Fig 5. Task Prediction Model. 

 
Task Type Prediction Algorithm 

Input: 𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑤𝑤  past task request of size w 
Output: 𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝predicted task request type 
1. begin 
2. for each 𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑤𝑤 in the sequence  
3.            prepare the input set (𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑤𝑤 , 𝑠𝑠) 
4.            ℎ𝑡𝑡

𝑓𝑓  and ℎ𝑡𝑡𝑏𝑏are prepared 
5.            Run prediction using B-LSTM 
6.            Predict the outcome 𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 
7. If     𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 -  𝑡𝑡𝑡𝑡𝑝𝑝𝑎𝑎𝑡𝑡 < threshold 
8. offload according to cache 
9. update the Agent cache 
10. update the cache of device 
11. If     𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 -  𝑡𝑡𝑡𝑡𝑝𝑝𝑎𝑎𝑡𝑡 > threshold 
12.           perform ROD 
13. update cache of agent and device 

 
Serve Load Prediction  
The heterogeneous nature of edge servers allows them to offer service at many levels. Because not all servers will be able to 
meet a device's needs similarly, offloading decisions are made to select the best one. The cloud agent continuously evaluates 
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the performance of the servers in response to each device request to keep track of their status. Deep reinforcement learning 
learns the state of the servers including load prediction, latency, type of service, cost, accuracy, waiting time, success rate, 
etc. This server status E={E1, E2, E3, . . . En} provides the status for ranking process in SOOD algorithm . The cache of the 
agent contains the status and applied for Multi Criteria Decision Making (MCDM). Based on the results future prediction 
for the servers are made.  
 

Server Load Prediction Algorithm 
Input: 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑤𝑤  past load status of size w and 𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 predicted task 
Output: 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝predicted server load 
1. begin 
2. for each 𝑡𝑡𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝 in the range  
3. calculate the predicted selection by n tasks 𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 
4. 

𝑠𝑠𝑡𝑡 = �𝐶𝐶𝑠𝑠𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝
𝑛𝑛

𝑝𝑝=0

 

5. prepare the input set (𝑠𝑠𝑡𝑡, 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑤𝑤 ) 
6.            ℎ𝑡𝑡

𝑓𝑓  and ℎ𝑡𝑡𝑏𝑏are prepared 
7.            Run prediction using B-LSTM 
8.            Predict the outcome 𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝 
7. update the Agent server status 
9. update the cache of device 

 
If task prediction is not taken into account, poor offloading decisions may result in a load imbalance. The size of the task 

that has the probability of choosing the server for offloading will increase the prediction of load next time. The edge server’s 
monitoring system logs system information and performance metrics, including CPU usage, network usage, and the tasks 
that are currently being executed. The logged information can be used to forecast future server load. The historical data is 
used to predict the edge server load level (the number of standby queues on the edge nodes) using the load model. The 
predicted idle server may be chosen in preference as the offload computing node. The efficiency of the server is determined 
by its processing speed, queue capacity, and task rate. Tasks are assigned to servers by the scheduler depending on the 
specifications of each server, which vary. By effectively scheduling the jobs, server load prediction lowers the offloading 
error rate. B-LSTM uses the server parameters to forecast the state of the forthcoming server load, which helps to balance 
job distribution and keep the server load balanced. 

 
IV. RESULT ANALYSIS 

The Simulation is set up by using the Edgecloudsim package in Eclipse 2021. Edgecloudsim is an edge cloud network 
simulation setup created in Java. The network is configured with a single Cloud layer on which the Cloud agent runs, eight 
Edge servers at the Edge layer, and numerous devices at the device layer. Table 2 displays the configuration of the servers 
and devices. The tasks are generated randomly using a poisson distribution on devices with a capacity of 200 to 1000. Each 
device is divided into four categories: infotainment, computationally intensive, augmented reality, and health application. 
The distribution of tasks is based on the type of task and is random. While heavy computation gives more priority to CPU 
usage, delay, CPU count, and resource cost, health apps prioritize storage, storage cost, and delay. Priority in distribution 
is given to each type of device. 

 
Table 2. Configuration of Edge Server 

FACTORS METRICS 
Number of cores 16-20 
Million Instructions per second 60k – 100k 
Disk Size 10t-15tb 
Virtual Machines 10-16 
Operating System Linux 
Architecture X86 
Cost per BW 0.1-1.0 
Cost per Sec 0.30-0.50 
Cost per Mem 0.05-2.0 
Cost per Storage 0.1-2.0 
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Prediction Results 
Two measures, such as Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), are utilised for 
evaluating forecasting errors in order to determine the precision of the work. MAE is a measurement metric where the 
absolute error is derived using (3.13) and is the absolute value of the difference between the predicted value and the actual 
value. 
 
  MAE = 𝟏𝟏

𝐍𝐍
∑  𝐍𝐍
𝐢𝐢=𝟏𝟏 �𝒚𝒚𝒊𝒊

𝒑𝒑 − 𝒚𝒚𝒊𝒊𝒂𝒂� (4) 
 

Percentage of MAE is used in determine the precision of proposed model. Lower the value of MAPE indicates the 
model is performing better in prediction. It is defined as in 5. 

 

  MAPE = 𝟏𝟏
𝑵𝑵
∑  𝑵𝑵
𝒊𝒊=𝟏𝟏 �

𝒚𝒚𝒊𝒊
𝒑𝒑−𝒚𝒚𝒊𝒊

𝒂𝒂

𝒚𝒚𝒊𝒊
𝒂𝒂 � ∗ 𝟏𝟏𝟏𝟏𝟏𝟏% (5) 

 
In the above formula, predicted value is 𝑦𝑦𝑖𝑖

𝑝𝑝, the actual value is 𝑦𝑦𝑖𝑖𝑝𝑝 and N is the number of the predicted values in the 
dataset.  

The B-LSTM is trained first with historical data from the device, and the prediction is tested for accuracy before being 
deployed for real-time predictions. The request made by the device and devices similar to their operation are taken as train 
data. Fig 6  illustrates the accuracy of the training and tested data under 50 epochs. An accuracy rate of 90% is achieved at 
the minimum, and almost 96% is achieved at the maximum in the testing phase. This value is increased on further iterations 
with the real time prediction of task and load. Learning rate decide the gain ratio and accuracy of the model. A rate of 0 to 1 
is taken for training the model. Here 0.0001 is taken as learning rate is taken as learning rate for B-LSTM, as the time taken 
to train the model is also considered while setting the parameters. Fig  7 Shows the gain ratio comparison for different 
learning rates. As the number of iterations increases the gain ration also increases. On average gain ratio is achieved by 
0.0001. Prediction based on this rate gives more accuracy in short time. 

 

 
Fig 6. Training and Testing Accuracy. 

 
Task Prediction Analysis 
The tasks produced by terminal devices in an actual edge computing situation are closely tied to time and exhibit some 
degree of consistency and regularity. The task at t + 1 times is often predicted using a t times historical window. In the 
experiments, the history window is set to 50 and various optimization target thresholds. The B-LSTM prediction model can 
more accurately and thoroughly investigate the changing pattern of the historical data volume when the threshold value is 
set to minimal. However, this will result in a bigger prediction overhead and lengthen the B-LSTM model’s training period. 
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Fig 7. Analysis of Gain Ratios on Various Learning Rate and Iterations. 

 
Existing works on LSTM, PROPHET, and ARIMA  are taken for comparison on predicting the task creation in devices 

in order to assess the precision of our suggested model.  Due to changes in the task type and nature of operation, the prediction 
was originally less accurate and varied greatly. Later on, the prediction started to escalate and eventually reached 90% in 
almost all models. On subsequent iterations, the results were essentially identical to the actual challenge, and our model 
consistently outperforms competing models in terms of accuracy, averaging 98% on average. When the devices abnormally 
generate a completely different request of service at certain periods, the model may suffer some losses in prediction. 
However, since proposed model resolves it using subsequent methods for uncertain task generation, it is negligible in a real-
time situation. Fig 8 compares the MAPE rate of the proposed model with those of other models. Since the early results are 
inaccurate, as previously indicated, the value is high and steadily decreases over time. When compared to other models, 
proposed model has high accuracy, as shown by the result, which continuously maintains a minimum MAPE of 2%. 
Offloading choices based on this forecast improve the device’s QOE. By making this offloading decision based on our 
predictions, failure rate, delay, and processing time are reduced. 
 

 
Fig 8. MAPE Comparison on Task Type Prediction Accuracy. 

 
Performance Analysis 
The proposed prediction model is assessed for its performance. The model is deployed with a multi-user and multiple edge 
servers in a distributed manner. Each device produces several tasks across various periods. Initial server loads are low, and 
each server has a unique configuration and set of resources. The devices’ tasks are monitored and analyzed for prediction. 
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The task’s QoE qualities are described by QOEatt, and devices have varying QoE attributes depending on the task request 
(x). The suggested model’s objective is to determine the best offloading choice based on the qoeatt (x). The fundamentals of 
processing time, delay, failure rate, and device quality of experience are used to evaluate the model. Model is set with N = 
20 mobile users, each of device performing multiple tasks. The device’s local processing time is set at 3:75x10-7s/bit and its 
power consumption at 3.55 106 J/bit. Each task size will range from 10 to 35 MB. The bandwidth between a user and an edge 
server is set to 150 MB for both the uplink and the downlink, while actual bandwidth may vary depending on the condition 
of the network. An edge server’s CPU runs at a 9 108 cycle/s rate. The energy usage of the devices during transmission and 
reception is 1.60 106 J/bit. 100 episodes are taken to train the model. 
 

 
Fig 9.  Comparison on Server Utilization of the Models. 

 
Fig 9 shows the comparison of the percentage of server utilisation between different models. Server utilisation measures 

the amount of workload that is being distributed among the available servers over time. The balancing of load on the server 
is a crucial factor in making the offloading decision, as allocating tasks to an overloaded server will obviously increase the 
task queue. Unbalanced load allocation has downsides such as service failure and longer processing times. By anticipating 
the server’s load condition and distributing resources based on its value, the load distribution is 96% balanced. Proposed 
model performed both this allocation and prediction while keeping an eye on dynamic network changes. 
 

V. CONCLUSION 
This research introduces a very effective way for transferring tasks to edge computing settings. It tackles the difficulties 
associated with traditional approaches by using sophisticated prediction models. The B-LSTM model is used to optimize 
task and server load prediction, leading to a substantial decrease in service delays and an enhancement in overall 
performance. The suggested Selective Objective Offloading Decision (SOOD) model, using the TOPSIS technique, exhibits 
exceptional performance by taking into account the distinct attributes of each device. The SOOD model surpasses previous 
models with a remarkable 98.4% enhancement in user Quality of Experience (QoE), offering a more customized and efficient 
offloading solution. Nevertheless, the erratic characteristics of some devices continue to provide a barrier, requiring more 
innovation in this field. 
 

VI. FUTURE WORK 
Prospective studies need to focus on improving the flexibility and resilience of offloading models in edge computing, 
particularly in managing unexpected workload patterns. By delving into advanced machine learning approaches like 
reinforcement learning or hybrid models that include various prediction algorithms, one might potentially find more robust 
answers. Moreover, including real-time feedback systems to constantly improve offloading choices according to changing 
environmental parameters would be advantageous. To enhance the applicability of the presented models in different real-
world circumstances, it would be beneficial to broaden the research by include a wider variety of devices and distinct edge 
computing scenarios. 
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