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Abstract – Epilepsy is a neurological condition that is found in most people all over the world, and the ability to accurately 
anticipate seizures in epileptic patients has a significant impact on both their level of protection and their overall quality of 
life. This research proposes a unique patient-specific seizure prediction approach based on Deep Learning (DL) using long-
term scalp electroencephalogram (EEG) recordings to predict seizure onset. Preictal brain states should be adequately 
detected and differentiated from the prevalent interictal brain states as early as possible to make this technology acceptable 
for real-time use. A single automated system has been designed for the Features Extraction (FE) and classification 
processes. The raw EEG signal that has not been pre-processed is considered the input to the system, and the signal is 
further reduced using subsequent computations. An innovative reconstruction approach using Variational Auto-Encoder 
Generative Adversarial Networks (VAE+C+GAN) with the Cramer Distance (CD) and a Temporal-Spatial-Frequency 
(TSF) loss function is presented in this research work. The machine that discriminates receives instructions to differentiate 
between created tests and actual samples, while the generator is verified to produce false samples that the discriminator 
does not recognize as fake. The proposed VAE+C+GAN’s experimental results have been examined, and a classification 
accuracy of 95% has been achieved. According to the experiment's findings, the VAE-C-GAN performs better than the 
current EEG classification system and has excellent potential for real-time applications. 
 
Keywords – Seizure, Cramer Distance, Variational Autoencoder, Electroencephalogram, Epilepsy Diagnosis and 
Detection. 
 

I. INTRODUCTION 
Epilepsy is an ancient known disease now considered the most common neurological disease. The Greek physician 
Hippocrates was the first to recognize Epilepsy as a brain disorder rather than a divine punishment (Sacred Disease), as the 
Society believed. Religious beliefs, however, prevented the systematic and scientific study of Epilepsy until the 18th 
century. After the 18th century, brain metastases were categorized based on their type as Idiopathic, symptomatic, and 
sympathetic [1]. A change in brain activity leads to idiopathic Epilepsy. Sympathetic Epilepsy arises from the lower brain 
and spreads through the spinal cord. Despite several approaches, an effective epileptic detection system is required for 
early prediction and diagnosis [2]. 

The human body is a multitasking system that is measured by the brain. It performs numerous tasks with the help of 
sensory and motor signals generated by the brain. These sensory and motor signals are called biomedical signals that could 
be electrical, magnetic, mechanical, acoustic, optical, or chemical. These signals provide a plethora of information about 
the physiological processes that happen in the human body. These Electrical signals are used in some biomedical 
measurements such as Electrocardiography (ECG), which is performed to check the function of the heart; 
Electromyography (EMG), which measures muscle activity; Electroencephalography (EEG), which measures brain 
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signals; Electrogastrography (EGG) for measuring stomach signals, Electrooptigraphy (EOG) for measuring eye dipole 
fields, and so on [3]. 

A seizure is a short-term "abnormal, excessive or simultaneous neuronal activity in the brain". The apparent effects 
differ slightly, ranging from severe disability (onset of tension zone) to loss of consciousness (onset of the defect). Epilepsy 
is a syndrome with frequent seizures for no reason, but seizures may also occur in people who do not have Epilepsy. 
Generalized Epilepsy and partial Epilepsy are the two types of Epilepsy that differ in the severity with which the brain 
region is affected. Focal seizures, on the reverse side, can take place in single epileptic foci or multiple epileptic foci but 
are localized to a specific area of the brain, whereas generalised seizures impact both hemispheres of the brain 
simultaneously.  After the first seizure, treatment is not mandatory if either EEG or brain imaging is free from specific 
problems [4]. Depending on the type, the signs and symptoms of a seizure may vary. Approximately two-thirds begin with 
a localized seizure and proceed to a generalized seizure, while the others 1/3rd begin with a generalized seizure. 

Epilepsy Detection (ED) is a critical area of research and medical application focusing on identifying and predicting 
epileptic seizures. In computation techniques, various data analysis, Machine Learning (ML), and signal processing 
methods are used to develop efficient and accurate ED systems. Before applying any ML algorithms, the EEG data, a 
shared data source for ED, undergoes preprocessing. Techniques such as filtering, noise reduction, artifact removal, and 
Feature Extraction (FE) enhance the signal quality and extract relevant features for analysis [5]. 

Various ML techniques are used for ED, including Support Vector Machines (SVM), Artificial Neural Networks 
(ANN), Deep Learning (DL) models (e.g., Convolutional Neural Networks (CNN) or Long Short-Term Memory (LSTM) 
networks), Random Forests (RF), and more. These algorithms are trained on labelled EEG data to learn patterns 
distinguishing between epileptic and non-epileptic states. In clinical settings, real-time ED is essential for timely 
intervention. Implementing efficient algorithms and optimizing computational resources becomes crucial to ensure real-
time monitoring of EEG signals. 

ED in the context of computation techniques is an interdisciplinary field that integrates signal processing, ML, and 
computing methodologies to create accurate, efficient, and real-time systems for early diagnosis and intervention, leading 
to better management and treatment of epilepsy patients. It's important to continually explore and develop innovative 
computational techniques to improve the performance and accessibility of ED systems in real-world scenarios. 

Researchers work to incorporate cutting-edge DL and Artificial Intelligence (AI) approaches into improving healthcare 
practice. Early illness identification and disease prediction are essential objectives in healthcare because they allow for 
prompt preventive measures [6]. This is particularly true for Epilepsy, which is marked by unexpected and repeated 
episodes. If we can predict in advance in some way, this study will spare patients from the ill effects of epileptic seizures. 
Despite decades of research, seizure prediction remains an open problem. There are two significant categories of research 
is going on.  

One is the Analog designer who designed a device and predicted it as quickly as possible, and the second one is the AI-
based designer who developed excellent algorithms to predict Epilepsy from the features. These two categories have their 
advantages and disadvantages. It solves this problem by combining the two categories and bringing them into one umbrella 
to achieve highly accurate predictions. This work identifies gaps, challenges, and pitfalls in current research and 
recommends future directions. 

A hybrid model for mathematical Generative Adversarial Networks (GANs) combines the power of GANs with other 
mathematical modelling techniques to enhance the generation and manipulation of mathematical content. This hybrid 
model combines the strengths of Variational Auto-Encoders (VAEs) and GANs. VAEs can learn a low-dimensional 
representation of complex data, while GANs generate realistic samples. Incorporating VAEs into the GAN permits the 
hybrid model to learn a more structured latent space representation and generate mathematically meaningful samples [7]. 

The Cramer Distance (CD), or the Cramer-von Mises distance, is a statistical measure used to quantify the discrepancy 
or dissimilarity between two probability distributions. It is based on the Cumulative Distribution Functions (CDF) of the 
distributions being compared. Given two probability distributions, let's call them ‘F’ and ‘G’, the CD measures the 
difference between their CDFs. It evaluates how much the CDFs deviate from each other, indicating the dissimilarity 
between the distributions. 

Following are the sections of the research work that are highlighted: Previous research and literature are described in 
Section 2, the proposed VAE+C+GAN with the CD and a TSF loss function is explained in Section 3, In Section 4, the 
statical results of the experiment are presented, and the discussion and conclusions section wraps up the DL approach by 
providing recommendations for the future study.  

 
II. RELATED WORKS 

Most researchers work on ED, but only 20 % work on epilepsy prediction. The traumatic pain caused by Epilepsy is more 
than the pain of Epilepsy itself. One of the crucial points to note is that Epilepsy is an abrupt and unpredictable disorder. 
As a result, studying seizure prediction lowers the risk of seizures and enhances the quality of life for an epilepsy patient. 
These characteristics are essential for seizure prediction. Scientists have used ML techniques for functional categorization, 
such as SVM, Linear Discriminant Analysis (LDA), RF, and Neighbourhoods (k-NN) [8]. 

Healthcare professionals visualize several EEG signal patterns to predict seizures. They use prior knowledge from 
medical procedures to automatically FE from the brain. However, numerous researchers have used DL technology to 
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anticipate the onset of epileptic seizures via automatic Feature Extraction (FE) and categorization [9]. DNN, SOM, 
DenseNet, and Bi-LSTM are the most predominant DL algorithms. The accuracy of these DL approaches in predicting 
Epilepsy has been demonstrated. Typical data can be used to FE using DL. Before entering DL, most researchers make 
minor adjustments to the raw EEG data. The Continuous Wavelet Transforms (CWT), Short-Time Fourier Transform 
(STFT), and Discrete Wavelet Transform (DWT) are the three most widely utilized transformations. Meanwhile, the DL 
technique turns raw EEG data into images [10]. 

One of the most significant jobs in ED is EEG data processing for FE. To extract statistical features, this method requires 
the use of well-defined and structured signal analysis techniques [11]. Numerous signal analysis techniques exist, including 
Fast Fourier Transform Techniques (FFT), STFT, CWT, and DWT. The Fourier transform in the time domain depicts the 
signal's frequency and amplitude. The information not displayed in the time domain can be displayed in the frequency 
domain; signals can also be recorded in the frequency domain.  

Although FFT is the most extensively used transform method, many other techniques are available, such as STFT, 
Hilbert transform, Wigner distribution, Radon transform, and wavelet transform [12]. The FFT has the drawback of being 
unable to evaluate signals simultaneously in the time and frequency domains. Long Short-Term Memory (LSTM) is utilized 
to classify Epilepsy efficiently. If the signal is turned off, there is no need for this transition [13]. The frequency of a stop 
signal does not change over time. The frequency components inherent in a stop signal remain constant during the signal's 
duration. In most situations, this conversion method puts the entire signal through high-pass and low-pass filters. These 
filters divide the signals into groups of high and low-frequency signals, repeating the process several times [14-18]. 

The study included a large dataset of continuous multi-channel newborn EEG ranging from 18 neonates to 834 hours 
and 1389 seizures and publicly studied neonates collected from EEG waveforms in children from Helsinki University 
Hospital. The AUC with more than 90% specificity was 86.9% for the 18 study subjects. In this study, the flaws in the 
current systems are considered and fixed [19]. To reduce the quantity of labelled data needed, Deep Neural Networks 
(DNN) are integrated with the massive semi-supervised learning approach and annotated datasets by adopting 
VAE+C+GAN with the CD and a TSF loss function for a deep learning setting [20].  

 
III. PROPOSED SEIZURE PREDICTION USING VAE+C+GAN 

VAE+C+GAN with the CD and a TSF loss function is a DL model used for ED, particularly with EEG data. VAE is a 
generative model that learns to encode input data (EEG signals) into a lower-dimensional latent space and then decode it 
back to reconstruct the original data. VAEs are unsupervised models that can be used for generative tasks, and they are 
beneficial for learning meaningful representations of high-dimensional data. GAN is a neural network model that uses a 
generator, discriminator, and filter to produce realistic EEG signals while simultaneously identifying and removing false 
signals. This asymmetrical process improves the generation algorithm's ability to generate viable EEG signals through 
repeated iterations. 

To evaluate how closely synthetic EEG data correlates with the distribution of accurate EEG data, GANs use the 
coefficient of dispersion. The CD is minimized to generate EEG signals identical to real-world EEG data regarding TSF 
characteristics. During training, the loss function is a key element of EEG data modelling, as it permits synthetic EEG 
signals to share the same TSF features as accurate EEG signals. 

 
EEG Signal Reconstruction 
EEG signal reconstruction in LSS is represented by 𝑧𝑧 ∈ 𝑆𝑆𝑁𝑁×𝑇𝑇𝑇𝑇1×𝑅𝑅 from the DL distribution, while in HSS, it is represented 
by 𝑥𝑥 ∈ 𝑆𝑆𝑁𝑁×𝑇𝑇𝑇𝑇2×𝑅𝑅 from the DH distribution. TS1 indicates LSS-EEG, TS2 indicates HSS-EEG, N indicates channel count, 
and R indicates motor task count. A function fn(z), where ‘z’ is the LSS-EEG signal and ‘x’ is the HSS+EEG signal, is 
reconstruction's primary goal. 
 
 fn(z):zx (1) 
 

The research goal is to change a specific distribution near the true distribution DH by deviating the function fn(z), which 
translates the samples of LSS-EEG from DL into DC, which is a given distribution, during the reconstruction phase. With 
GAN, the rebuilding process involves two different approaches. The item modifies EEG samples during creation, moving 
them from the distribution DL to DC. The change of an EEG signal from one distribution to another is called the EEG 
reconstruction process. Reconstruction involves mapping LSS+EEG samples from DL to DC to deviate the function fn(z) 
to change a distribution close to DH.  

GAN reconstruction shifts EEG samples from DL to DC distribution due to non-stationary and non-linear signals, and 
the noise model complicates and maps the reconstruction connection unevenly. There is no obvious indication of where 
the signals are associated in the HSS and LSS+EEG distribution. Utilising conventional methods is a challenging approach 
for LSS-EEG reconstruction. By learning high-level non-stationary and non-linear features and displaying reconstruction 
distribution using signal patches of reasonable size, DNN reduces noise model uncertainties and their impact on 
reconstruction mapping. A modified GAN architecture with TSF loss and CD reconstructs HSS-EEG signals from LSS-
EEG data, while DNN-based GANs reconstruct EEG data. 
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VAE+GAN with CD Computation 
VAE+C+GAN combines two powerful DL models: Variational Auto-Encoders (VAEs) and Generative Adversarial 
Networks (GANs). It leverages the strengths of both models to achieve improved generative capabilities and better control 
over the generated data. VAE-C-GAN generates high-quality data samples, such as images, audio, or time series data, 
while learning meaningful data representations. 

The VAE component is responsible for learning meaningful latent representations of the EEG data and generating 
similar EEG signals. The encoder takes pre-processed EEG data as input and maps it into a latent space distribution (usually 
Gaussian with mean and variance). The decoder (generator) takes samples from the latent space and reconstructs EEG 
signals. Training the VAE to minimise reconstruction loss and KL divergence between original and reconstructed EEG 
signals promotes a simple latent space distribution. 

The GAN component is responsible for generating realistic EEG signals that are indistinguishable from real EEG data. 
The generator in the GAN takes random noise as input and generates fake EEG signals. The GAN's discriminator uses 
adversarial training to reduce the generator's ability to distinguish between real and fake EEG signals. 

To combine VAE+GAN for ED, the decoder (generator) from the VAE component would be integrated as the generator 
in the GAN. The GAN's discriminator would evaluate the realism of the generated EEG signals, while the VAE component 
would ensure that the generated EEG signals have similar temporal, spatial, and frequency patterns as the accurate EEG 
signals. The VAE+C+GAN would be trained to minimize the reconstruction loss and KL divergence in the VAE and the 
adversarial loss in the GAN to generate realistic EEG signals that closely match the accurate EEG data. Once the 
VAE+C+GAN is trained, it can be used for ED by feeding new EEG data into the model. The model's output can be a 
threshold to classify EEG recordings as either indicating Epilepsy or not. 

The CD has a disadvantage known as sample unbiased gradient and shares comparable distance features with the 
Wessertein metric. For HSS, the EEG signal is represented by 𝑥𝑥 ∈ 𝑆𝑆𝑁𝑁×𝑇𝑇𝑇𝑇2×𝑅𝑅  for signal DH and 𝑧𝑧 ∈ 𝑆𝑆𝑁𝑁×𝑇𝑇𝑇𝑇1×𝑅𝑅  for signal 
DL, based on two different distributions. The formula for the LSS and HSS-CD is EQU (2) 
 
 𝐶𝐶22(𝐿𝐿,𝐻𝐻) ≔ ∫ (𝐷𝐷𝐿𝐿(𝑥𝑥) − 𝐷𝐷𝐻𝐻(𝑥𝑥))2∞

−∞ 𝑑𝑑𝑥𝑥 (2) 
 

The appropriate member of the metric family Cp and the square root of the CD are provided as EQU (3) 
 
 𝐶𝐶𝑝𝑝(𝐿𝐿,𝐻𝐻) ≔ �∫ |(𝐷𝐷𝐿𝐿(𝑥𝑥) − 𝐷𝐷𝐻𝐻(𝑥𝑥))|𝑝𝑝𝑑𝑑𝑥𝑥∞

−∞ �
1/𝑝𝑝

 (3) 
 

The integral probability and the dual versions of the CD metric are as follows: 
 
 𝐶𝐶𝑝𝑝(𝐿𝐿,𝐻𝐻) = |  𝑓𝑓𝑓𝑓(𝑥𝑥)𝑥𝑥~𝐿𝐿

𝐸𝐸 −  𝑓𝑓𝑓𝑓(𝑥𝑥)𝑥𝑥~𝐻𝐻
𝐸𝐸 |𝑓𝑓𝑓𝑓∈𝐹𝐹𝑞𝑞

𝑠𝑠𝑠𝑠𝑝𝑝  (4) 
 

where FH:={fn:f}is generally continuous, �𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥
�
𝑞𝑞
≤ 1} where H is the conjugate exponent of L that is L-1+H1=1. It is a 

dual form that is utilised to prove the CD. 
Using two Neural Networks (NN), the discriminator DI and generator GE, the VAE-GAN optimises the Min-Max issue 

in two layers. The discriminator determines the EEG signal reconstruction (𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷) and generator (𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺), which are 
specified as EQU (5) 
 
 𝐿𝐿𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷 ,𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺)𝜃𝜃𝐷𝐷𝐷𝐷

𝑚𝑚𝑚𝑚𝑥𝑥 =
𝜃𝜃𝐺𝐺𝐺𝐺

𝑚𝑚𝑚𝑚𝑓𝑓 𝐺𝐺𝑥𝑥~𝐷𝐷𝐻𝐻�𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷(𝑥𝑥)� + 𝐺𝐺𝑧𝑧~𝐷𝐷𝐿𝐿 �log (1 − 𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷 �𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺(𝑧𝑧)�)� (5) 
 

where the expectation vector is denoted by E(.). When the discriminator meets the accurate data, it will gratify 
𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷(𝑥𝑥) = 1 to discriminate the accurate data Here, 𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷(𝑥𝑥) = 1 influences the anticipation for 𝐿𝐿𝑙𝑙𝑙𝑙𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷(𝑥𝑥). When the 
discriminator meets the created information, it can gratify 𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷 �𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺(𝑧𝑧)� = 0 to create information that is 
discriminated, EQU (6). 
 
 Here, 𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷 �𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺(𝑧𝑧)� = 0 attains the expectation for (1-𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷 �𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺(𝑧𝑧)� = 0) (6) 
 

As a result, the expectation operator creates the minimax's optimum function. The typical approach to reconstruction is 
to educate a generator to be able to deceive a different discriminator that has been trained to distinguish between fake and 
real HSS+EEG signals. Instead of using Jensen-Shannon divergence to compare sample distribution, the VAE+C+GAN 
design uses the CD to train non-stationary and non-linear EEG signals. According to the VAE+C+GAN specification, the 
optimisation of the Min-Max problem is accomplished by 𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷 and 𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺  EQU (7), 
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 𝐿𝐿𝐶𝐶𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷 ,𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺)𝜃𝜃𝐷𝐷𝐷𝐷
𝑚𝑚𝑚𝑚𝑥𝑥 =

𝜃𝜃𝐺𝐺𝐺𝐺

𝑚𝑚𝑚𝑚𝑓𝑓 𝐺𝐺𝑥𝑥~𝐷𝐷𝐻𝐻�𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷(𝑥𝑥)� + 𝐺𝐺𝑧𝑧~𝐷𝐷𝐿𝐿 �𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷 �𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺(𝑧𝑧)�)� + λ𝐺𝐺𝑥𝑥�~𝐷𝐷𝑅𝑅[(‖∇𝑥𝑥�(𝐷𝐷(𝑥𝑥�))‖)2 − 1)2] (7) 
 

The first two terms determine the Min-Max problem's CD, gradient penalty is the gradient penalty for regularising the 
network, and DR is the uniform distribution of samples along lines. The parameter is a penalty term for a constant weighting 
parameter ‘λ’, and the symbol indicates the gradient estimator ∇𝑥𝑥� (·). In Min-Max training, the VAE+C+GAN architecture 
removes the log function and final sigmoid layer to maintain gradient value while optimising and updating the discriminator 
𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷  and 𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺  generator alternately. 

 
Loss function of TSF-MSE 
The loss function requires VAE+C+GAN architecture, with generator modification enabling information distribution from 
low to sensitive high sampling rates. The details and content of the EEG signals will be preserved using this method. A 
frequently used loss function for the Mean Square Error (MSE) loss function's detail and information content. EQU (8) 
predicts temporal MSE by reducing the time-sampling error between LSS+HSS+EEG patches, while a signal processing 
error measures point-wise MSE. 
 
 𝐿𝐿𝑇𝑇−𝑀𝑀𝑇𝑇𝐸𝐸(𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺) = 𝐺𝐺(𝑥𝑥,𝑦𝑦) �

1
𝑇𝑇2
�𝐺𝐺𝐺𝐺�𝑧𝑧(𝑡𝑡)� − 𝑥𝑥(𝑡𝑡)�

𝑃𝑃
2� (8) 

 
Instead of images, EEG signals are multi-channel time-series data that must be reconstructed using spatial and frequency 

factors. In order to encourage the VAE+C+GAN architecture to create more precise HSS-EEG signals, it is required to 
consider the spatial MSE+LSMSE across channels, the frequency MSE LFMSE among signal batches, and the temporal 
MSE+LTMSE among time steps.  

Frequency data is extracted from EEG signals using Power Spectral Density (PSD) characteristics and spatial 
information using Common Spatial Patterns (CSP). The PSD method computes power levels on specific frequencies, while 
the CSP method creates projection vectors to transfer the EEG signal to a new space for optimal spatial resolution and 
discrimination across signal classes. The spatial MSE+LS−MSE and the frequency MSE+LF−MSE for the generator are 
calculated using these two methods, EQU (9) and EQU (10) 
 
 𝐿𝐿𝑇𝑇−𝑀𝑀𝑇𝑇𝐸𝐸(𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺) = 𝐺𝐺(𝑥𝑥,𝑧𝑧) �

1
𝐶𝐶2
�𝐺𝐺𝐺𝐺�𝐶𝐶𝑆𝑆𝐶𝐶(𝑧𝑧(𝑐𝑐)� − 𝐶𝐶𝑆𝑆𝐶𝐶(𝑥𝑥(𝑐𝑐))�

𝐹𝐹
2� (9) 

 
 𝐿𝐿𝐹𝐹−𝑀𝑀𝑇𝑇𝐸𝐸(𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺) = 𝐺𝐺(𝑥𝑥,𝑧𝑧) �

1
𝑁𝑁2
�𝐺𝐺𝐺𝐺�𝐶𝐶𝑆𝑆𝐷𝐷(𝑧𝑧(𝑓𝑓)� − 𝐶𝐶𝑆𝑆𝐷𝐷(𝑥𝑥(𝑓𝑓))�

𝐹𝐹
2� (10) 

 
where CSP() and PSD(), respectively, are the FE for CSP(·) and PSD(·). The channel, count, batch, and count within 

the produced signal batch are all provided for the real and generated EEG signals, respectively. Three MSE losses are 
weighed to estimate the TSF loss for accessibility, EQU (11). 
 
 𝐿𝐿𝑇𝑇𝑇𝑇𝐹𝐹−𝑀𝑀𝑇𝑇𝐸𝐸(𝐺𝐺𝜃𝜃𝐺𝐺) = λ𝑇𝑇 . 𝐿𝐿𝑇𝑇−𝑀𝑀𝑇𝑇𝐸𝐸(𝐺𝐺𝜃𝜃𝐺𝐺) + λ𝑇𝑇. 𝐿𝐿𝑇𝑇−𝑀𝑀𝑇𝑇𝐸𝐸(𝐺𝐺𝜃𝜃𝐺𝐺) + λ𝐹𝐹 . 𝐿𝐿𝑇𝑇−𝑀𝑀𝑇𝑇𝐸𝐸(𝐺𝐺𝜃𝜃𝐺𝐺) (11) 

 
where λT, λS, λF are the weights of three diversified MSE losses. Additionally coherent in both space and time, the EEG 

signals are generated using a generator that employs a regularisation loss LTV(𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺) based on total deviation, EQU (12) 
 

 𝐿𝐿𝑇𝑇𝑇𝑇(𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺) = 1
𝐶𝐶𝑇𝑇
∑ ∑ �∇𝑧𝑧𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺(𝑧𝑧)𝑐𝑐,𝑡𝑡�𝑇𝑇

𝑡𝑡=1
𝐶𝐶
𝑐𝑐=1  (12) 

 
When the gradient estimator is represented by the symbol ∇z(·), the gradient regularisation loss will improve the spatial 

and temporal coherence of the reconstruction. The following total joint reconstruction loss function is created by combining 
the equations VAE+C+GAN, TSF loss, and regularisation loss, EQU (13) 

 
 𝐿𝐿𝑇𝑇𝑇𝑇𝐹𝐹−𝑀𝑀𝑇𝑇𝐸𝐸(𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺)𝜃𝜃𝐺𝐺𝐺𝐺

𝑚𝑚𝑚𝑚𝑥𝑥 + λ1𝐿𝐿𝐶𝐶𝐺𝐺𝐺𝐺𝑁𝑁(𝐷𝐷𝐷𝐷𝜃𝜃𝐷𝐷𝐷𝐷,𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺) + λ2𝐿𝐿𝑇𝑇𝑇𝑇(𝐺𝐺𝐺𝐺𝜃𝜃𝐺𝐺𝐺𝐺)
𝜃𝜃𝐺𝐺𝐺𝐺

𝑚𝑚𝑚𝑚𝑓𝑓  (13) 
 

The trade-off of the controlling weights is labelled as λ1 and λ2 between the VAE+C+GAN adversarial loss, the 
TSF+MSE loss, and the TV loss. The architecture of the VAE+C+GAN+EEG, which has been trained using several batches 
of EEG readings, is used in each experiment. The framework has been refined to detect Epilepsy in the EEG output with 
accuracy. 

VAE+C+GAN with the CD and a TSF loss function is a specialized DL model designed for ED using EEG data. It 
leverages the power of VAE+GAN to learn meaningful representations of EEG signals and generate realistic EEG data. 
Using the CD and the TSF loss function ensures that the generated EEG signals closely match the accurate EEG data, 
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making the model more effective in identifying patterns indicative of Epilepsy and assisting in early diagnosis and 
treatment. 

 
IV. RESULT AND DISCUSSION 

The Bern-Barcelona EEG database, which includes non-focal and focal channels sampled at 1024 Hz from epilepsy 
patients, is used to classify Epilepsy using recommended and existing methods. A public EEG database with 3750 pairs of 
signals divided into 10240 samples randomly selected 50 focal and non-focal signals. The experiment was run in MATLAB 
with Intel® Core™ i7 Processor; 1000 GB Capacity; 16 GB Memory CPU, and accuracy, precision, F1-score, and recall 
were assessed. Fig 1 and Fig 2 show the EEG signal with Epilepsy as the recommended method is compared to SVM, 
DNN, and LSTM. 
 

  
Fig 1. Visual Representation of Normal EEG. 

 

  
Fig 2. Illustration of EEG with Epilepsy. 

 
Accuracy 
The accuracy of the VAE+C+GAN with CD and a TSF loss function for ED refers to the model's ability to correctly 
distinguish between EEG recordings that indicate the presence of Epilepsy and those that do not. A higher accuracy 
indicates that the model is better at identifying instances of Epilepsy, while a lower accuracy implies that the model is less 
reliable in ED. Fig 3 and Table 1 shows the comparison of accuracy. 
 

Table 1. Comparison of Accuracy 
Iteration SVM DNN LSTM VAE-C-GAN 

100 86 89 88 89 
200 87 90 89 92 
300 89 92 91 93 
400 91 93 92 95 
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Fig 3. Comparison of Accuracy. 

 
The VAE+C+GAN model achieved the highest mean accuracy (92.25%), indicating better overall performance than 

the other models. VAE+C+GAN stands out as the best-performing model in terms of mean accuracy, but it also shows 
higher variability in its results. 

 
Sensitivity 
Sensitivity measures the proportion of True Positive (TP) cases (correctly identified epilepsy instances) that the model 
correctly detects among all actual positive cases in the EEG data. It is calculated as EQU (14) 
 
 𝑆𝑆𝑆𝑆𝑓𝑓𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑡𝑡𝑆𝑆 = 𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁
 (14) 

 
where TP is the number of correctly identified epilepsy cases, False Negatives (FN) are the number of epilepsy cases 

not detected by the model (missed). 
A high sensitivity score indicates that the VAE+C+GAN model is effective in correctly detecting most of the epilepsy 

cases in the EEG data. It is essential in medical applications like ED, as missing TP cases could have severe consequences 
for patient diagnosis and treatment. 
 

Table 2. Comparison of Sensitivity 
Iteration SVM DNN LSTM VAE-C-GAN 

100 81 83 87 91 
200 83 84 87.5 92 
300 85 86 89 93.5 
400 86 87 90 94 

 

 
Fig 4. Comparison of Sensitivity. 
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VAE+C+GAN achieved the highest mean sensitivity (92.88%), indicating that it correctly identified the TP instances 
most accurately among all models. VAE+C+GAN and LSTM appear to be the best-performing models in sensitivity, 
correctly identifying the positive instances with higher accuracy. DNN+SVM shows relatively lower sensitivities in 
comparison. Fig 4 and Table 2 shows the comparison of sensitivity. 

 
Specificity 
Specificity measures the proportion of TN cases (correctly identified non-epilepsy instances) that the model correctly 
detects among all actual negative cases in the EEG data. It is calculated as EQU (15) 
 
 𝑆𝑆𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑓𝑓𝑆𝑆𝑐𝑐𝑆𝑆𝑡𝑡𝑆𝑆 = 𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚𝑁𝑁𝑇𝑇

𝑇𝑇𝑇𝑇𝑠𝑠𝑇𝑇 𝑁𝑁𝑇𝑇𝑁𝑁𝑚𝑚𝑡𝑡𝑚𝑚𝑁𝑁𝑇𝑇+𝐹𝐹𝑚𝑚𝐹𝐹𝑠𝑠𝑇𝑇 𝑃𝑃𝑃𝑃𝑠𝑠𝑚𝑚𝑡𝑡𝑚𝑚𝑁𝑁𝑇𝑇𝑠𝑠
 (15) 

 
where TN is the number of correctly identified non-epilepsy cases, and FP is the number of non-epilepsy cases 

incorrectly identified as epilepsy cases by the model. 
A high specificity score indicates that the VAE+C+GAN model effectively identifies most non-epilepsy cases in the 

EEG data. This is important as it helps to reduce false alarms and avoid unnecessary interventions or treatments for patients 
who do not have Epilepsy. In medical applications like epilepsy detection, sensitivity, and specificity are crucial metrics 
for evaluating the model's performance and ensuring its clinical utility.  
 

Table 3. Comparison of Specificity 
Iteration SVM DNN LSTM VAE-C-GAN 

100 81.5 82 85 91.5 
200 83 83 86.5 92 
300 85.5 84 88 93 
400 86.5 86 89 93.5 

 

 
Fig 5. Comparison of Specificity. 

 
VAE+C+GAN achieved the highest mean specificity (93.13%), indicating that it correctly identified TN most 

accurately among all models. VAE+C+GAN stands out as the top-performing model in mean specificity, closely followed 
by LSTM. SVM+DNN have slightly lower mean specificity values but still show reasonable performance. Specificity is 
an important metric, especially in medical applications like ED, where correctly identifying TN (healthy instances) is 
crucial. When selecting the best model, consider accuracy, specificity, and other relevant evaluation metrics depending on 
the specific requirements and priorities of the ED task. Fig 5 and Table 3 shows the comparison of specificity. 
 
Mathews Co-Efficient Correlation (MCC) 
MCC is the covariance between the actual and predicted binary classifications divided by the geometric mean of the total 
TP and TN products with the total predicted positives and negatives. It is calculated as EQU (16) 
 
 𝑀𝑀𝐶𝐶𝐶𝐶 = 𝑇𝑇𝑃𝑃×𝑇𝑇𝑁𝑁−𝐹𝐹𝑃𝑃×𝐹𝐹𝑁𝑁

�(𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃)(𝑇𝑇𝑃𝑃+𝐹𝐹𝑁𝑁)(𝑇𝑇𝑁𝑁+𝐹𝐹𝑃𝑃)(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)
 (16) 
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where TP is the number of correctly identified epilepsy cases, TN is the number of correctly identified non-epilepsy 
cases, and FP is the number of non-epilepsy cases incorrectly identified as epilepsy cases by the model. FN is the number 
of epilepsy cases the model did not detect (missed). And the +1 indicates perfect prediction, 0 random prediction, and -1 
complete disagreement between predictions and actual labels on the MCC scale. Because it considers both TP and TN rates 
and is less affected by class imbalances than accuracy, MCC is a good metric for evaluating a binary classification model, 
especially when the data is skewed. Fig 6 and Table 4 shows the comparison of MCC. 
 

Table 4. Comparison of MCC 
Iteration SVM DNN LSTM VAE+C+GAN 

100 0.4765 0.5132 0.564 0.6786 
200 0.4912 0.5342 0.5754 0.6843 
300 0.5341 0.5431 0.5831 0.6984 
400 0.5534 0.5562 0.5981 0.7134 

 

 
Fig 6. Comparison of MCC. 

 
VAE+C+GAN achieved the highest mean metric value (0.6937), indicating better performance based on the specific 

metric. In this analysis, higher values of the performance metric are better. Based on the provided data, VAE+C+GAN 
demonstrates the best performance in terms of the specific metric used, followed by LSTM, DNN, and SVM, respectively. 

 
V. CONCLUSION AND FUTURE WORK 

Epilepsy, a chronic neurological disorder characterized by recurring convulsions, can be detected through EEG signals. 
EEG is widely used to confirm epilepsy cases, although there have been some instances where Epilepsy has been managed 
without EEG. The diagnosis of Epilepsy heavily relies on Feature Extraction (FE) and pattern classification. Accurate and 
efficient FE is crucial for reliable diagnosis; however, it often requires significant computational time, limiting the practical 
use of the sliding window strategy for continuous EEG diagnosis. To address this challenge, a novel reconstruction 
algorithm is proposed for a large, annotated dataset. This algorithm utilizes a Variational Auto-Encoder-based Generative 
Adversarial Network with the Cramer Distance (CD) and a Temporal-Spatial-Frequency (TSF) loss function. The proposed 
approach achieves an accuracy of 90.64%, demonstrating the effectiveness of VAE+C+GAN and outperforming existing 
techniques.  

This approach can be expanded to handle significant signals with multiple channels in the future. 
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