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Abstract – Diabetes is a common disease that affects different vital organs of the human body, including the eyes. In 
diabetic patients, a change in blood sugar level leads to eye problems. Around 80% of the patients who have diabetes for 
more than 10 years have severe eye-related pathological disorders such as retinopathy and maculopathy. Proper detection, 
diagnosis, and treatment of eye-related pathologies prevent damage to the eye during the earliest stages of diabetic 
disease—the developed stage findings in patients losing their vision. The retinal damage due to diabetes is termed Diabetic 
Retinopathy (DR). The treatment of DR involves detecting the presence of the disease in the form of microaneurysms 
(MA), hemorrhages (HE), and exudates (EX) in the retinal area. The process of segmenting a massive segment of Retinal 
Images (RI) performs a prominent role in DR classification. The existing research concentrates on Optic Disc (OD) 
segmentation. This article focuses on the segmentation of MA, HE, and EX using a Feature Fusion Relation Transformer 
Network (FFRTNet). In this research, the benchmark dataset, the Indian Diabetic Retinopathy Image Dataset (IDRID), is 
used for the ablation study to evaluate the use of every module. The proposed method, FFRTNet, is compared with state-
of-the-art methods. The evaluation of FFRTNet enhances the segmentation by 3.56%, 4.34%, and 3.75% on metrics, 
namely sensitivity, Intersection-over-Union (IoU), and Dice coefficient (DICE). The qualitative and quantitative results 
proved the superiority of FFRTNet in segmenting lesions in DR. 
 
Keywords – Diabetes, Segmentation, Diabetic Retinopathy, Neural Network, Convolution, Feature Fusion, Lesion, Vessel. 
 

I. INTRODUCTION 
Authors must adhere to this Microsoft Word template when preparing their manuscripts for submission. It will speed up 
the review and typesetting process. Diabetic Retinopathy (DR) is a vision loss and blindness illness that affects people with 
diabetes. Diabetes is caused by high blood glucose, often known as blood sugar [1]. The retina's blood vessels are involved 
in the rear view of the eye's light-sensitive tissue. If a person has diabetes, that person should have a dilated eye exam at 
least once a year. There may be no signs of DR at first. Early detection can help in protecting the vision. Approximately 
250 million individuals in the world currently have diabetes. 

When individuals have diabetes, their blood glucose levels rise, which affects their retina and causes blindness or visual 
loss. The leading causes of vision loss and blindness in people include cataracts, glaucoma, macular degeneration due to 
age, and DR. The common name for the diabetic eye illness that causes blindness is DR. The blood vessels in the retina 
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are damaged, which might lead to blindness. One in four, almost 4.1 million persons with the same type of DR, have 
a visual loss. 

According to the National Eye Institute, DR is the most important cause of blindness and blurred vision in persons 
between 20 and 74 and is the top cause of visual impairment. Retinopathy is a condition when there is damage to the blood 
vessels that supply blood to the retina. This disorder may result in impaired vision, eye haemorrhage, and, at last, total 
vision loss. This disease impairs the optic nerve by obstructing blood flow. 

The application of image processing techniques and Computer Vision (CV) in different fields of science and engineering 
is growing speedily. There have been successful developments in computerized processing systems, such as image 
transformation. In the medicinal field, the present evolution of such methods to prevent the epidemic's progression is to 
recognize therapeutic disorders. It is achieved early by improving the complexity of the time needed to reveal the illness. 
These strategies rely on the accuracy of algorithms for diagnosing diseases in an actual period. It has predictable, distinct 
automated systems to detect DR from Retinal Images (RI) and Fundus Images (FI). Computer-aided screening and 
diagnosis save time and money for doctors by reducing the possibility of misdiagnosis. DL algorithms have advanced to 
the point where they can now analyze complicated aspects of medical data, resulting in rapid breakthroughs in automation. 
In ophthalmology, for retinopathy diagnosis and severity evaluation, such attempts have been assumed to analyze RI and 
develop models based on analysis. 

A Clinical Decision Support System (CDSS) makes decisions about a patient's healthcare. CDSS can aid patients in 
achieving better results and receiving better treatment. The primary of CDSD is to give doctors, patients, and others prompt 
information to make better healthcare decisions. Sets are ordered for specific conditions or groups of patients, as well as 
ideas and databases with information about patients; CDSS tools include reminders for preventive care and alarms 
regarding potentially unsafe conditions. CDSS helps you save money, improve efficiency, and make patients feel better 
[16]. CDSS can simultaneously address all three challenges, such as alerting doctors to the likelihood of repeat testing on 
a patient. 

Image Segmentation (IS) is the first step in image processing, and the required measures from the objects are retrieved. 
The level of segregation depends on the complexity of the problem. The IS paused once it spots the edge region. Thus, 
retrieving the lesions from the background image is the primary objective of segmentation. In edge detection, darker areas 
make convolution, and it is rectified by the approaches of Histogram Equalization (HE) and thresholding. Image 
segmentation is a primary procedure in image processing, and it divides the image into several regions. Through IS, 
information from the digital image needed is retrieved. Several techniques conduct IS, and the complexity of the problem 
determines the choice of the required method. 

This research aims to implement the automatic identification of DR using digital FI. Designed systems and algorithms 
are a step toward achieving computer-aided screening as a tool for physicians and medical experts. Further, insights from 
art and emerging systems are displayed in the images in hopes of further updating and accelerating more work in automated 
object recognition. This work proves the automatic detection of DR by applying the FI of the retina to specific lesions of 
DR. In this work, the identification of the haemorrhages, microaneurysms, and exudates has been developed through a 
learning-based method. Medical decisions are an information source for CDSS. 
 
The Primary Aim of This Research Paper is 

(a) Pre-process the image to remove unwanted noise and image objects from the image. Medical images are attained 
with a specific volume of noise data, which can eventually show the impact on the further diagnosis of the disease. 
The Modified Mean Filter (MMF) 's pre-processing procedure enhances the image's quality. 

(b) The Feature Fusion Relation Transformer Network (FFRTNet) segments the significant segments of vessels and 
lesions. The main sections are highlighted with FFRTNet, which is used for further prominent processing. 

The research work is systematized as follows: the overview of DR, the significance of segmentation, and contributions 
are detailed in Section 1; the comprehensive DR segmentation is given with gap analysis done in Section 2; the dataset 
preparation, pre-processing methodology, and the system of proposed FFRTNet are described in Section 3, the outcome of 
DR is illustrated with comparative analysis and discussion in Section 4, and the article is concluded with future scope in 
Section 5. 
 

II. RELATED WORKS 
RI investigation is still a challenging and adaptable field of study [2]. Different retinal, cardiovascular, and major disorders 
are distinguished by observing the retinal vasculature and the morphological changes. Albeit retinal vascular adjustments 
are unpretentious, early acknowledgment of the signs is fundamental for avoiding ophthalmologic entanglements and 
vision misfortune. A detailed analysis of DR images is given in this section. 

In [3], they proposed an end-to-end encoder-decoder model called Decoder Network (DRNet), which is used to segment 
Fovea centers and OD. The research recommended a skip link in DRNet called a residual skip connection to compensate 
for the spatial information lost because of pooling in the encoder. Computer-Aided Screening Tools (CAST) are essential 
for non-intrusive diagnostic procedures in contemporary ophthalmology. They play a significant role in precisely 
segmenting fovea centres and the optic disc (OD). Small dataset sizes, inconsistent spatial, texture, and shape information 
between the OD and Fovea, and the existence of different things make it challenging to create such an automated method. 
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In [4-5], segmentation that employs an encoder-decoder model, skipping connection, and elaborated convolutions are 
performed using the DeepLabv3 network. The DeepLabv3 is input to the Extreme Inception (Xception) framework for 
segmenting DR lesions in this research work. A clinical experiment study is run to find the best hyperparameters for the 
segmentation model's training process that produced successful segmentation results during testing. 

A Cascade Attentive RefineNet (CARNet) was introduced in [6-7] to automate and precisely segment DR with many 
lesions. The FI's fine local features and coarse global data may be fully used. Global and local image encoder and attention 
refinement decoder structure of CARNet. It used Residual Network 50 (ResNet50) and ResNet101 to downscale the entire 
and patch images to extract lesion characteristics. The high-level refinement decoder generates accurate predictions using 
features from two encoders and the low-level attention refined module. 

[8-9] have proposed a method for diagnosing DR using desktop diagnostics. Untreated DR causes blindness in the 
retina. Microaneurysms and RI/FI localization are first found. Dynamic thresholding and multi-scale correlation filtering 
are used to find the microaneurysms in the RI/FI. In this method, microaneurysm candidate identification and actual 
microaneurysm classification are two levels. The online retinopathy challenge and standard DR are efficient and effective 
open-source datasets. 

[10-11] has presented an Optic Disc (OD) position-based technique with a vessel’s location-matched filter. As a primary 
step, a binary mask is made after the image brightness and contrast equalization. Next, the retinal vasculature is sectioned, 
and the positions of the blood vessels are processed to the filter, thereby presenting the vessel’s places in the vicinity of the 
OD. 

[12-13] have analyzed the procedure for identifying the disease by using an OD boundary. Detecting the location of the 
macula is considered an advantage in DR analysis. However, the limitation is that it does not cover the complete anatomical 
structure of retinopathy images. 

The Segmentation of retinal blood vessels using Artificial Neural Networks (ANN) for early detection of DR by [14] 
has worked hard to distinguish blood vessels in the retina using ANN concepts to detect disease at an early stage. The 
authors used monitoring techniques to find targets. They eventually concluded that they could achieve exceptionally 
reliable results by using ANNs and NNs and an algorithm to detect DR in the preliminary stages in humans. Still, they only 
worked for limited images from standard databases. 

This section explains recent methods of DR segmentation, in which few researchers concentrated on ineffective OD 
segmentation over other DR-causing features. The segmentation of other significant components, MA, HE, and EX, can 
give an accurate result. This research work considers the gap in the existing research studies and formulates a Feature 
Fusion Relation Transformer Network (FFRTNet) for the segmentation. The lesions and vessels in the FI are highlighted 
with the help of the proposed FFRTNet [15]. 
 

III. MATERIALS AND METHODS 
This section explains the data preparation and selection process, the pre-processing stage involved in this research, and the 
segmentation process. The dataset involved in this research is free to access, and the incidence of Gaussian noise is removed 
using a Modified Median Filter (MMF) [16-18]. The segmentation uses a Feature Fusion Relation Transformer Network 
(FFRTNet), where the significant regions are highlighted. Fig 1 shows the complete block diagram of the proposed method. 
 

 
Fig 1. Block Diagram of FFRTNet. 

 
Data Preparation 
The study implemented a dataset that was collected from the Indian Diabetic Retinopathy Image Dataset (IDRID). Data 
from a patient's FI, an actual clinical study, and an eye clinic in India has been used in this research work; each image in 
the dataset was captured with a Kowa VX-10 colour fundus camera that had a field of view of 50 degrees and was positioned 
close to the macula. Each image has a 4288×2848 resolution and was created in JPG format. The research chose 81 color 
FI with pixel-level annotations out of 516 for this clinical study. Three typical DR anomalies are considered in this dataset, 
as shown in Fig 2 Differentiation labels are used to divide the IDRID into training and testing sets. Empirically, Table 1 
shows the distribution results. 
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(a) Positive 

 
(b) Negative 

Fig 2. Colour Fundus Image with (a) Positive and (b) Negative Samples. 
 

Table 1. The Scope of IDRID's Distribution 
Lesion Type Training Set Testing Set 
Soft Exudates 26 14 

Microaneurysms 54 27 
Haemorrhage 53 27 
Hard exudates 54 27 

 
Pre-processing of Fundus Image 
Pre-processing is a technique for improving image data that supports subsequent image processing by clipping redundant 
distortions or noise and improving the visual characteristics. Pre-processing techniques like intensity normalization, 
contrast augmentation, de-noising, and others significantly influence the results of fundus lesion segmentation. Poor image 
quality and low contrast make processing time-consuming and inaccurate, affecting how well the segmentation works. 
Typically, noise is a necessary segment of any image. The image denoising process is used to eliminate noise. Noise in the 
picture must be reduced to find the accurate Region of Interest (ROI) between normal and pathological tissues, which 
generates reliable results. Different methods exist to lessen noise and enhance the contrast between the FI. One such 
technique is the use of pre-processing filters.  

Noises in the digital images may be redundant signals that randomly interfere with the desired signal or odd pixels that 
do not stand for the actual scene. During image acquisition, the bizarre arrangement of the image sensors may produce 
minimum noise. Noise removal is an essential pre-processing technique for different image-processing functions such as 
image registration, IS, and object recognition. Gaussian noise is frequently encountered in acquired images. Gaussian noise 
affects the entire image consistently and alters each pixel in the image from its original value based on the standard 
deviation of the noise. 
 
Gaussian Filter 
Gaussian function as an input filter creates a high pass in the step function of input where the initiation and finishing time 
are minimized. The input data is converted into an Eigenstress transform using a Gaussian filter. The FI is smoothened 
using a linear spatial filter, reducing noise and frequency at the edges. Attain smoothing, the convolve in the Gaussian 
function is given in Eq. (1) and Eq. (2). 
 
 𝐺𝐺𝜎𝜎(𝑎𝑎, 𝑏𝑏) ∗ 𝐼𝐼(𝑎𝑎, 𝑏𝑏) (1) 
 

 𝐺𝐺𝜎𝜎(𝑎𝑎, 𝑏𝑏) = 1
2𝜋𝜋𝜎𝜎2

𝑒𝑒−
𝑎𝑎2+𝑏𝑏2

2𝜎𝜎2  (2) 
 

where the input image is shown using 𝐼𝐼(a, b) and the Gaussian function is using 𝐺𝐺𝐺𝐺 (a, b) with the spatial coordinate 
values (𝐺𝐺, a b). The convolution operator is indicated using *. The edges of the image are located, and the find-out gradient 
is transmitted to the FI, which is in Eq. (3). 
 ∇(𝐺𝐺𝜎𝜎(𝑎𝑎, 𝑏𝑏) ∗ 𝐼𝐼(𝑎𝑎, 𝑏𝑏))  (3) 
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where the gradient operator ‘∇’ is stated to value the directional alteration in the intensity values. The boundary map is 
in Eq. (4). 
 
 𝑀𝑀𝑌𝑌(𝑎𝑎, 𝑏𝑏) = ∇(−𝐺𝐺𝜎𝜎(𝑎𝑎, 𝑏𝑏) ∗ 𝐼𝐼(𝑎𝑎, 𝑏𝑏))  (4) 
 

The normalized factor of the boundary map is equated in Eq. (5). 
 

 𝑀𝑀𝑁𝑁𝑌𝑌(𝑎𝑎, 𝑏𝑏) = 𝑀𝑀𝑌𝑌(𝑎𝑎,𝑏𝑏)−min (𝑀𝑀𝑌𝑌(𝑎𝑎,𝑏𝑏))
max (𝑀𝑀𝑌𝑌(𝑎𝑎,𝑏𝑏)−𝑚𝑚𝑚𝑚𝑚𝑚𝑀𝑀𝑌𝑌(𝑎𝑎,𝑏𝑏))

   (5) 
 

The threshold value is 𝑇𝑇∈ [0,1], which is used for the bound map with binary values, and it is given in Eq. (6.) 
 

 𝑀𝑀𝑌𝑌𝑌𝑌(𝑎𝑎, 𝑏𝑏) = � 𝑖𝑖𝑖𝑖 𝑀𝑀𝑁𝑁𝑌𝑌(𝑎𝑎, 𝑏𝑏)     1
𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒                       0

  (6) 
 

The contrast and intensity of the FI determine the threshold value, which may vary depending on the distribution. The 
threshold value used to remove the input fundus image's low-intensity region and object continuity is 0.1. The extracted 
edge specifies an encompass, ensuring the final convergence is within bounds. 
 
Modified Mean Filter (MMF) 
The eigenvalue is fundamental in several image processing functions. This pre-processing is enhanced using eigenvalues 
as a threshold to remove Gaussian noise from the FI. To reduce Gaussian noise, thresholding is often considered in the 
transform area rather than the spatial area. Here, thresholding is used to compute better pixels using spatial coefficients. 
The noisy FI of size M×N is first computed for its standard deviation value of noise, and then mean filtering is applied. 
The noisy FI is subtracted from the mean filtered image to generate a variance mask, which is then used to determine a 
threshold factor. The value is generated based on the eigenvalues based. The mean filtered FI is tuned to produce the 
denoised FI by the threshold value. The processed current pixel is Xij, and the restored pixel is Yij. The sliding window size 
is W×W, which is cantered at Xij, where the ‘W’ is assigned with the positive integer 2L+1. The pixel set created in Xij is 
figured out as �𝑋𝑋𝑚𝑚−𝑢𝑢,𝑗𝑗−𝑣𝑣, − 𝐿𝐿 ≤ 𝑢𝑢, 𝑣𝑣 ≤ 𝐿𝐿�. The difference of the noise approximation mask is 4.6, and the mean is ‘0’. The 
Eq. (7) is used to assess the SD, 𝐺𝐺𝐺𝐺𝑁𝑁𝑀𝑀 of Gaussian noise. 
 
 𝐺𝐺𝐺𝐺𝑁𝑁𝑀𝑀 = 1

4.6
. 1
𝑀𝑀𝑁𝑁

∑ �(𝑋𝑋 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀)𝑚𝑚𝑗𝑗�
𝑀𝑀,𝑁𝑁
𝑚𝑚,𝑗𝑗=1  (7) 

 
The abovementioned method is vital for approximating noise densities in real-time FI. The projected noise Standard 

Deviation (SD) is often used to determine the window size. A 3×3 sliding window is used in the MMF method for the noise 
SD of less than 20 to drop Gaussian noise and improve edge retention. A 5×5 sliding mask drops Gaussian noise when the 
noise SD exceeds 20. Therefore, selecting a fixed window size reduces processing time. The Modified Mean Filter (MMF) 
procedure is given in Algorithm 1. 

 
Algorithm 1 for Pre-Processing of Images Using MMF 
Step 1. The image with noise X of size M×N as input 
Step 2. The Gaussian noise model is calculated using EQU 7 

Step 3. Choose the mask with the size 𝑊𝑊 = �
3 × 3, 𝐺𝐺𝐺𝐺𝑁𝑁𝑀𝑀 ≤ 20
5 × 5, 𝐺𝐺𝐺𝐺𝑁𝑁𝑀𝑀 ≤ 20 

Step 4. The MMF in the noisy FI is given in 𝑋𝑋𝚤𝚤𝚤𝚤� = 1
𝑟𝑟
∑ ∑ 𝑋𝑋𝑚𝑚𝑗𝑗𝑟𝑟

𝑗𝑗=1
𝑟𝑟
𝑚𝑚=1  

Step 5. The local mask ‘r-value is assigned as 25 or 7. 
Step 6. Apply sliding window size of 3×3 and accept the deviation among MMF applied FI and noise image using 𝐷𝐷𝑚𝑚𝑗𝑗 =

�𝑋𝑋𝑚𝑚𝑗𝑗 . .−𝑋𝑋𝚤𝚤𝚤𝚤� . . � 
Step 7. Estimate of eigen variation mask value Dij is predictable using det  �𝐷𝐷𝑚𝑚𝑗𝑗 − λI� = 0 
Step 8. Compute the absolute mean (|𝜇𝜇|) of eigenvalues of difference mask 𝐷𝐷𝑚𝑚𝑗𝑗  and set T =|𝜇𝜇| 
Step 9. The pixel values greater than ‘T’ are trimmed, and the vector ‘V’ is 𝑉𝑉 = {𝑋𝑋1,� 𝑋𝑋2,� 𝑋𝑋3,� … .𝑋𝑋𝑚𝑚 ,� } 
Step 10. The pixel value restored is 𝑌𝑌𝑚𝑚𝑗𝑗 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚(𝑉𝑉) 
Step 11. The final de-noised image is Y. 
 
Segmentation of Fundus Images 
This section describes the summary of significant modules in the network, namely the Relation Transformer Block (RTB), 
Multiscale Feature Fusion Block (MSFF), Global Transformer Block (GTB), and loss function. The proposed FFRTNet is 
made up of four important parts: the segmentation head, Relation Transformer Block (RTB), Multiscale Feature Fusion 
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Block (MSFF), and Global Transformer Block (GTB). FFRTNet (Fig 1) is a dual-branch method that independently 
investigates vascular and pathogenic aspects, using transformers based on GTB and RTB to consider interactions. 

The FI is passed via the network's backbone to get the feature map Ϝ with the channel count ∁ and resolution 𝑊𝑊 × 𝐻𝐻. 
GTB is used in identifying the long-range of feature map dependencies that result in lesion feature Ϝ𝑙𝑙𝑙𝑙 and distinct vessel 
feature Ϝ𝑣𝑣𝑙𝑙. To lessen the spatial loss of the image, a convolutional layer is added to the network in place of the pooling 
layer. Integrating the Contextual Channel Attention (CCA) framework into encoders, the MSFF block helps the web learn 
multiscale features and enriches data sent with skip connections and lower decoder resolution. 

Further, RTB is integrated into the network to model the spatial relation between lesion and vessel due to the properties 
of an essential pathological connection that uses a Cross-attention Head (CH) and Self-attention Head (SH). The self-
attentive feature Ϝ𝑠𝑠𝑙𝑙 is generated and shown using SH, where Ϝ𝑙𝑙𝑙𝑙 accepted as input, and CH received (Ϝ𝑙𝑙𝑙𝑙 , Ϝ𝑣𝑣𝑙𝑙). The cross-
attentive feature Ϝ𝑐𝑐𝑙𝑙 is generated by the combination of fine-grained vessel structures. Create the output of the RTB, Ϝ𝑠𝑠𝑙𝑙 
and Ϝ𝑐𝑐𝑙𝑙  are combined. Using vessel characteristics and lesion information, two sibling heads predict vascular and 
pathological masks using a Norm layer and 1×1 convolution. 

The GTB comprises one head, and the RTB has two heads, which is based on the structure of the transformer. It created 
the key, value, and query relation for reasoning. The GTB query head is identical to channel-wise weight, and RTB 
encompasses a matching size. During training, GTB generates distinct vessel features and multi-lesion that maintain 
interested regions. The pathogenic relation among vessels and multi-lesion is found using RTB, which removes noise and 
implies the location data. 

Two consecutive subdivisions of the same design GTB independently extract the characteristics of vessels and lesions. 
The fact that vessels and lesions impose radically distinct visual patterns accountable for such a dual-branch model. 
Randomly distributed lesions are discrete patterns. The central retinal artery and ciliary artery follow standard guidelines, 
but specialized branches are needed in order to understand branching. 

 

 
Fig 3. Structure of GTB. 

 
The detailed model of GTB is given in Fig 3, and it assumes Ϝ ∈ ℝ𝐶𝐶×𝑊𝑊×𝐻𝐻 as input that is generated from the attentively 

refined output vessels 𝑖𝑖 ∈ {𝑒𝑒𝑖𝑖, 𝑣𝑣𝑖𝑖} and lesions Ϝ𝑚𝑚 ∈ ℝ𝐶𝐶×𝑊𝑊×𝐻𝐻. The Ϝ is transmitted into the generators, namely value (Vl), 
key (Ke), and query (Qe). The query is set out using a 3 × 3 convolutional layer that is followed by MSFF that gives an 
output vector 𝑄𝑄𝑒𝑒(Ϝ) ∈ ℝ𝐶𝐶′×1 with 𝐶𝐶′ = 𝐶𝐶/8 as the channel number. 

The generators Vl and Ke have a similar architecture as Qe with the reshape operation leading to 𝑀𝑀𝑒𝑒(Ϝ),𝑉𝑉𝑒𝑒(Ϝ) ∈
ℝ𝐶𝐶′×𝐻𝐻𝑊𝑊. The pairwise matrix multiplication is determined as Eq. (8). 

 
 ℱ(Ϝ) = 𝑀𝑀𝑒𝑒(Ϝ)𝑇𝑇𝑄𝑄𝑒𝑒(Ϝ) (8) 
 

where the transport operator is indicated using ‘T’. The Qe vector function as a feature selector for the key matrix 
channel, and the product value ℱ(Ϝ) ∈ ℝ𝐻𝐻𝑊𝑊×1 function as a feature selector for the value matrix in the spatial position. 
The GTB is an attention mechanism that merges spatial and channel-wise weighted features with input data. The transform 
operation in the global layer is determined as in Eq. (9). 
 
 𝐺𝐺(Ϝ) = 𝑉𝑉𝑒𝑒(Ϝ)𝑒𝑒𝑠𝑠𝑖𝑖𝑠𝑠𝑚𝑚𝑎𝑎𝑠𝑠(ℱ(Ϝ)) ∈ ℝ𝐶𝐶′×1 (9) 
 

where the value of ℱ(Ϝ) is normalized using SoftMax. The bought attentive feature 𝐺𝐺(Ϝ)  and linearly embedded 
remaining terms are considered as input to the feature map. The final value is attained via the residual connection in Eq. 
(10). 
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 Ϝ𝑚𝑚 = 𝑊𝑊𝐺𝐺(Ϝ) + Ϝ, 𝑖𝑖 ∈ {𝑒𝑒𝑖𝑖, 𝑣𝑣𝑖𝑖} (10) 
 

where the sum function across the element-wise broadcast channel is written down as + and the linear embedding factor 
is indicated as ‘W’, where these values are deployed on a 1 × 1 convolutional layer for converting the intermediate channel 
number from C’ to C. Consequently, the output features, which have been enhanced with specific vessel and lesion features, 
are received in the same format as the input features. 
 

 
Fig 4. Structure of RTB. 

 
The GCNet is used as a model for the GTB structure where GTB differs from GCNet. While producing the per-channel 

weights, they both adhere to the transformer mechanism concept. The GCNet and GTB get their weight vectors from the 
matrix multiplication. The generators highlight the significant channels and get spatial and channel attention. The fundus 
lesion in the tiny discrete one is confused with idiosyncratic tissue or objects. The prominent data is available in fewer 
pixels of a specific network channel. The feasibility of FI segmentation is aimed at improving the method. 

As illustrated in Fig 4, RTB comprises two heads: self-attention and cross-attention—these heads record intraclass 
interdependence between (lesions and interclass) and (lesions and vessels). RTB is deployed on a 3 × 3 convolutional layer, 
and it is followed by the reshape techniques, namely value (Vli), key (Kei), and query (Gei) that belongs to {sf, cf}. The 
cross-attention and self-attention in pairwise estimation are equated in Eq. (11). 
 

ℱ𝑠𝑠𝑙𝑙�Ϝ𝑙𝑙𝑙𝑙� = 𝑀𝑀𝑒𝑒𝑠𝑠𝑙𝑙�Ϝ𝑙𝑙𝑙𝑙�
𝑇𝑇𝑄𝑄𝑒𝑒𝑠𝑠𝑙𝑙�Ϝ𝑙𝑙𝑙𝑙� 

 ℱ𝑐𝑐𝑙𝑙�Ϝ𝑙𝑙𝑙𝑙 , Ϝ𝑣𝑣𝑙𝑙� = 𝑀𝑀𝑒𝑒𝑐𝑐𝑙𝑙�Ϝ𝑣𝑣𝑙𝑙�
𝑇𝑇𝑄𝑄𝑒𝑒𝑐𝑐𝑙𝑙�Ϝ𝑙𝑙𝑙𝑙�  (11) 

 
The evaluation is significant where the query is derived from the input lesion feature by the head of self-attention, and 

the key is derived from the vessel feature by the head of cross-attention. Subsequently, attentive features are assessed from 
the heads using Eq. (12) and Eq. (13). 
 
 𝐺𝐺𝑠𝑠𝑙𝑙�Ϝ𝑙𝑙𝑙𝑙� = 𝑉𝑉𝑒𝑒𝑠𝑠𝑙𝑙�Ϝ𝑙𝑙𝑙𝑙�𝑀𝑀𝑠𝑠𝑖𝑖𝑠𝑠𝑀𝑀𝑎𝑎𝑠𝑠(ℱ𝑠𝑠𝑙𝑙�Ϝ𝑙𝑙𝑙𝑙�)  (12) 
 
 𝐺𝐺𝑐𝑐𝑙𝑙�Ϝ𝑙𝑙𝑙𝑙 , Ϝ𝑣𝑣𝑙𝑙� = 𝑉𝑉𝑒𝑒𝑐𝑐𝑙𝑙�Ϝ𝑣𝑣𝑙𝑙� 𝑀𝑀𝑠𝑠𝑖𝑖𝑠𝑠𝑀𝑀𝑎𝑎𝑠𝑠(ℱ𝑐𝑐𝑙𝑙�Ϝ𝑙𝑙𝑙𝑙 , Ϝ𝑐𝑐𝑙𝑙�) (13) 
 

Every head adopts the residual learning process and generates the output using Eq. (14). 
 
 Ϝ𝑚𝑚 = 𝑊𝑊𝑚𝑚𝐺𝐺𝑚𝑚�Ϝ𝑙𝑙𝑙𝑙 , Ϝ𝑣𝑣𝑙𝑙� ⊕ Ϝ𝑙𝑙𝑙𝑙 𝑖𝑖 ∈ {𝑒𝑒𝑖𝑖, 𝑐𝑐𝑖𝑖} (14) 
 

where the linear embedding element is denoted as Wi, and the element-wise addition is conducted using ⊕. 
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By weighing all locations, the self-attention head accurately captures long-range relationships. Self-attention can model 
intra-class pairwise interactions with multiple DR lesions regardless of location. In lesion segmentation, the head 
distinguishes between the edges of multiple lesions and sharpens broad patterns. The cross-attention head incorporates 
interactions among lesions and vessels by querying the global vascular model from vessel attributes. Given the strong 
pathogenic links that lesions and vasculature already have, cross-attention can aid in more accurately finding Micro-
Aneurysms (MAs) and Soft Exudates (SEs) while also removing FP for hard EXudates (EXs) and MAs due to vessel 
reflection and capillary confusion, respectively. 

The outcome of features Ϝ𝑠𝑠𝑙𝑙 from the self-attention and Ϝ𝑐𝑐𝑙𝑙 from cross-attention generates the final RTB using Eq. (15). 
 
 Ϝ𝑜𝑜𝑢𝑢𝑜𝑜 = [Ϝ𝑠𝑠𝑙𝑙; Ϝ𝑐𝑐𝑙𝑙] (15) 
 

where the channel dimension addition is shown using [;]. 
The vessel and lesion segmentation are done using the loss function ℒ𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑙𝑙  and ℒ𝑙𝑙𝑣𝑣𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚 . The total loss in this network 

is stated by Eq. (16). 
 
 𝐿𝐿 = 𝜆𝜆ℒ𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑙𝑙 + ℒ𝑙𝑙𝑣𝑣𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚  (16) 

 
where the multi-lesion segmentation’s weighted cross-entropy with 5-Class is indicated using ℒ𝑙𝑙𝑣𝑣𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚  and vascular 

feature learning of binary weighted cross entropy across the loss is indicated using  ℒ𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑙𝑙 . The weight value in the loss is 
determined by and assigned with the value 0.0. Only the multi-lesion features are used to perfect the network, and vascular 
information becomes significant if it increases. 
 

IV. RESULT AND DISCUSSION 
The proposed FFRTNet is performed on an NVIDIA GPU with 24 GB of RAM, deploying PyTorch as the backend. The 
batch size for the training process is 16. The starting learning rate is assigned as 0.001 and gradually decreases after 120 
epochs to 0.1 times the initial value. Every model is trained using the Stochastic Gradient Descent (SGD) optimizer for 
250 iterations, with momentum set to 0.9 and weight decay set to 0.0005. The return loss is assigned as 0.1. The weight of 
ℒ𝑙𝑙𝑣𝑣𝑠𝑠𝑚𝑚𝑜𝑜𝑚𝑚  of MA is 1.0, HA is 0.001, HE is 0.1, and SE is 0.1. The coefficient of ℒ𝑣𝑣𝑣𝑣𝑠𝑠𝑠𝑠𝑣𝑣𝑙𝑙  is assigned as 1.0 and 0.01. This 
section describes the pre-processing and segmentation of FI using comparative analysis. 
 
Pre-Processing of Fundus Image 
The FI is initially smoothed using image smoothening. Smoothing is used to generate images with fewer pixels and less 
noise. The different smoothing methods rely on low-pass filters, but they also use a kernel that is a moving collection of 
pixels to smooth an image by capturing the average (or) median measurement for the group of pixels. The smoothened 
Gaussian filter and Modified Mean Filter (MMF) applied images are given in Fig 5. 
 

 
Fig 5. Comparison of Pre-Processing Approaches. 

 
Fig 5 illustrates the output of pre-processing techniques. Fig 5 (a) depicts the input image, which is smoothened in Fig 

5 (b). Further, the image is applied with the filters, namely existing Gaussian and proposed MMF. The Proposed MMF 
effectively removes the redundant regions from the FI. The prepared image is passed to the following IS technique. 
Segmentation of Fundus Images 

(a) Input Image

(c) Gaussian Filter

(b) Smoothened Image

(d) Modified Mean Filter 
(MMF)
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Implementing generalization over different domains and imaging scenarios is challenging yet fundamental for medical 
images. Models are evaluated on the IDRiD dataset [17], which was attained from an added source after they have been 
trained using images from the training set of the DDR dataset. Fig 6 compares the findings of the IS analysis. It shows that 
the proposed method performs at its best by reducing the distance between images captured under different settings. 

Fig 6 depicts the IS of MA, HA, HE, and SE from the FI using the proposed FFRTNet. The convolution layer is 
deployed to minimize the spatial loss of the data, and MSFF effectively learns the multiscale feature. It obtains the IS 
process effective over the existing state-of-the-art technique, which is discussed in a subsequent section. 

When evaluating the process of IS, performance evaluation metrics are necessary. The research employs different 
metrics, such as Sensitivity, Dice coefficient (DICE), and IoU, to assess the performance of segmenting DR images and 
quantitatively analyze the experimental clinical test data. Initially, the True Positive (TP), False Positive (FP), True 
Negative (TN), and False Negative (FN) values are determined. The predicted and true lesion identification is TP, the 
predicted and true normal lesion is FP, the said normal and true normal is TN, and the true and predicted normal is FN. 
The performance measure is stated in Eq. (17) to Eq. (19). 

 

 
Fig 6. Comparative Analysis of IS. 

 
 𝑀𝑀𝑒𝑒𝑚𝑚𝑒𝑒𝑖𝑖𝑠𝑠𝑖𝑖𝑣𝑣𝑖𝑖𝑠𝑠𝑆𝑆 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁
  (17) 

 
 𝐷𝐷𝐼𝐼𝐶𝐶𝐷𝐷 = 2𝑇𝑇𝑇𝑇

2𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁
  (18) 

 
 𝐼𝐼𝑠𝑠𝐼𝐼 = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁
  (19) 

 
Sensitivity is the frequency of diseases being misdiagnosed. This work refers to the ratio of accurate to total lesion area, 

a crucial consideration for patients and medical experts. This research has concentrated on reducing the rate of misdiagnosis 
in real-world applications. IoU is an evaluation metric that determines the degree to which predicted results and actual 
outcomes overlap. Using this value, one can determine how accurate a particular semantic segmentation method is. DICE 
measures the similarity of ground truth and prediction, which predicts FP and FN techniques. The weights close to 1 of 
sensitivity, DICE, and IoU determine the effectiveness of the segmentation. 

 
Table 2. Performance Comparison of Segmentation of MA and HA 

Feature MA HA 
Segmentation Method Sensitivity DICE IoU Sensitivity DICE IoU 

DRNet 0.5171 0.6354 0.4791 0.6698 0.7898 0.6572 
DeepLabV3 0.5518 0.6789 0.5367 0.6946 0.8577 0.6937 

CARNet 0.5946 0.7398 0.5631 0.7363 0.8654 0.7468 
FFRTNet 0.6145 0.7561 0.6134 0.7451 0.8781 0.7615 

 

(a) Input Image (b) MA (c) HA (d) HE (e) HE
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(a)  

(b) 
Fig 7. Performance Comparison of (a) MA Segmentation and (b) HA Segmentation. 

 
In Fig 7, the segmentation of MA and HA is illustrated where the performance metrics, namely sensitivity, DICE, and 

IoU, are compared with existing methods, namely DRNet, DeepLabV3, and CARNet. The sensitivity of MA segmentation 
for FFRTNet is higher than 9.74%, 6.27%, and 1.99% for the techniques DRNet, DeepLabV3, and CARNet. The DICE of 
MA segmentation for FFRTNet is more elevated than 12.07%, 7.72%, and 1.63% for DRNet, DeepLabV3, and CARNet 
methods. The IoU of MA segmentation for FFRTNet is higher than 13.43%, 7.67%, and 5.03% for DRNet, DeepLabV3, 
and CARNet methods. The sensitivity of HA segmentation for FFRTNet is higher than 7.53%, 5.05%, and 0.88% for the 
techniques DRNet, DeepLabV3, and CARNet. The DICE of HA segmentation for FFRTNet is higher than 8.83%, 2.04%, 
and 1.27% for DRNet, DeepLabV3, and CARNet methods. The IoU of HA segmentation for FFRTNet is more elevated 
than 10.43%, 6.78%, and 1.47% for DRNet, DeepLabV3, and CARNet methods.s The higher rate of performance measures 
shows that the proposed system is highly effective. Table 2 shows the performance comparison of segmentation of MA 
and HA 

 
Table 3. Comparison of Performance of Segmentation of HE and SE 

Feature HE SE 
Type of Segmentation Sensitivity DICE IoU Sensitivity DICE IoU 

DRNet 0.5598 0.6914 0.5241 0.6995 0.8228 0.6990 
DeepLabV3 0.4997 0.6576 0.4732 0.6518 0.7810 0.6407 

CARNet 0.4932 0.6464 0.4666 0.6944 0.8068 0.6761 
FFRTNet 0.5954 0.7348 0.5701 0.7542 0.8450 0.7365 

 

 
(a) 

 
(b) 

Fig 8. Performance Comparison of HE and SE Segmentation. 
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In Fig 8, the segmentation of HE and SE is demonstrated where the performance metrics, namely sensitivity, DICE, 
and IoU, are compared with existing methods, namely DRNet, DeepLabV3, and CARNet. The sensitivity of HE 
segmentation for FFRTNet is higher than 3.56%, 9.57%, and 10.22% for DRNet, DeepLabV3, and CARNet methods. The 
DICE of HE segmentation for FFRTNet is higher than 4.34%, 7.72%, and 8.84% for the methods DRNet, DeepLabV3, 
and CARNet. The IoU of HE segmentation for FFRTNet is higher than 4.6%, 9.69%, and 10.35% for DRNet, DeepLabV3, 
and CARNet methods. The sensitivity of SE segmentation for FFRTNet is higher than 5.47%, 10.24%, and 5.98% for the 
methods DRNet, DeepLabV3, and CARNet. The DICE of SE segmentation for FFRTNet is higher than 2.22%, 6.4%, and 
3.82% for DRNet, DeepLabV3, and CARNet methods. The IoU of SE segmentation for FFRTNet is higher than 3.75%, 
9.58%, and 6.04% for DRNet, DeepLabV3, and CARNet methods. The higher rate of performance measures shows that 
the proposed method is highly effective. Table 3 shows the comparison of performance of segmentation of HE and SE 

 
Table 4. Performance Comparison of Running Time 

Type of Segmentation Epoch 50 Epoch 100 Epoch 150 Epoch 200 
DRNet 801 845 902 1011 

DeepLabV3 1067 1100 1131 1176 
CARNet 810 860 951 1091 
FFRTNet 490 516 598 665 

 

 
Fig 9. Performance Comparison of Running Time with DRNet, DeepLabV3, and CARNet. 

 
From the observation of Fig 9, it is shown that the proposed FFRTNet achieves minimal running time. For epoch 250, 

FFRTNet attains 665 milliseconds (ms), less than existing state-of-the-art techniques. Table 4 shows the performance 
comparison of running time. 

 
V. CONCLUSION AND FUTURE WORK 

Chronic Diabetic Retinopathy (DR) is a significant threat to diabetic patients, with its progression damaging the retina's 
blood vessels and causing abnormalities in the macular region. DR, if left untreated, can lead to blurred eye vision and 
blindness. This research uses a new network that simultaneously segments the four DR lesions using a dual-branch design 
with GTB and RTB integrated with MSFF. GTB and RTB examine the intra-class dependencies between inter-class 
and multi-lesion relationships of vessels and lesions. The investigation of vessel and lesion extraction is responsible for 
the network's experimental findingsLearning's coarse-grained pseudo masks generate the proposed network insufficiently. 
DR multi-lesion segmentation requires expert pixel-level annotations. FFRTNET outperforms DRNet, DeepLabV3, and 
CARNet in sensitivity, IoU, and DICE. FFRTNet achieves 665 ms, which is minimal compared to existing methods that 
indicate the effectiveness of the proposed method. 

The proposed techniques deal with only FI. The RI from other medical modalities will be considered. The computation 
of measures like tortuosity and diameter from the segmented vessels will be included. Increasing the number of training 
and testing images may also improve the segmentation process. 
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