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Abstract – India has a vast number of inhabitants and the main food source distribution is from agriculture. Agricultural 

lands are being demolished generally owing to plant and crop illnesses. The detection of plant diseases by using image 

processing models can aid agriculturalists in defending the farming area from damaging or affecting it. Paddy is the main 

harvest worldwide. Early recognition of the paddy diseases at dissimilar phases of development is very vital in paddy 

production. However, the present manual technique in identifying and classifying paddy diseases needs a very educated 

farmer and is time-consuming. Deep learning (DL) is an effectual research area in the classification of agriculture patterns 

where it can efficiently solve the problems of diseases identification. Therefore, the articles focus on the design and 

expansion of Deep Learning based Crested Porcupine Optimizer for the Detection and Classification of Paddy Leaf 

Diseases (DLCPO-DCPLD) method for Sustainable Agriculture. The main aim of the DLCPO-DCPLD method use DL 

method for the recognition and identification of rice plant leaf diseases. To accomplish this, the DLCPO-DCPLD technique 

performs the image pre-processing using Median Filtering (MF) to recover the excellence of the input frames. Next, the 

ConvNeXt-L method is applied for extraction of feature vectors from the pre-processed images. Also, the Conditional 

Variational Autoencoder (CVAE) model is utilized for the automated classification of Paddy Leaf diseases. Eventually, the 

hyperparameter tuning of the CVAE technique is accomplished by implementing the Crested Porcupine Optimizer (CPO) 

technique. To safeguard the enhanced predictive results of the DLCPO-DCPLD method, a sequence of experimentations 

is implemented on the benchmark dataset. The experimental validation of the DLCPO-DCPLD method portrayed a superior 

accuracy value of 99.12% over existing approaches. 

 

Keywords – Image Preprocessing, Crested Porcupine Optimizer, Feature Extraction, Paddy Leaf Disease, Deep Learning.  

 

I. INTRODUCTION 

India is one of the significant agricultural nations and the main meal is rice. Concerning the nation's economy, rice is 

essential. It provides half of the daily caloric intake for individuals and rice production is extremely vulnerable to crop 

infections that stance a threat to food suppliers globally [1]. Once a year, it is believed that various viruses and pest plagues 

cause the paddy fields to be spoiled. Owing to their lack of agricultural experience, the new farmers are incapable of 

identifying the types of diseases. Common approaches for identifying rice diseases include visual analyses and laboratory 

testing [2]. The laboratory tests were not as effective later they needed more chemical managers and went long to forecast 

the disease. Increasing rice intake is predicted to continue with an increasing rate of production [3]. Nevertheless, owing 

to poor field investigation, disease-related problems normally kill a great portion. Many illnesses often attack rice farmers, 

producing huge financial losses. In the agriculture field, the major study subject is plant disease recognition [4]. In recent 

days, classification and recognition of plant illnesses has been a difficult job. To evade losses, the agriculture products' 

quantity and yield, a significant key is plant disease recognition. As sustainable agriculture, recognition of disease, and 

health monitoring on plants is highly detrimental [5]. 

These associated studies of plant disease recognition indicate that the illnesses are the recognizable patterns detected 

on the plants. The physical procedure requires more handling time, a large work quantity, and knowledge of plant diseases 

[6]. Therefore accurate, real classification and identification of crop illnesses are developed promising by using techniques 

of DL, and Machine Learning (ML) successful farming quality and productivity. The latest developments in DL, mainly in 
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the image processing field, have revealed greater latent in the initial classification and identification of plant illnesses [7]. 

Convolutional Neural Network (CNN) were effective in detecting plant diseases depending on plant leaf images. Compared 

with conventional models, the DL approach provides various benefits such as speed, high accuracy, and the capacity to 

handle large data quantities [8]. Effectual plant disease detection is significant to lessen crop losses and safeguarding food 

safety. Advances in DL presents promising solutions for precise and timely detection of plant diseases, which is crucial for 

improving agricultural productivity [9]. By enhancing disease detection and classification, more sustainable farming 

practices can be promoted and better manage plant health. Utilizing state-of-the-art optimization approaches can 

substantially improve the precision and effectualness of these detection systems [10]. 

This study concentrates on the design and growth of Deep Learning based Crested Porcupine Optimizer for the 

Detection and Classification of Paddy Leaf Diseases (DLCPO-DCPLD) model for Sustainable Agriculture. The main 

intention of the DLCPO-DCPLD technique use the DL method for the recognition and identification of rice plant leaf 

diseases. To accomplish this, the DLCPO-DCPLD technique performs the image pre-processing using MF to recover the 

excellence of the input frames. Next, the ConvNeXt-L method is applied for extraction of feature vectors from the pre-

processed images. Also, the CVAE model is utilized for the automated classification of Paddy Leaf diseases. Eventually, 

the hyperparameter tuning of the CVAE technique is accomplished by implementing the CPO technique. To safeguard the 

enhanced predictive results of the DLCPO-DCPLD approach, a sequence of experimentations is implemented on the 

benchmark dataset.  

 

II. RELATED WORKS 

Ritharson et al. [11] suggest a remedy by utilizing DL and transfer learning methods to precisely classify and identify 

Paddy Leaf illnesses. A complete dataset containing 5932 self-produced Paddy Leaf images has been collected by the 

benchmark datasets, which are classified into 9 types despite the level of illness spread over the leaves. These types contain 

various conditions including severe and mild blight, healthy leaves, severe and mild blast, severe and mild brown spot, and 

severe and mild tungro. Aggarwal et al. [12] present an effective and suitable method for forecasting illnesses in rice leaves 

by utilizing many various DL techniques. At first, features are extracted by utilizing pre-trained methods, and then the 

images of Paddy Leaf illnesses by numerous ensemble learning and ML classifications and equated the results. Rajpoot et 

al. [13] analyze plant illnesses, which affect rice contains 3 various types of illnesses. In the presented method a VGG16 

transfer learning with Faster RCNN deep structure is utilized for extraction of features. Next, the collected features are 

classified by utilizing the random forest technique.  Andrianto et al. [14] describe a DL-based rice disease detection system, 

which contains ML an application on a smartphone, and a cloud server. The smartphone application tasks to take imageries 

of rice plant leaves and transmit them to cloud server, and obtain classifier outcomes in the data procedure on the plant 

illnesses type. 

Singh et al. [15] introduce a custom CNN structure for classifying and detecting usual illnesses originate in rice plants 

by decreasing the amount of parameters related to the system. The presented CNN structure was trained by utilizing a 

database of 4 kinds of usual rice plant diseases. Furthermore, 1400 on-field images of strong Paddy Leaf image datasets 

are presented for recognition of illness-free plants. Independent experimentations are performed without and with the 

presence of the strong leaf image dataset. Mahadevan et al. [16] presented a technique of DSGAN2 with IAPO for rice 

plant leaf illness recognition. At first, the author served the input of non-healthy and healthy leaves from the gathered 

database. Next, to enhance the image quality, an ITNN method was applied. Afterward, it utilizes a Segmentation 

employing an SMNS method to classify the support-intensive color saturation depend upon the improved image. Khasim 

et al. [17] suggest a complete synopsis of rice plant illnesses and examine DL methods utilized for their recognition. By 

estimating the disadvantages and advantages of several systems initiated in the works, the research goal is to detect the 

most precise way of controlling and detecting rice plant illnesses by utilizing DL methods. The author proposes a recent 

diagnostic and detection method for rice-lead illnesses, which uses ML techniques. 

The existing studies in Paddy Leaf disease detection illustrates various limitations. Several techniques, specifically 

those employing DL and transfer learning models, demand significant computational resources and extensive data, which 

can affect scalability and real-time accomplishment. Complex approaches comprising diverse DL techniques or advanced 

methodologies such as VGG16 and Faster RCNN may attain high costs and need vast datasets, potentially limiting their 

application to less common diseases. Smartphone and cloud-based outcomes encounter threats with data privacy, latency, 

and connectivity. Furthermore, while custom CNN techniques aim to mitigate parameters, they may sacrifice accuracy, and 

approaches focused on image quality and segmentation might face difficulty with several or noisy data. Subsequently, there 

is a requirement for more effectual and practical outcomes that balance accuracy with computational efficiency, effectually 

handle several data conditions, and perform robustly in real-world scenarios. 

 

III. THE PROPOSED MODEL 

In this study, the DLCPO-DCPLD technique is presented for sustainable agriculture. The main intention of the DLCPO-

DCPLD technique is in the effective recognition and identification of rice plant leaf diseases. Fig 1 represents the complete 

workflow of DLCPO-DCPLD method. 
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Fig 1. Working Flow of DLCPO-DCPLD Technique. 

 

Image Preprocessing 

At first, the DLCPO-DCPLD technique takes place in the image pre-processing using MF to enhance the excellence of the 

input surrounds. MF is a vital image pre-processing method used in the recognition of rice leaf disease [18]. It functions 

by substituting every value of pixels with the median value of the strength levels in its zone, efficiently decreasing noise 

while maintaining edges. This procedure improves the excellence of the leaf images, making disease symptoms more 

discrete for subsequent analysis. By minimalizing the effect of random noise and unrelated details, MF simplifies more 

precise classification and identification of numerous Paddy Leaf diseases. 

 

Feature Extraction Using ConvNeXt-L Model 

Next, the ConvNeXt-L technique is used to mine feature vectors from the pre-processed images. ConvNeXt depending on 

the CNN method has been employed for the encoding portion of the suggested network that contains quicker speed of 

inference and greater accurateness compared with the newly standard transformer-based methods [19]. The creation of the 

ConvNeXt architecture depends on the new ResNet and is slowly enhanced by a drawing of the Swin Transformer design. 

Exactly, the ConvNeXt starting point is the ResNet-50 technique. Initially, the ResNet-50 technique was trained with related 
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training technology applied for training vision Transformers and obtained significantly improved outcomes in comparison 

with the novel ResNet-50 and it is the standard of ConvNeXt. Next, this article examines a sequence of design results, 

abbreviated as (1) macro design, (2) ResNeXt, (3) reverse bottleneck, (4) large kernel size, and (5) various layered micro 

designs. Fig 2 portrays the structure of ConvNeXt-L method.  

 

 
Fig 2. Structure of ConvNeXt-L Model. 

 

Among them, (1) It contains varying the phase computed proportion and stems to ‘Patchify’. According to the standard, 

this article regulates the stacked block numbers in every phase from (3, 4, 6, 3) in ResNet-50 to (3, 3, 9, 3) that adjusts the 

parameter by Swin-T. In the interim, the ResNet-styled stem cells were changed through a patchy level applied with 4×4, 

strides four convolutional layers. (2) The ResNeXtify strategy tries to adopt the ResNeXt idea, which employs in-depth 

conversion and improves the width of the network with similar channel counts as Swin-T (3). The bottleneck blocks in 

ConvNeXt accept the opposite bottleneck MobileNetV2 unit, which is a structure with a large lower middle and results in 

efficiently avoiding loss of information. (4) By comparison with the simulated outcomes of various kernel dimensions, the 
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sizes of a convolutional kernel within the ConvNeXt were improved from 3×3 to 7×7. 5. Micro design includes enhancing 

some particulars, containing substituting ReLU with GELU, smaller amount of normalization and activation functions, 

replacing Batch Norm (BN) with Layer Normalization (LN), and splitting layer of down-sampling. 

When the top design choices, the last ConvNeXt method overtakes the Swin Transformer both inside image detection 

and classification segmentation responsibilities. Over observation, it is compared to see that ConvNeXt has particular 

changes in comparison with the other two models. Consequently, a unique backbone network is made with ConvNeXt and 

rationalized the decoding using the ConvNeXt block of a bottleneck. These methods also strengthen the extraction of 

feature capacity during the encoder phase to maintain comprehensive content apart from providing the decoder with 

adequate abilities and features to improve misplaced information of spatial. Further, in comparison with this backbone by 

other popularised CNN based backbone networks like Vgg-16, Res-Net, and Res2-Net within the new unit, approves the 

brilliant performance of the recommended model.  

The ConvNeXt method, an advanced repetition of the ResNet-50 approach, is obtainable in different types such as 

ConvNeXt-S, ConvNeXt-T, ConvNeXt-L, ConvNeXt-XL, and ConvNeXt-B. Particularly, this method varies mainly in 

their structure of network width and depth. The introductory architecture of the ConvNeXt technique includes activation, 

convolutional, and fully connected layers [20]. Remarkably, ConvNeXt assistances from remaining connections, improving 

accuracy by effective information propagation through the network. Since there exists a family of ConvNeXt transformers, 

the ConvNeXtX-L technique is chosen among them. The structure of ConvNeXt-L approach incorporates a 4x4 

convolutional layer as well as 36 ConvNeXt Blocks of differing dimensions. Every ConvNeXt Block includes 3 

convolutional layers of various sizes, including Layer Scale, Layer Norm, Drop Path components, and GELU activation. 

For ConvNeXt-L, input images experience resizing and pre-processing to 192x192 sizes.  

 

CVAE Method 

Furthermore, the DLCPO-DCPLD technique utilized the CVAE technique for the automated identification of Paddy Leaf 

illnesses. Depending upon the VAE model, a CVAE is measured as effective to signify the high‐dimension joint 

distributions of aspects [21]. The foremost objective of VAE is the assessment of the relationship among input 𝑥𝑖 and the 

equivalent latent depiction 𝓏𝑖. In the context of VAEs and CVAEs, 𝓏𝑖 depicts the latent variable for the 𝑖𝑡ℎ data instance, 

capturing its compressed features, which are utilized by the decoder to rebuild the original input. In variational deduction, 

the later 𝑝(𝑧|𝑥) was estimated by a parameterized distribution 𝑞𝜃(𝑧|𝑥), which is called variational distribution. The lower 

limit for 𝑝(𝑥) is expressed below in mathematical formulation: 

 

 𝐿𝜃,𝜙,𝑥 = 𝐸𝑞𝜃(𝑧|𝑥)[𝑙𝑜𝑔𝑝𝜙(𝑥|𝓏)] − 𝐾𝐿(𝑞𝜃(𝑧|𝑥)||𝑝𝜙(𝑧))  (1) 

 

The dual vital parts of VAE are encoding 𝐸 = 𝑞𝜃(𝑥|𝑧) and decoding 𝐷 = 𝑝𝜙𝐷
(𝑥|𝑧) with parameters 𝜃 and 𝜙, 

respectively. They signify functions that map an input 𝑥𝑖 to a concealed space 𝓏𝑖 and conversely. The re-construction from 

𝑥𝑖 has been signified by �̂�. At this time, the signified optimizer is a minimizer of the reconstruction loss below KL 

divergence as a regularizer. 𝐸 contains dual outputs 𝜇𝑖 and 𝜎𝑖, which correspond to the standard deviation and mean of the 

latent variable 𝓏𝑖. Due to this, the re-parameterization technique is usually employed with 𝜇𝑖 + 𝜎𝑖 ∗ 휀 under respect of 휀𝑖 ∼
𝑁(0,1) for computing 𝓏𝑖. Fig 3 illustrates the structure of CVAE model. 

 

 
Fig 3. Structure of CVAE Technique. 

 

Contrary to VAE, a CVAE technique depends upon the maximization from the variational lower limit of the restricted 

probability 𝑝(𝑥|𝑐) that aids in making strategies under manifold definite conditions 𝑐 = {𝑐1 … 𝑐𝑛} whereas 𝑛 denotes the 

amount of conditions. 
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 𝐿𝜃,𝜙,𝑥,𝑐 = 𝐸𝑞𝜃(𝑧|𝑥,𝑐)[𝑙𝑜𝑔𝑝𝜙(𝑥|𝑧, 𝑐)] − 𝐾𝐿(𝑞𝜃(𝑧|𝑥, 𝑐)||𝑝𝜙(𝑧|𝑐))  (2) 

 

The CVAE was functional to rebuild an input 𝑥𝑖 below an array of conditions 𝑐 to contest the outputs of the target �̂�𝑖. 

The foremost part of CVAE 𝐸 and 𝐷 are trained by 𝑐. It tracks 𝐸 = 𝑞𝜃(𝑧|𝑥, 𝑐) and 𝐷 = 𝑝𝜙𝐷
(𝑥|𝓏, 𝑐) with parameters 𝜃 and 

𝜙, respectively. Its functions were employed to map an input 𝑥𝑖. 

 

CPO-based Hyperparameter Tuning Process 

At last, the hyperparameter tuning of CVAE technique is implemented by the design of the CPO technique. CPO model is 

a new metaheuristic optimizer algorithm that simulates 4 defensive behaviors of crested porcupines such as auditory 

olfactory, visual, and physical attacks for solving optimizer difficulties [22]. It has robust global searching features and 

abilities for quick convergence. CPO model, like further metaheuristic swarm techniques, starts the hunting method from 

a primary group of individuals. As every individual 𝑖, a randomly generated location 𝑋𝑖 are made inside the search space, 

formulated mathematically in the following: 

 

 𝑋𝑖 = 𝐿 + 𝑟 × (𝑈 − 𝐿)𝑖 = 1,2, ⋯ , 𝑁 (3) 

 

Here 𝑁 stands for dimension of population; 𝑟 represents distributed uniform at randomly generated numbers among 0 

and 1; and 𝑈 and 𝐿 denotes upper and lower limits, correspondingly. Fig 4 depicts the architecture of CPO technique. 

 

 
Fig 4. Architecture of CPO Model. 
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To improve the speed of convergence of an algorithm however preserving population range the Cycle Population 

Reduction (CPR) method occasionally decreases or increases the dimension of the population based on pre-defined 

patterns. This mathematically formulated can be 

 

 𝑁(𝑡) = 𝑁min + (𝑁′ − 𝑁min) × (1 −
t%𝑇max

𝑇max
) (4) 

 

Now 𝑁(𝑡) signifies the size of the population at present 𝑡 𝑡ℎ iteration,⋅ 𝑁min denotes the lowest population dimension; 

𝑁′ symbolizes the primary dimension of the population; 𝜏 max  stands for the highest iteration count for the method; 𝑡 exists 

recently generated iteration value; % signifies the modulo process employed to use changes occasionally.  

The visual strategy's purpose is to pretend the crested porcupine's behavior after it identifies a predator. In this technique, 

these imitate the individual's behavior moving near the global finest solution. These mathematic indications are: 

 

 𝑋𝑖
𝑡+1 = 𝑋𝐶𝑃

𝑡 + 𝜏1 × (2 × 𝜏2 × (𝑋𝐶𝑃
𝑡 − 𝑦𝑖

𝑡)) (5) 

 

whereas 𝑋𝑖
𝑡+1 signifies 𝑖𝑡ℎ individual position in the following iteration; 𝑋𝐶𝑃

𝑡  characterizes the location of a present 

global finest solution, for example, the location of a top individual placed at present iteration 𝑡; 𝜏1 means randomly 

generated number depends on a standard distribution, employed to mimic and improve the search ability of the algorithm; 

𝜏2 means randomly formed values in the interval [0,1] utilized to regulate the exploration intensity; 𝑋𝐶𝑃
𝑡 − 𝑦𝑖

𝑡 characterizes 

the variance among the present global optimum solution and location of present 𝑖𝑡ℎ individual ; 𝑦𝑖
𝑡 symbolizes the mid-

point place among 𝑖𝑡ℎ individual and a randomly selected individual at 𝑡𝑡ℎ iteration, applied to pretend the predator place. 

The sound strategy's intention is to pretend the crested porcupine's behavior producing sounds after predator methods. 

This algorithm signifies the updating of the position of an individual. The mathematical demonstration is 

 

 𝑋𝑖
𝑡+1 = (1 − 𝑈1) × 𝑋𝑖

𝑡 + 𝑈1 × (𝑦 + 𝜏3 × (𝑋𝑟1
𝑡 − 𝑋𝑟2

𝑡 )) (6) 

 

Where 𝑋𝑖
𝑡+1 symbolizes 𝑖𝑡ℎ individual position in the following iteration; 𝑋𝑖

𝑡 signifies the 𝑖𝑡ℎ individual position at 

present iteration 𝑡, 𝑈1 means a randomly formed vector using features set at 0 or 1, applied to mimic whether the CPO 

produces a frightening sound of the pillager and sound intensities; 𝑦 characterizes the predator position, typically designed 

of the places of dual random individuals within the recent population; 𝜏3 exists randomly generated value inside the interval 

[0,1] utilized for controlling the stage dimension of the predator’s movements; 𝑋𝑟1
𝑡  and 𝑋𝑟2

𝑡  symbolize the locations of dual 

differently chosen random individuals of the population at present 𝑡𝑡ℎ iterations.  

The scent tactic pretends the crested porcupine's discharging behavior is a scent to prevent predators. This technique is 

signified by updating of individuals to discover novel solutions and evade local goals. In this method, the method can 

slowly tactic the global optimal while preserving the range of population. The mathematic formulation was mentioned 

below: 

 

 𝑋𝑖
𝑡+1 = (1 − 𝑈1) × 𝑋𝑖

𝑡 + 𝑈1 × (𝑋𝑟1
′ + 𝑆𝑖

′ × (𝑋𝑟2
′ − 𝑋𝑟3

′)) − 𝜏3 × 𝛿 × 𝛾𝑡 × 𝑆𝑖
′ (7) 

 

whereas 𝑋𝑖
𝑡+1 signifies 𝑖𝑡ℎ individual position at the succeeding iteration 𝑡 + 1, 𝑋𝑖

𝑡 symbolizes 𝑖𝑡ℎ individual position 

at the present iteration 𝑡; 𝑈1 means a randomly formed vector with components set at 0 or 1. Once the value is 1, the 

individual contributes to the scent approach upgrade; If the range is 0, it doesn’t contribute to the scent tactic updates; 𝑋𝑟1
′ 

characterizes a random individual position applied to compute the original position; 𝑆𝑖
′ means scent factor of diffusion 

employed for controlling the position intensity updating in the scent approach; 𝑋𝑟2
′ and 𝑋𝑟3

′ symbolizes the locations of 

dual other random individuals in the search space, employed together with 𝑋𝑟1
′ for computing the intensity and direction 

of the scent diffusion; 𝜏3 stands for a randomly generated value within the interval [0,1] utilized for controlling the 

randomness influence in the scent approach; 𝛿 denotes a parameter, which manages the search direction, employed to 

correct the movements route of the individual within the searching space; 𝛾𝑡 means a factor of defense, a time‐varying task 

applied to pretend protective behavior at various points in a period. The mathematic indication can be  

 

 𝛾𝑡 = 2 × 𝑟𝑎𝑛𝑑 × (1 −
𝑡

𝑡max
)

1

𝑡max (8) 

 

Here 𝑡max represent the maximum iteration counts. 

The strategy of physical attack creates defensive behavior, permitting the method for conducting more target‐oriented 

and focused search in the process of search. This approach is mainly proper for the advanced phases of the technique once 

more advanced searches are required to identify promising parts. The mathematic Eq. expressed below 
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 𝑋𝑖
𝑡+1 = 𝑋𝐶𝑃

𝑡 + 𝛼 × (1 − 𝜏4) × (𝑋𝐶𝑃
𝑡 + 𝑋𝑖

𝑡) + 𝜏4 × 𝐹𝐶𝑃
𝑡  (9) 

 

whereas 𝑋𝑖
𝑡+1 denotes 𝑖𝑡ℎ individual position at the following iteration 𝑡 + 1, 𝑋𝐶𝑃

𝑡  signifies the location of the global 

optimum solution at the present iteration 𝑡, 𝛼 means convergence force applied for controlling the speed when the model 

converges to the optimum solution; 𝜏4 signifies a randomly generated value within the range of [0,1] utilized to present in 

the physical attack tactic; 𝐹𝐶𝑃
𝑡  characterizes the average force employed by the global optimum solution 𝑋𝐶𝑃

𝑡  on predators 

at the present iteration 𝑡. It is calculated depending on the elastic collision principles: 

 

 𝐹𝐶𝑃
𝑡 = 𝜏5 × 𝛼𝑖 × (𝑋𝐶𝑃

𝑡 + 𝑋𝑖
𝑡) (10) 

 

Now 𝜏5 signifies another randomly formed integer in the range of [0,1], applied to additionally control the force 

strength; 𝛼𝑖 represent a parameter connected to the location of the 𝑖𝑡ℎ individual. Algorithm 1 portrays the steps involved 

in the CPO model. 

 

Algorithm 1: CPO technique 

1. Initialize: 

• Generate a populace of N porcupines with random positions. 

• Set parameters: number of iterations T, and coefficients for exploration and exploitation (α, β). 

2. Evaluate Fitness: 

• Compute fitness for each porcupine. 

3. Find Global Best: 

 

• Identify the best fitness value and its corresponding position. 

4. Iterate (for t = 1 to T): 

• Update Positions: 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + α. (𝐺𝑏𝑒𝑠𝑡 − 𝑥𝑖
𝑡) + β. 𝑟𝑎𝑛𝑑. (x𝑖,𝑛𝑒𝑖𝑔ℎ − 𝑥𝑖

𝑡) 

• Boundary Conditions: 

o Ensure positions are within feasible space. 

• Evaluate Fitness: 

o Compute fitness for updated positions. 

• Update Global Best: 

o If any position has better fitness, update global best. 

5. Output: 

• Return the best solution and its fitness value. 

 

The CPO method instigates an Fitness Function (FF) to complete sophisticated classifier efficiency. It expresses a 

positive numeral to indicate the heightened performance of the candidate solution. In this paper, the minimizer of the 

classifier rate of error is regarded as the FF and expressed in Eq. (11). 

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

 =
𝑛𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
× 100 (11) 

 

IV. PERFORMANCE VALIDATION 

In this part, the simulation analysis of the DLCPO-DCPLD method is verified by utilizing the benchmark dataset [23]. The 

dataset covers 5932 images under four classes as signified in Table 1. Fig 5 represents the sample images of leaf diseases. 

 

Table 1. Details on Dataset 

Leaf Disease Name No. of Images 

Bacterial leaf blight 1584 

Blast 1440 

Brown spot 1600 

Tungro 1308 

Total Images 5932 
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Fig 5. Sample Images of Leaf Diseases. 

 

Fig 6 demonstrates the confusion matrices generated by the DLCPO-DCPLD method below 80%:20% and 70%:30% 

of Training Phase (TRAP)/Testing Phase (TESP). The results identify that the DLCPO-DCPLD technique has efficient 

detection and identification of all four classes precisely.  

 

 
Fig 6. Confusion Matrices of (a-c) 80% and 70% of TRAP and (b-d) 20% and 30% of TESP. 

 

Table 2 and Fig 7 signify the leaf disease recognition of the DLCPO-DCPLD model on 80%:20% and 70%:30% of 

TRAP/TESP. The outcomes suggest that the DLCPO-DCPLD method properly recognized the samples. With 80% TRAP, 

the DLCPO-DCPLD technique attains average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑠𝑐𝑜𝑟𝑒, and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 98.50%, 96.99%, 97.06%, 

97.02%, and 98.03%, correspondingly. Besides, with 20% TESP, the DLCPO-DCPLD technique gets average 𝑎𝑐𝑐𝑢𝑦, 

𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑠𝑐𝑜𝑟𝑒 , and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 99.12%, 98.35%, 98.23%, 98.28%, and 98.81%, respectively. Moreover, with 70% 
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TRAP, the DLCPO-DCPLD approach provides average 𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑠𝑐𝑜𝑟𝑒 , and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 98.31%, 96.69%, 

96.70%, 96.67%, and 97.79%, correspondingly. Also, with 30% TESP, the DLCPO-DCPLD technique attains average 

𝑎𝑐𝑐𝑢𝑦, 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙, 𝐹1𝑠𝑐𝑜𝑟𝑒 , and 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 98.68%, 97.35%, 97.45%, 97.39%, and 98.28%, respectively. 

 

Table 2. Leaf Disease Detection Outcome of DLCPO-DCPLD method under 80%:20% and 70%:30% of TRAP/TESP 

Classes 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝒔𝒄𝒐𝒓𝒆 𝑨𝑼𝑪𝒔𝒄𝒐𝒓𝒆 

TRAP (80%) 

Bacterial leaf blight 98.25 97.51 96.08 96.79 97.58 

Blast 98.78 97.39 97.56 97.48 98.36 

Brown spot 98.25 96.52 96.91 96.72 97.82 

Tungro 98.74 96.56 97.68 97.12 98.35 

Average 98.50 96.99 97.06 97.02 98.03 

TESP (20%) 

Bacterial leaf blight 99.07 98.92 97.16 98.03 98.42 

Blast 99.16 98.96 97.60 98.28 98.63 

Brown spot 98.48 96.25 98.53 97.38 98.50 

Tungro 99.75 99.27 99.64 99.45 99.71 

Average 99.12 98.35 98.23 98.28 98.81 

TRAP (70%) 

Bacterial leaf blight 98.27 98.87 94.60 96.69 97.10 

Blast 97.81 93.28 98.01 95.59 97.88 

Brown spot 98.07 96.12 96.64 96.38 97.62 

Tungro 99.11 98.48 97.53 98.01 98.55 

Average 98.31 96.69 96.70 96.67 97.79 

TESP (30%) 

Bacterial leaf blight 98.43 98.68 95.34 96.98 97.44 

Blast 98.71 95.97 98.85 97.39 98.76 

Brown spot 98.48 97.39 97.19 97.29 98.09 

Tungro 99.10 97.36 98.40 97.88 98.84 

Average 98.68 97.35 97.45 97.39 98.28 

 

 
Fig 7. Average of DLCPO-DCPLD Method under 80%:20% and 70%:30% of TRAP/TESP. 

 



ISSN: 2788–7669 Journal of Machine and Computing 4(4) (2024) 

 

1028 

 
 

 

Fig 8 demonstrates the classifier results of the DLCPO-DCPLD technique under 80:20 and 70:30. Figs. 8a-8c validates 

the accuracy study of the DLCPO-DCPLD technique. The figure reports that the DLCPO-DCPLD approach extends 

increasing values over growing epochs. Furthermore, the increasing validation over training exhibits that the DLCPO-

DCPLD approach learns competently on the test database. Lastly, Figs. 8b-8d validates the loss study of the DLCPO-

DCPLD approach. The results specify that the DLCPO-DCPLD technique grasps nearer values of validation and training 

loss. It is detected that the DLCPO-DCPLD technique learns well on the test database. 

Fig 9 determines the classifier results of DLCPO-DCPLD method on 80:20 and 70:30. Figs. 9a-9c exposes the PR 

investigation of the DLCPO-DCPLD method. The results definite that the DLCPO-DCPLD approach outcomes in 

increasing values of PR. Furthermore, the DLCPO-DCPLD approach can reach greater PR values in every class label. 

Lastly, Figs. 9b-9d explains the ROC study of the DLCPO-DCPLD methodology. The conclusion definite that the DLCPO-

DCPLD methodology resulted in enhanced values of ROC. Similarly, the DLCPO-DCPLD methodology can spread 

boosted values of ROC on every classes. 

 

 
Fig 8. (a-c) Accuracy Curve on 80:20 and 70:30 and (b-d) Loss Curve on 80:20 and 70:30. 

 

 
Fig 9. (a-c) PR Curve on 80:20 and 70:30 and (b-d) ROC Curve on 80:20 and 70:30. 
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Table 3 and Fig 10 examine the comparison outcomes of the DLCPO-DCPLD technique with the existing methods 

[24-25]. The outcomes highlighted that the DLCPO-DCPLD model outperformed others with an 𝑎𝑐𝑐𝑢𝑦 of 99.12%, making 

it the most reliable model for classification tasks. Among them, the PDDIC-DL and FLRLDC-NIIDI models performed 

very well in terms of precision and recall; therefore, these models would be appropriate for tasks requiring balanced 

classification. ANN and DAE Classifier returned favorable results that would apply when time on computation is to be 

saved. Other models, like Xception, DenseNet121, and InceptionResnetV2, performed similarly but with a bit less accuracy 

overall. Additionally, the DLCPO-DCPLD technique described amended performance with greater 𝑝𝑟𝑒𝑐𝑛, 𝑟𝑒𝑐𝑎𝑙 , and 

𝐹1𝑠𝑐𝑜𝑟𝑒  of 98.35%, 98.23%, and 98.28%, correspondingly. 

 

Table 3. Comparative Analysis of DLCPO-DCPLD Method with Existing Models [24-26] 

Model Names 𝑨𝒄𝒄𝒖𝒚 𝑷𝒓𝒆𝒄𝒏 𝑹𝒆𝒄𝒂𝒍 𝑭𝟏𝒔𝒄𝒐𝒓𝒆 

Xception 93.33 92.55 93.59 94.18 

DenseNet121 93.39 93.90 95.57 94.06 

InceptionResnetV2 93.44 94.47 94.05 93.62 

ANN 94.08 95.26 92.98 94.45 

DAE Classifier 94.14 94.63 93.77 94.11 

PDDIC-DL 94.95 96.74 96.15 95.27 

FLRLDC-NIIDI 95.60 95.23 97.50 96.01 

DLCPO-DCPLD 99.12 98.35 98.23 98.28 

 

 
Fig 10. Comparative Analysis of DLCPO-DCPLD Technique with Existing Models. 

 

In Table 4 and Fig 11, the comparative outcomes of the DLCPO-DCPLD technique are shown in terms of 

Computational Time (CT). The outcomes recommend that the DLCPO-DCPLD approach obtains enhanced performance. 

Based on CT, the DLCPO-DCPLD approach delivers a lesser CT of 4.38s while the Xception, DenseNet121, 

InceptionResnetV2, ANN, DAE, and PDDIC-DL models attain superior CT values of 11.91s, 9.18s, 7.66s, 6.94s, 11.16s, 

6.85s, and 11.53s, correspondingly. 

 

Table 4. CT Outcome of DLCPO-DCPLD Technique with Recent Models 

Model Name Computational Time (sec) 

Xception 11.91 

DenseNet121 9.18 

InceptionResnetV2 7.66 

ANN 6.94 

DAE Classifier 11.16 

PDDIC-DL 6.85 

FLRLDC-NIIDI 11.53 

DLCPO-DCPLD 4.38 
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Fig 11. CT Outcome of DLCPO-DCPLD Technique with Recent Methods. 

 

V. CONCLUSION 

In this article, a DLCPO-DCPLD method is presented for sustainable agriculture. The main aim of the DLCPO-DCPLD 

method is to use the DL method for the recognition and classification of rice plant leaf diseases. To achieve this, the 

DLCPO-DCPLD technique takes place in the image pre-processing using MF to enhance the quality of the input frames. 

Next, the ConvNeXt-L technique is applied for extraction of feature vectors from the pre-processed images. Besides, the 

CVAE technique is utilized for the automated classification of Paddy Leaf diseases. Lastly, the hyperparameter tuning of 

the CVAE technique can be implemented by the design of the CPO technique. To safeguard the enhanced predictive results 

of the DLCPO-DCPLD method, a sequence of experimentations is implemented on a benchmark dataset. The experimental 

validation of the DLCPO-DCPLD method portrayed a superior accuracy value of 99.12% over existing approaches. The 

limitations of the DLCPO-DCPLD method comprises the dependence of the model on MF and may not efficiently handle 

complex noise patterns or diverse image qualities, potentially affecting the performance of the classification. ConvNeXt-

L, while powerful, may need substantial computational resources and may not generalize well across the overall Paddy 

Leaf disease types. The performance of the CVAE model is heavily dependent on the quality of hyperparameter tuning, 

and the CPO model might not always converge to the optimal solution, affecting the accuracy of the classification. Future 

study should concentrate on exploring alternative image pre-processing models, optimizing feature extraction techniques 

for better scalability, and improving the hyperparameter tuning procedure for enhancing the robustness and generalization 

of the CVAE model. Furthermore, integrating real-time adaptation abilities and computing the performance of the technique 

in several environmental conditions could additionally improve its efficiency. 
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