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Abstract – Logistics and Supply Chain Management (SCM) are both key areas in modern industry and commerce which 
need better route planning and warehouse optimization. Traditional methods that are in practice have often fall short in of 
addressing the dynamic complexities of modern logistics which results in inefficient travel times, fuel consumption, and 
space utilization. To counter these limitations this study introduces an integrated model that combines Long Short-Term 
Memory (LSTM) networks, Radial Basis Function Neural Networks (RBNN), and the Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) for route planning and warehouse optimization. The proposed model employ LSTM to predict 
traffic patterns and RBNN to optimize space utilization in warehouse. The NSGA-II model is then utilized for multi-
objective optimization of minimizing travel times and maximizing warehouse space utilization. In experiment analysis the 
proposed model achieved the highest accuracy and least variability in predictions, with mean MAE, RMSE, and MAPE 
values of 0.57, 1.12, and 5.9%, respectively. 
 
Keywords – Supply Chain Management, LSTM, Radial Basis Function Neural Networks, Machine Learning, MAE, 
RMSE and MAPE. 
 

I. INTRODUCTION 
Logistics and Supply Chain Management (SCM) are always considered to be the critical components in global trade and 
commerce as these components ensure the efficient movement of goods from producers to consumers [1-3]. The 
complexities that are related to manage these operations have increased along with the tremendous growth in global trade 
volumes [4-5]. One of the key challenges in logistics is optimizing the transport network in terms of route planning for 
transportation and effective utilization of warehouse space [6-7]. Traditional methods that have been employed in managing 
the logistics have often based on methods like heuristic or rule-based approaches. Such approaches lack the ability to 
address the dynamic and complex nature of modern logistics systems [8-9]. The major problem in logistics management is 
that one is the need to minimize the travel time and fuel consumption across multiple routes and another is to maximize 
the warehouse space utilization [10]. In current practice the route planning is done using the static models that do not 
account for real-time changes in traffic conditions or weather [11-12]. Similarly, the warehouse management systems 
employ algorithms that fail to optimize space utilization dynamically based on changing inventory levels and item 
characteristics [13]. 

The solutions employed for logistics optimization typically involve linear programming, heuristic methods, and basic 
Machine Learning (ML) models. While these methods have brought some improvements, they exhibit significant 
limitations [14-15]. Linear programming approaches are rigid and may not handle the dynamic nature of logistics networks 
effectively [16]. Heuristic methods are though considered to be more flexible, often fail to find globally optimal solutions 
and are computationally intensive. Basic ML models like simple regression or decision trees provide predictive capabilities 
but fall in short of capturing the complex temporal and spatial relationships that are found inherent in logistics data [17-
18]. 
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To address these limitations this study proposes an integrated model that utilizes advanced Deep Learning (DL) and 
evolutionary optimization techniques. The model employs Long Short-Term Memory (LSTM) networks and Radial Basis 
Function Neural Networks (RBNN) to enhance the prediction and optimization processes. LSTMs that handle sequential 
data is used for predicting dynamic traffic patterns and travel times using both historical and real-time data. Whereas the 
RBNNs are used for optimizing warehouse space utilization based on current inventory layouts and item-specific 
requirements. 

The proposed model integrates these DL techniques with the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 
for multi-objective optimization. NSGA-II is effective in managing conflicting objectives, such as minimizing travel times 
while maximizing warehouse space utilization. By combining LSTM and RBNN outputs with NSGA-II, the model 
dynamically optimize both route efficiency and warehouse management thereby addressing the logistical challenges. The 
model was evaluated using a dataset collected from a logistics company over a 3-year period. The dataset included route 
and traffic information, weather conditions, warehouse inventory levels, and operational parameters. The proposed model 
was compared for different metrics including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean 
Absolute Percentage Error (MAPE). And the results have shown that the proposed model had shown better performance 
compared to other models. 

The paper is organized as follows, Section 2 present the problem definition, Section 3 proposed the methodology, 
Section 4 analysis the findings and Section 5 concludes the work. 
 

II. PROBLEM DEFINITION 
The logistics network is defined with sets of routes (𝑅𝑅), inventory items (𝐼𝐼), and warehouse locations (𝑊𝑊), along with 
time series data (𝑇𝑇) for periodic assessments. The first objective is to minimize travel times and fuel consumption across 
all routes, EQU (1). 
 
 Minimize 𝐹𝐹1 = ∑  𝑟𝑟∈𝑅𝑅 ∫  𝑇𝑇0 𝑓𝑓�𝑉𝑉𝑟𝑟,𝑡𝑡 ,𝐶𝐶𝑟𝑟,𝑡𝑡�𝑑𝑑𝑑𝑑 (1) 
 

where 𝑓𝑓�𝑉𝑉𝑟𝑟,𝑡𝑡 ,𝐶𝐶𝑟𝑟,𝑡𝑡� is a function modeling the travel time affected by traffic volume �𝑉𝑉𝑟𝑟,𝑡𝑡� and weather conditions �𝐶𝐶𝑟𝑟,𝑡𝑡�. 
The second objective focuses on maximizing warehouse space utilization EQU (2). 
 
 Maximize 𝐹𝐹2 = ∑  𝑤𝑤∈𝑊𝑊 �∑  𝑖𝑖∈𝐼𝐼  𝑢𝑢𝑖𝑖,𝑤𝑤,𝑡𝑡⋅𝑥𝑥𝑖𝑖,𝑡𝑡

𝑆𝑆𝑤𝑤,𝑡𝑡
� (2) 

 
where 𝑢𝑢𝑖𝑖,𝑤𝑤,𝑡𝑡 indicates the unit space required for storing item 𝑖𝑖 in warehouse 𝑤𝑤 at time 𝑑𝑑.  
To integrate these objectives into a cohesive framework, a weighted sum approach is employed, where weights 𝜆𝜆1 and 

𝜆𝜆2 represent the relative importance of each objective, EQU (3). 
 
  Minimize Λ = 𝜆𝜆1 ⋅ 𝐹𝐹1 − 𝜆𝜆2 ⋅ 𝐹𝐹2 (3) 
 

The weights 𝜆𝜆1 and 𝜆𝜆2 are fixed based on strategic priorities, translating the maximization of 𝐹𝐹2 into a minimization 
problem by taking its negative. The Table 1 presents the notations used in this article. 
 

 
Fig 1. Model Architecture. 
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Table 1. Parameter Description 
Notation Description 
𝑅𝑅 Set of all routes in the logistics network 
𝐼𝐼 Set of all inventory items across warehouses 
𝑊𝑊 Set of all warehouse locations 
𝑇𝑇 Time series data for periodic assessments 
𝐹𝐹1 Objective function to minimize travel time and fuel consumption 
𝐹𝐹2 Objective function to maximize warehouse space utilization 
𝑉𝑉𝑟𝑟,𝑡𝑡 Traffic volume on route 𝑟𝑟 at time 𝑑𝑑 
𝐶𝐶𝑟𝑟,𝑡𝑡 Weather conditions affecting route 𝑟𝑟 at time 𝑑𝑑 
𝑓𝑓�𝑉𝑉𝑟𝑟,𝑡𝑡 ,𝐶𝐶𝑟𝑟,𝑡𝑡� Function modeling the travel time influenced by traffic and weather 
𝑥𝑥𝑖𝑖,𝑡𝑡 Stock level of item 𝑖𝑖 at time 𝑑𝑑 
𝑢𝑢𝑖𝑖,𝑤𝑤,𝑡𝑡 Unit space required for storing item 𝑖𝑖 in warehouse 𝑤𝑤 at time 𝑑𝑑 
𝑆𝑆𝑤𝑤,𝑡𝑡 Available space in warehouse 𝑤𝑤 at time 𝑑𝑑 
𝜆𝜆1, 𝜆𝜆2 Weights applied to the objectives in the weighted sum approach 
Λ Combined weighted objective function 
𝑊𝑊𝑓𝑓 , 𝑏𝑏𝑓𝑓 Weights and biases for the forget gate of the LSTM 
𝑊𝑊𝑖𝑖 , 𝑏𝑏𝑖𝑖 Weights and biases for the input gate of the LSTM 
𝑊𝑊𝐶𝐶 , 𝑏𝑏𝐶𝐶  Weights and biases for creating candidate memory in the LSTM 
𝑊𝑊𝑜𝑜, 𝑏𝑏𝑜𝑜 Weights and biases for the output gate of the LSTM 
𝑓𝑓𝑡𝑡 Output of the forget gate at time 𝑑𝑑 
𝑖𝑖𝑡𝑡 Output of the input gate at time 𝑑𝑑 
𝐶𝐶‾𝑡𝑡 Candidate memory state at time 𝑑𝑑 
𝑜𝑜𝑡𝑡 Output of the output gate at time 𝑑𝑑 
ℎ𝑡𝑡 Hidden state of the LSTM at time 𝑑𝑑 used for predictions 
𝐶𝐶𝑡𝑡 Cell state of the LSTM at time 𝑑𝑑, represents long-term memory 
𝑦𝑦𝑡𝑡+1 Predicted output of the LSTM for the next time step 

 
III. METHODOLOGY 

The proposed optimization model for route planning and warehouse space utilization is presented in Fig 1. The LSTM 
networks and RBNN are implemented as two pipelines. In which the LSTMs process the sequential data for predicting and 
optimizing traffic patterns and travel times based on historical and real-time data. Concurrently, RBNNs are used to analyze 
and maximize warehouse space by handling the spatial distribution of inventory according to current layouts and inventory 
data. These tasks are integrated and simultaneously optimized using the Non-dominated Sorting Genetic Algorithm-II 
(NSGA-II) for multi-objective optimization by employing a weighted sum method that applies weights λ1 and λ2 to the 
objectives of minimizing route times and maximizing space utilization, respectively. 
 
LSTM for Travel Optimization 
The LSTM model receives structured input data streams, consisting of traffic volume �𝑉𝑉𝑟𝑟,𝑡𝑡�, weather conditions ( 𝐶𝐶𝑟𝑟,𝑡𝑡 ), 
time of day, historical delays, and any planned events impacting traffic. The input data is normalized to scale the input 
features and one-hot encoding is employed for categorical data such as weather conditions. This step transforms raw data 
into a machine readable format, optimizing it for effective learning by the LSTM model. Within the LSTM architecture, 
the forget gate controls information flow by removing irrelevant past data to maintain model focus on current influential 
factors by using the EQU (4): 
 
  𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓�  (4) 
 

Using the above equation it decide which information to discard. Concurrently, the input gate updates the cell state by 
incorporating new, relevant information through the EQU (5) and EQU (6): 

 
  𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖) and (5) 
 
  �̃�𝐶𝑡𝑡 = tanh (𝑊𝑊𝐶𝐶 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶),  (6) 
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Whuch directly influencing the model's next output. The output gate then determines the actual output of the LSTM 
using, EQU (7) and EQU (8), 
 
  𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) and (7) 
 
  ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh (𝐶𝐶𝑡𝑡),  (8) 
 

which provides predictions on upcoming traffic conditions and potential delays. The final output of the LSTM, EQU 
(9). 

 
  𝑦𝑦𝑡𝑡+1 = 𝜎𝜎(𝑊𝑊 ⋅ [ℎ𝑡𝑡 , 𝑥𝑥𝑡𝑡] + 𝑏𝑏),  (9) 
 

provides the estimated travel times for the next time step.  
 
RBNN for Warehouse Space Optimization 
RBNNs process defined inputs that include current inventory levels ( 𝑥𝑥𝑖𝑖,𝑡𝑡 ) for each item 𝑖𝑖 at time 𝑑𝑑, the unit space required 
for each item �𝑢𝑢𝑖𝑖,𝑤𝑤,𝑡𝑡�, and the available space in each warehouse �𝑆𝑆𝑤𝑤,𝑡𝑡�. The objective is to maximize the utilization of this 
space, ensuring efficient storage and accessibility for order fulfillment. 

The RBNN receives the input vector comprising inventory levels, space requirements for each item, and additional 
warehouse operational data. It then employs the hidden Layer with Radial Basis Functions that uses radial basis functions, 
typically Gaussian, to transform the input space. The activation of a neuron 𝑗𝑗 in the hidden layer is determined by, EQU 
(10) 
 𝜙𝜙𝑗𝑗(𝑥𝑥) = exp �−𝛽𝛽𝑗𝑗∥∥𝑥𝑥 − 𝑐𝑐𝑗𝑗∥∥

2� (10) 
 

Here, 𝑐𝑐𝑗𝑗 denotes the center of the 𝑗𝑗-th neuron, 𝛽𝛽𝑗𝑗 controls the width of the radial basis function, and 𝑥𝑥 is the input vector. 
Next the output Layer compiles activations from the hidden layer to compute a scalar output estimating space utilization, 
EQU (11). 
 𝑦𝑦 = ∑  𝑗𝑗 𝑤𝑤𝑗𝑗𝜙𝜙𝑗𝑗(𝑥𝑥) + 𝑏𝑏 (11) 

 
𝑤𝑤𝑗𝑗  are weights linking the hidden layer to the output, 𝜙𝜙𝑗𝑗(𝑥𝑥) is the activation of the 𝑗𝑗-th hidden neuron, and 𝑏𝑏 is a bias 

term. Training the RBNN involves adjusting the neuron centers 𝑐𝑐𝑗𝑗, spread parameters 𝛽𝛽𝑗𝑗, and weights 𝑤𝑤𝑗𝑗  to align the 
predicted space utilization closely with actual utilization metrics.  
 
NSGA-II for Multi-Objective Optimization in Logistics 
NSGA-II begins with the generation of a random initial population 𝑃𝑃0 where each individual represents a potential solution 
encoding logistics configurations, such as route choices and warehouse layouts.  
 
This Population Undergoes Evaluation Against the Logistics Objectives, Which Are 
Minimize Travel Time (𝐹𝐹1) 
Aims to reduce the total travel time across all routes within the logistics network. 
 
Maximize Warehouse Utilization (𝐹𝐹2) 
Focuses on optimizing the use of available space in warehouses to ensure efficient storage. 

Each solution is assessed based on how well it achieves these conflicting objectives, using a fitness function. NSGA-II 
employs tournament selection based on dominance (non-domination sorting) and diversity (crowded distance calculation). 
Next Simulated Binary Crossover (SBX) is employed for the Crossover operation, which depends on a probability 𝑝𝑝𝑐𝑐 and 
a distribution index 𝜂𝜂𝑐𝑐. This operator helps explore new solution spaces by combining parts of two parent solutions. 
Mutation is  induced using a polynomial mutation, defined by a probability 𝑝𝑝𝑚𝑚 and a distribution index 𝜂𝜂𝑚𝑚, enhancing the 
genetic diversity within the population. Each new solutions are evaluated against the logistics objectives 𝐹𝐹1 and 𝐹𝐹2. Each 
individual is then ranked based on non-domination, Front 1, Front 2, … are determined by non-dominated sorting, where 
individuals in Front 1 are those that no other individual dominates. Solutions that are not dominated by any other are placed 
on the first front, considered the best solutions under current genetic diversity. Within each front, the crowding distance is 
calculated to estimate the density of solutions surrounding a particular individual, EQU (12). 
 
 𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑖𝑖+1 − 𝑑𝑑𝑖𝑖−1 (12) 
 

where 𝑑𝑑𝑖𝑖 is the crowding distance for the 𝑖𝑖-th individual. This measure helps in preserving solution diversity by 
maintaining a spread of solutions across the objective space. The next generation is populated starting with individuals 
from the lowest-ranked nondominated front (Front 1) and moving to higher fronts. If a front cannot fully fit into the next 
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generation, individuals from that front are selected based on their crowding distances, ensuring that only the most diverse 
solutions are carried forward. This process repeats over multiple generations. In each cycle, NSGA-II refines the solutions, 
continuously pushing towards an optimal Pareto front where no single objective can be improved without degrading 
another. The algorithm stops when it reaches a specified number of generations or when the improvements between 
generations fall below a minimal threshold. 
 
Algorithm: Integrated Optimization for Logistics Using LSTM, RBNN, and NSGA-II 
Input: 

• Historical and real-time traffic data 
• Inventory levels and warehouse layout data 
• Initial logistics configurations 

Output: 
• Optimized route plans 
• Optimized warehouse space utilization 
• Pareto-optimal solutions balancing travel time and space utilization 

Procedure: 
1 Initialize Models: 

• LSTM: Load and initialize LSTM with pre-trained weights for predicting travel times based on traffic and 
weather data. 

• RBNN: Initialize RBNN for optimizing warehouse space utilization using current inventory and warehouse 
layout data. 

• NSGA-II: Initialize NSGA-II with a population size 𝑁𝑁 of potential logistics configurations. 
2 Data Preprocessing: 

• Normalize and preprocess traffic and weather data for LSTM input. 
• Scale and encode warehouse data for RBNN input. 

3 Run Predictive Models: 
• LSTM Processing:  

• For Each route 𝑟𝑟 and time 𝑑𝑑, compute travel times using LSTM: TravelTime 𝑟𝑟, 𝑑𝑑 = LSTM(TrafficData 
 𝑟𝑟,𝑡𝑡, WeatherData  𝑟𝑟,𝑡𝑡�. 

• RBNN Processing: 
• For Each warehouse 𝑤𝑤 and time 𝑑𝑑, compute space utilization using RBNN: SpaceUtilization  𝑤𝑤,𝑡𝑡 = 

RBNN(InventoryData  𝑤𝑤,𝑡𝑡, LayoutData  𝑤𝑤,𝑡𝑡� 
4 Set Objectives for NSGA-II: 

• Define the fitness functions based on outputs from LSTM and RBNN: 
• 𝐹𝐹1(𝑟𝑟, 𝑑𝑑) = Minimize TravelTime  𝑟𝑟,𝑡𝑡 
• 𝐹𝐹2(𝑤𝑤, 𝑑𝑑) = Maximize SpaceUtilization  𝑤𝑤,𝑡𝑡 

5 Optimize with NSGA-II: 
• Perform non-dominated sorting of the initial population based on 𝐹𝐹1 and 𝐹𝐹2. 
• Calculate crowding distance for diversity preservation. 
• Selection: Use tournament selection based on dominance and crowding distance. 
• Crossover and Mutation: Apply genetic operators to generate new offspring. 
• Update population based on elitism and generate the next generation. 

6 Iteration: 
• Repeat the optimization steps in NSGA-II until a termination criterion is met (e.g., maximum number of 

generations or stability of the Pareto front). 
7 Output Results: 

• Extract and present Pareto-optimal solutions for route planning and warehouse space utilization. 
• Implement the best solutions in real-world logistics operations based on decision-maker preferences and 

operational constraints. 
 

IV. EXPERIMENT 
Data Sources 
This study utilizes a dataset sourced from a single logistics company over a period from January 2020 to December 2022. 
This dataset includes: Route and Traffic Data, which captures GPS tracking information detailing routes, speeds, and stop 
durations, with traffic conditions recorded at 15-minute intervals; Weather Data, linked to specific routes, including 
parameters such as temperature, precipitation, and wind conditions; Warehouse Data, from the company’s inventory 
management system, providing details on inventory levels, item dimensions, storage duration, and warehouse space 



ISSN: 2788–7669 Journal of Machine and Computing 4(4)(2024) 
 

948 
 
 
 

configurations; Operational Data, which includes fuel consumption rates, vehicle maintenance records, and driver 
schedules. The data variable of all data are presented in Table 2 to 5. 
 

Table 2. Route and Traffic Data Variables 
Variable Name Data Type Description 

Date Date The specific day on which the route and traffic data was recorded. 
Time Time The time of day when the data point was recorded. 

Vehicle ID String Identifier for the vehicle from which the data was collected. 
Route ID String Identifier for the specific route the vehicle was following. 
Latitude Float Geographic latitude coordinate where the data was recorded. 

Longitude Float Geographic longitude coordinate where the data was recorded. 
Speed (km/h) Float The speed of the vehicle at the time of data recording. 

Stop Duration (min) Integer Duration the vehicle was stopped, measured in minutes. 

Traffic Level String Qualitative assessment of traffic conditions (e.g., Low, Moderate, 
High), affecting the route. 

 
Table 3. Weather Data Variables 

Variable Name Data Type Description 
Date Date The specific day on which the weather data was recorded. 
Time Time The time of day when the weather data was recorded. 

Route ID String Identifier for the specific route affected by the weather. 
Temperature (°C) Float The ambient temperature recorded at the time of logging. 
Precipitation (mm) Float The amount of rainfall or precipitation recorded. 
Wind Speed (km/h) Float The speed of the wind affecting the route conditions. 

Weather Condition String A qualitative description of the weather (e.g., Clear, Partly Cloudy, 
Rainy). 

 
Table 4. Warehouse Data Variables 

Variable Name Data Type Description 
Date Date The specific day on which the warehouse data was recorded. 
Time Time The time of day when the data point was recorded. 

Warehouse ID String Identifier for the specific warehouse where the data was collected. 
Inventory Item ID String Identifier for the specific inventory item. 

Quantity Integer Quantity of the inventory item in stock at the time of recording. 
Item Dimensions (cm) String Dimensions of the item, typically in length x width x height format. 

Storage Duration (days) Integer Duration for which the item has been stored in the warehouse. 
Warehouse Space (m²) Float Total available space in the warehouse at the time of recording. 

Utilization (%) Float Percentage of warehouse space utilized at the time of recording. 
 

Table 5. Operational Data Variables 
Variable Name Data Type Description 

Date Date The specific day on which the operational data was recorded. 
Time Time The time of day when the data point was recorded. 

Vehicle ID String Identifier for the vehicle relevant to the operational data. 

Fuel Consumption (L) Float Amount of fuel consumed by the vehicle during operations, 
measured in liters. 

Maintenance Status String Describes the maintenance condition of the vehicle (e.g., Good, 
Needs Repair). 

Driver ID String Identifier for the driver operating the vehicle. 

Shift Duration (hrs) Integer Duration of the driver's shift on the day of recording, measured in 
hours. 

Route Efficiency (%) Float Percentage representing the efficiency of the route taken by the 
vehicle. 
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Training the Proposed LSTM, RBNN, and NSGA-II Models 
The data is split into training and testing sets following an 80:20 ratio. Using the training set the LSTM model, the RBNN 
model and the NSGA-II models are trained using the hyperparameters listed in Table 6. 
 

Table 6. Key Training Parameters and Their Respective Values 
Parameter LSTM RBNN NSGA-II 

Learning Rate 0.01 0.02 N/A 
Epochs 50 50 200 generations 

Batch Size 32 16 N/A 
Optimizer Adam Adam N/A 

Loss Function MSE MSE Custom 
Validation Split 20% 20% N/A 

Activation Function ReLU (output: sigmoid) Gaussian N/A 
Population Size (NSGA-II) N/A N/A 100 
Mutation Rate (NSGA-II) N/A N/A 0.1 
Crossover Rate (NSGA-II) N/A N/A 0.9 

 
Evaluation Metrics 
The Models are Evaluated Using The Following Metrics 
Mean Absolute Error (MAE) 
The MAE measures the average magnitude of errors in the predictions, EQU (13) 
 
 MAE = 1

𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 |𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖| (13) 

 
where, 𝑛𝑛 is the number of observations, 𝑦𝑦𝑖𝑖  is the actual value, �̂�𝑦𝑖𝑖 is the predicted value 
 
Root Mean Square Error (RMSE) 
The RMSE evaluates the standard deviation of prediction errors, EQU (14) 
 

 RMSE = �1
𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1  (𝑦𝑦𝑖𝑖 − �̂�𝑦𝑖𝑖)2 (14) 

 
where, 𝑛𝑛 is the number of observations, 𝑦𝑦𝑖𝑖  is the actual value, �̂�𝑦𝑖𝑖 is the predicted value 
 
Mean Absolute Percentage Error (MAPE) 
The MAPE expresses the prediction accuracy as a percentage, EQU (15) 
 
 MAPE = 100%

𝑛𝑛
∑  𝑛𝑛
𝑖𝑖=1 �

𝑦𝑦𝑖𝑖−�̂�𝑦𝑖𝑖
𝑦𝑦𝑖𝑖

� (15) 
 
where, 𝑛𝑛 is the number of observations, 𝑦𝑦𝑖𝑖  is the actual value, �̂�𝑦𝑖𝑖 is the predicted value 
 
Route Efficiency (RE) (%) 
RE measures the percentage of routes optimized for travel time and fuel consumption, EQU (16) 
 
  Route Efficiency (%) = �1 −  Actual Travel Time 

 Optimal Travel Time 
� × 100% (16) 

 
Space Utilization Efficiency (SUE) (%) 
SUE measures the percentage of available warehouse space that is effectively utilized, EQU (17). 
 
 Space Utilization Efficiency (%) = �  Total Used Space 

 Total Available Space 
� × 100% (17) 

 
To evaluate the effectiveness of the integrated LSTM+RBNN+NSGA-II model, we compare its performance with the 

models such as LSTM, RBNN, LSTN+RBNN 
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Table 7. MAE Results Comparison 
Model Min MAE Max MAE Mean MAE Std MAE 
LSTM 0.42 1.28 0.75 0.22 
RBNN 0.53 1.47 0.89 0.27 

LSTM + RBNN 0.38 1.12 0.68 0.19 
LSTM + RBNN + NSGA-II 0.31 0.98 0.57 0.16 

 
Table 8. RMSE Results Comparison 

Model Min RMSE Max RMSE Mean RMSE Std RMSE 
LSTM 0.83 2.77 1.49 0.45 
RBNN 1.12 3.05 1.82 0.52 

LSTM + RBNN 0.79 2.53 1.34 0.40 
LSTM + RBNN + NSGA-II 0.67 2.22 1.12 0.37 

 
Table 9. MAPE Results Comparison 

Model Min MAPE (%) Max MAPE (%) Mean MAPE (%) Std MAPE (%) 
LSTM 4.3 12.5 7.6 2.3 
RBNN 5.1 14.3 8.8 2.7 

LSTM + RBNN 3.8 10.6 6.5 2.0 
LSTM + RBNN + NSGA-II 3.1 9.7 5.9 1.8 

 
The performance of the models was evaluated using MAE, RMSE, and MAPE. The results as shown in Fig 2. 

 

 
Fig 2. MAE, RMSE and MAPE Result Comparison. 

 
For MAE as shown in Table 7 the LSTM model showed moderate prediction accuracy with a mean MAE of 0.75 and 

a standard deviation of 0.22, indicating some variability. The RBNN model exhibited higher errors and variability, with a 
mean MAE of 0.89 and a standard deviation of 0.27. Combining LSTM and RBNN reduced the errors, resulting in a mean 
MAE of 0.68 and a standard deviation of 0.19, suggesting improved performance and consistency. The proposed 
LSTM+RBNN+NSGA-II model achieved the best results with a mean MAE of 0.57 and a standard deviation of 0.16. For 
RMSE as shown in Table 8, the LSTM model had a mean RMSE of 1.49 and a standard deviation of 0.45, reflecting 
moderate prediction errors. The RBNN model showed higher errors with a mean RMSE of 1.82 and a standard deviation 
of 0.52. The combined LSTM+RBNN model improved the mean RMSE to 1.34 and reduced the standard deviation to 
0.40. The LSTM+RBNN+NSGA-II model performed the best, with a mean RMSE of 1.12 and a standard deviation of 
0.37. For MAPE as shown in Table 9, the LSTM model had a mean MAPE of 7.6% with a standard deviation of 2.3%, 
while the RBNN model showed higher errors with a mean MAPE of 8.8% and a standard deviation of 2.7%. The combined 
LSTM+RBNN model improved accuracy, achieving a mean MAPE of 6.5% and a standard deviation of 2.0%. The 
proposed model outperformed all others with a mean MAPE of 5.9% and a standard deviation of 1.8%. 
 

Table 10. Route Efficiency Over Epochs 

Epochs LSTM 
Efficiency (%) 

RBNN 
Efficiency (%) 

LSTM + RBNN 
Efficiency (%) 

LSTM + RBNN + NSGA-
II Efficiency (%) 

10 70 65 75 78 
20 75 68 80 83 
30 80 72 85 87 
40 82 74 86 89 
50 85 78 88 92 
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Table 11. Space Utilization Efficiency Over Epochs 

Epochs LSTM (%) RBNN (%) LSTM + RBNN (%) LSTM + RBNN + NSGA-II (%) 
10 70 72 75 78 
20 75 76 79 83 
30 77 79 83 86 
40 80 82 85 89 
50 81 83 87 92 

 
The performance of the models was evaluated for both route efficiency and space utilization efficiency over different 

epochs, and the results are shown in Fig 3 and 4. 
 

 
Fig 3. Route Efficiency. 

 

 
Fig 4. Space Utilization Efficiency. 

 
For route efficiency as shown in Table 10, at epoch 10, the LSTM model achieved 70% route efficiency, while the 

RBNN model lagged slightly behind at 65%. The combined LSTM + RBNN model showed improved performance with a 
route efficiency of 75%, and the integrated LSTM+RBNN+NSGA-II model led with 78%. As training progressed to epoch 
20, all models improved, with the LSTM+RBNN+NSGA-II model reaching 83% efficiency. By epoch 30, the route 
efficiencies were 80%, 72%, 85%, and 87% for LSTM, RBNN, LSTM+RBNN, and LSTM+RBNN+NSGA-II, 
respectively. The trend continued with the LSTM+RBNN+NSGA-II model consistently outperforming the others, reaching 
a peak efficiency of 92% at epoch 50. For space utilization depicted in Table 11, the LSTM model started at 70% efficiency 
at epoch 10, with the RBNN model slightly ahead at 72%. The combined LSTM + RBNN model achieved 75%, and the 
LSTM + RBNN + NSGA-II model achieved 78%. By epoch 20, the efficiencies improved to 75%, 76%, 79%, and 83%, 
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respectively. At epoch 30, the models demonstrated further gains, with efficiencies of 77%, 79%, 83%, and 86%. By epoch 
40, the LSTM+RBNN+NSGA-II model maintained its lead with 89% efficiency. Finally, at epoch 50, the space utilization 
efficiencies were 81%, 83%, 87%, and 92% for LSTM, RBNN, LSTM+RBNN, and LSTM+RBNN+NSGA-II, 
respectively. 
 

V. CONCLUSION AND FUTURE WORK 
The study in this paper had addressed two of most essential challenges in logistics and Supply Chain Management (SCM) 
such as the route planning and warehouse space utilization. The work had proposed an integrated model that combined 
LSTM for route planning, RBNN for space optimization and NSGA-II for combined multi objective optimization. This 
combined approach was built with a focus to overcome the limitations of traditional models such as linear programming 
and heuristic approaches, often fall short in handling the modern logistics networks. The proposed model leverages the 
strengths of Deep Learning (DL) and evolutionary optimization to overcome these limitations and provide a better solution. 
Through series of experiments the efficiency of the proposed model was compared with other models and the results have 
shown that the proposed model has better accuracy and consistency in predictions, models.  

Future work will be focused to explore further enhancements to the model, such as incorporating additional data sources, 
refining the optimization algorithms, and testing the approach in different logistics environments. 
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