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Abstract – Machinery Fault Detection (MFD) is an important process in contemporary industrial systems, where it predicts 
possible physical failures before they lead to a serious problem. This uses multiple technologies to monitor machine statuses 
(algorithms, data gathering systems and sensors) Using a servo-motor driven actuator for deployment, the Locking 
Mechanism is pre-assembled into an OEM ATE and will enable predictive failure mode identification (via monitoring and 
warnings of operational parameters i.e., vibration, temperature or auditory signals in-built to MFD systems) leading to 
Prophylactic maintenance before critical bottlenecks can occur. The dataset we used in our study was collected from Kaggle 
and it is called the SpectraQuest Machinery Fault Simulator (MFS) Alignment-Balance-Vibration (ABVT). We used 
LSTM Autoencoder, KNN, SVM and DNN to analyzed the data. Our LSTM Autoencoder model was very accurate and 
achieved a precision, recall, accuracy and F-score of 99%. We worked on very large scale datasets. It will help the system 
detect faults and predict their evolution over time, so you save maintenance costs and increase production in your factory. 
More research on the practical efficiency of these models in real-time across different industrial settings can create a path 
towards improved and scalable MFD solutions. 

Keywords – Machinery Fault Detection (MFD), Industrial Maintenance, Machine Learning in Fault Detection, Fault 
Detection, Deep Learning, LSTM Autoencoder. 

I. INTRODUCTION
Machinery fault detection (MFD) is very important when it comes to guaranteeing the performance, cost effectiveness and 
operational life of most modern industrial equipment [1]. Electricity is used in many places from industry to commerce 
and at home; most of that require electrical machinery. However, these machines work under very harsh conditions-high 
temperatures hard work fluctuations unstable voltages high humidity all of them increase malfunction -which may cause 
failure [2]. Studies show that 30–40% of faults in rotating electrical machines are due to bearing failures; and poor 
lubrication accounts for about80%, being the most common root cause. In today's automated manufacturing environments, 
robotic systems and multi-axis machines are essential for improving efficiency in welding, packaging, material transport, 
and assembly [3]. Yet, mechanical faults become more common as industries push machinery to work under extreme 
conditions, such as heavy loads and high humidity. These failures can disrupt operations, result in expensive repairs, reduce 
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output, and even create safety hazards. Therefore, preventive maintenance and early defect identification are crucial for 
reducing downtime and preserving efficient operations. As industrial technology continues to develop rapidly, the 
reliability of machinery systems and components has become increasingly significant, fostering the growing integration of 
information technology with industrial operations. Highly reliable systems are essential to operational safety in the aircraft 
sector. Due to its prolonged exposure to high loads, harsh temperatures, and unfavorable conditions, spinning machinery—
such as that found in space shuttles and aviation engines—is particularly prone to breakdowns. Early problem identification 
is crucial to preventing mechanical transmission system failures because of the possible consequences of any fault in these 
systems. Therefore, industries prioritize sophisticated fault diagnosis systems for rotating machinery to lower the likelihood 
of minor issues becoming significant breakdowns [4]. Scholars have concentrated on the revolving machinery that is 
embodied in aviation gear.  Early fault diagnosis and detection technologies are essential for preventing transmission 
system failures in mechanical engineering because they may predict the pattern of fault development. Thus, every industry 
places a high value on the intelligent fault diagnosis system on rotating machinery in order to prevent further serious 
accidents brought on by little flaws [5]. 

The significance of MFD has been widely recognized by both academic and industrial sectors, leading to the 
development of progressive diagnostic methods for practical use. Traditional maintenance techniques, such as preventive 
or corrective maintenance, often require identifying faults early, resulting in inefficiencies and unexpected breakdowns. 
Recent advancements in sensor technology, data collection systems, and Artificial Intelligence (AI) have revolutionized 
fault detection. These developments have transformed maintenance from reactive to predictive. Modern systems can 
frequently monitor indicators like vibrations, temperature, and acoustic emissions in real time to identify irregularities and 
anticipate potential equipment malfunctions. The field of MFD is increasing, leading to quick growth in research and 
discoveries [6]. However, existing studies of Machine Learning (ML) and Deep Learning (DL) applications in MFD often 
need to be more cohesive, leading to critical gaps in the field's comprehensive understanding. Consequently, of this 
evolution, a wave of new research has appeared to improve the interpretation and application of these techniques. These 
developments overcome existing gaps and strengthen the robustness of fault diagnosis capabilities by refining the encoding, 
processing, and prediction of fault information inside ML/DL frameworks.  

The scarcity of research concentrating on individual MFD underscores the novelty and significance of our work. While 
much of the existing literature addresses broader or generalized fault detection across different machinery types, our study 
explicitly targets individual machinery components employing an advanced LSTM Autoencoder model. The significance 
of our research lies in its advancement of MFD using sophisticated ML techniques by utilizing a Kaggle and our study 
provides necessary insights into the effectiveness of different algorithms in diagnosing and predicting machinery faults. 
We will assess the effectiveness of K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Deep Neural Networks 
(DNN), and LSTM Autoencoder for fault detection and prediction. Furthermore, we provide practical recommendations 
for improving maintenance schedules, cutting operational expenses, and improving equipment dependability and safety. 
This focused approach allows for more accurate and effective fault detection in specific machinery contexts, addressing 
current research gaps and presenting valuable insights for targeted fault detection strategies. 

This paper is divided into five sections. Section II will examine the current techniques for detecting machinery faults. 
Next, Section III will outline our proposed approach and briefly cover the setup for our model's implementation. Section 
IV will summarize the results of the experiments using the models we have offered. Lastly, we will present our research 
findings. 
 

II. LITERATURE REVIEW 
The conventional fault detection (FD) methods used in industrial machinery are thoroughly reviewed in the following 
section, emphasizing the benefits and drawbacks of each methodology. For many years, conventional methods have been 
the cornerstone of fault detection in industrial machines and robots. The term "fault detection" describes analyzing and 
classifying defects in real-time diagnostics that happen after the fact. Any unacceptably significant deviation in the system 
that affects sensors, actuators, and other components is a problem. The two main types of FD methods used in machinery 
or processes are model-based approaches and data-driven methods. 

Several existing studies already cover ML and DL-based approaches to MFD, each concentrating on distinct 
components or equipment such as bearings, gears, pumps, or motors. Zhang et al. [7], Neupane et al. [8], Hoang et al. [9], 
and Mushtaq et al. [10] provided summaries of ML and DL methods for various machinery components.  However, Srilatha 
et al. [11] and Tang et al. [12] have examined current techniques for DL-based MFD and emphasized the significance of 
data processing in condition monitoring. Similarly, Zhang et al. [13] looked at methods for dealing with unbalanced and 
short datasets and offered fixes, including feature learning, data enrichment, and classifier design. Zheng et al. [14] and Li 
et al. [15] investigated MFD domain adaptation and transfer learning. Additionally, Autoencoder (AE)--based techniques 
were examined by Yang et al. [16] and Qian et al. [17], who highlighted the advantages and disadvantages of AE in 
industrial applications. Zhu et al. [18] summarized the use of Recurrent Neural Networks (RNNs) in mechanical fault 
diagnostics. Murugan et al. [12] and Tang et al. [19] offered more information on the basic principles of CNNs for rotating 
equipment failure detection.  

A thorough analysis of several fault detection and isolation techniques was provided by Kim et al. [20], with an 
emphasis on essential elements, including affordability, adaptability, durability, precision, comprehensibility, and 
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simplicity of use. Because of their ease of use, threshold- and rule-based systems are frequently acknowledged for being 
highly economical. However, model-based FDI and acoustic emission (AE) monitoring may be more costly because of the 
difficulty of creating the model and the need for specific sensors. Regarding adaptability, rule-based systems and signal-
processing approaches are better suited to various machines and failure circumstances. 

Mechanical systems are intricate, but the identification of faults can be significantly improved through methods such 
as data augmentation, processing data at multiple scales, and achieving fault signals from various sensors. A specific multi-
scale CNN was presented by An et al. [21] as a means of diagnosing rolling bearing problems under challenging 
circumstances such as high noise levels, fluctuating loads, and intricate workplace environments. This method successfully 
raises network resilience and diagnostic accuracy.   Likewise, Li et al. [22] overcame the difficulties in extracting and 
identifying failure features for electromechanical equipment by developing a fault diagnosis technique based on a multi-
scale, one-dimensional deep convolutional network. Their approach demonstrated remarkable robustness, high rates of 
defect identification, and great diagnostic accuracy. Furthermore, Hasan et al. [23] presented a method for identifying 
bearing problems that combine data from several sensors to overcome the difficulty of identifying internal and exterior 
multi-excitation problems in aero-engine bearings. This methodology demonstrated a higher capacity to recognize problem 
types properly, increasing fault diagnostic accuracy by 36.92% and 18.9%, respectively, compared to established methods 
like SVM and ANN. 

Despite their shortcomings, conventional techniques are vital for identifying faults with robotics and industrial 
machinery. They offer an efficient, low-cost method of monitoring crucial system parameters and locating faults. 
Nonetheless, as AI and ML advances allow for greater accuracy and early mistake detection, they are becoming 
increasingly more beneficial for foreign direct investment. 
 

III. METHODOLOGY 
Data Preprocessing 
There were several important steps executed during the data preprocessing phase of our study, supported with mathematical 
modeling to shape up dataset in an appropriate manner for proper machine learning exercise. We started with down 
sampling, which meant averaging data points into fixed partitions to decrease the size of a set but preserving vital patterns. 
To do this we simply added the data in each interval and divided by the size of the interval while keeping our key properties. 
Next, we used MinMax scaling to normalize the downsampled data and map features to a range of [-2,2] using the 
transformation 𝑓𝑓𝑖𝑖1 = 𝑓𝑓𝑓𝑓 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑓𝑓)

(𝑓𝑓) −(𝑓𝑓) 
 * 4. In this way, all features played an equal part in learning the model. We reshaped the data 

so that it fits to input required by lstm autoencoder which means we changed our feature matrix 𝑋𝑋 from a shape of (m, n) 
(m,n)–>to –>( m, 1, n ) adding an essential time-step dimension for sequence modeling. Finally, using the train_test_split 
function to split this data that at a ratio of 98:2, so we could know how real model performed with unseen test dataset. The 
improvements in the model accuracy that we have gained is by following these preprocessing techniques are so important 
and crucial as it helps to correctly identify which of machine has a problem. The shape of the Matrix was (12,005,000,3), 
since our training data had 12 samples and each sample having three features. This large data set was used to train the 
model, which fortify and help develop blanket support base required for ascertaining underlying problems connected with 
machine and its functioning. The testing data included 245,000 samples with three attributes, yielding a shape of 
(245,000,3). This smaller section was set aside for testing the model's performance, allowing the accuracy and robustness 
of the model to be investigated using previously unreported data. 
 
Autoencoder 

 
Fig 1. A Single Autoencoder Model Architecture.  
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An ANN called an autoencoder creates output vectors that are comparable to the inputs by using backpropagation. 
Initially the technique uses a lower-dimensional space to compress the input data, and then it employs this representation 
to recover the original data. The technique utilizes many layers and a non-linear activation function to detect nonlinear 
correlations within the data.  

Fig 1 depicts an illustration of the architecture of the autoencoder model. Since the Autoencoder requires not a separate 
label value to be trained, it is categorized as an unsupervised learning method. The encoder and decoder sections comprise 
the two stages of the autoencoder. Equation (1) explains the encoder phase's goal of minimizing the dimensions of input 
data X. 
 
 𝐴𝐴 =  𝜎𝜎 (𝐵𝐵𝐵𝐵 +  𝑐𝑐)  (1) 

 
A represents the latent dimension, σ stands for the activation functions, B for weight, and x for the bias vector. Equation 

(2) is used to train the decoding phase to provide output data that is exactly the same as the original space but has different 
activation functions (σ), weight B, and bias x. 
 
 𝑋𝑋′ =  𝜎𝜎′ (𝐵𝐵′𝐴𝐴 +  𝑐𝑐′)  (2) 

 
The goal of the autoencoder is to reduce the amount of reconstruction error between the original vectors and the output. 

Either the sum of squared errors (SSE) or a cross-entropy function can be used to compute the reconstruction error. In this 
study, we computed the reconstruction error utilizing equation (3) through SSE. 
 
 𝑆𝑆𝑆𝑆𝑆𝑆 =  ∑ (𝑋𝑋′𝑖𝑖  −  𝑋𝑋𝑖𝑖)2𝑛𝑛

𝑖𝑖=1   (3) 
 

The decoder generates the starting data based on the encoder output. The core layer at the centre of the autoencoder 
structure reduces the dimensionality of input data and generates a compressed feature vector. The coding layer can be 
classified or integrated with other stacked autoencoders. 
 
LSTM 
The traditional RNN architecture struggles to handle recurring data. Conventional RNNs struggle to learn long-term 
dependencies. Training is challenging due to the exponential degradation of outputs caused by information being fed back 
into the hidden layer at every time step. The "exploding gradient problem" or the "vanishing gradient problem" is what this 
is known as. One potential solution to address these issues is to use the well-known "Long-Short-Term Memor" (LSTM) 
architecture. Due of its ability to manage long-term dependencies and maintain gradient information over time, the LSTM 
architecture is chosen over standard RNN designs. Each RNN neuron becomes a "block" when the LSTM adds numerous 
operations to it. A typical RNN block is shown in Fig 2. The basic block in Fig 3 can be expanded in multiple ways using 
the LSTM.  The "cell state" x(t) in R, where x denotes the state's dimensionality, is initially created. Information can be 
stored in this state for future use if necessary. Here, "memory" refers to the LSTM block.  This is followed by sending the 
concatenated input x(t) and the previous output through a series of built "gates". Applying learning weights and biases Wf, 
Wi, Wo, and bf, bi, bo to the input z(t − 1), the sigmoid function generates an x-dimensional vector with values in the range 
[0, 1]. Non-linear functions, like tanh, are represented by g and h, while element-wise addition and multiplication are 
expressed by L and N. 
 

 
Fig 2. A Standard RNN Block. 
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Fig 3. Graphical Representation of LSTM Block. 

 
Proposed Model 
The architecture of the LSTM-based autoencoder for machinery fault detection can be described through its encoder and 
decoder components alongside the associated equations. The input to the model is a time-series sequence A = 
{𝛼𝛼1,𝛼𝛼2,. . . . . ,𝛼𝛼𝑇𝑇 }, where each 𝛼𝛼𝑡𝑡  ∊  𝑅𝑅𝑛𝑛  represents a vector of features at timestep t, with T being the complete timesteps 
count and n the number of features. The encoder compresses this input sequence into a lower-dimensional latent vector z, 
capturing the critical temporal patterns. This is achieved through two LSTM layers. The first LSTM layer generates hidden 
states –  
 
 ℎ𝑡𝑡

(1)  =  (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿1 (𝛼𝛼𝑡𝑡,ℎ𝑡𝑡−1
(1) , 𝑐𝑐𝑡𝑡−1

(1) )  (4) 
 

where  ℎ𝑡𝑡
(1) and  𝑐𝑐𝑡𝑡

(1) are the hidden and cell states at time t, respectively. The second LSTM layer refines these states 
to produce –  
 
 ℎ𝑡𝑡

(2)  =  (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿2 (ℎ𝑡𝑡
(1), ℎ𝑡𝑡−1

(2) , 𝑐𝑐𝑡𝑡−1
(2) )  (5) 

 
with ℎ𝑡𝑡

(2) and 𝑐𝑐𝑡𝑡
(2) representing the hidden and cell states for this layer. The final hidden state ℎ𝑇𝑇

(2) at timestep, T serves 
as the encoded representation z ∈ Rd, where d is the dimension of the latent space. In the decoder, this latent vector z is 
repeated T times to match the sequence length and is processed through two additional LSTM layers, similar to the encoder. 
The third LSTM layer produces hidden states –  
 
 ℎ𝑡𝑡

(3)  =  (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿3 (𝑍𝑍𝑡𝑡 , ℎ𝑡𝑡−1
(3) , 𝑐𝑐𝑡𝑡−1

(3) )  (6) 
 

followed by the fourth LSTM layer which refines these hidden states as, 
 
 ℎ𝑡𝑡

(4)  =  (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿4 (ℎ𝑡𝑡3, ℎ𝑡𝑡−1
(4) , 𝑐𝑐𝑡𝑡−1

(4) )  (7) 
 

A dense layer then reconstructs the original sequence by mapping each ℎ𝑡𝑡
(4) to the output feature vector  𝛼𝛼𝑡𝑡  =

 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ℎ𝑡𝑡4, resulting in the reconstructed sequence A = {𝛼𝛼1,𝛼𝛼2, . . . . . ,𝛼𝛼𝑇𝑇 }. The model is trained by decreasing the mean 
squared error (MSE) between the original and reconstructed sequences, defined as, 
 
 MSE = 1

𝑛𝑛𝑛𝑛
 ∑ ∑ (𝛼𝛼𝑖𝑖𝑖𝑖  −  𝛼𝛼ˆ𝑖𝑖𝑖𝑖)2𝑛𝑛

𝑗𝑗=1
𝑇𝑇
𝑖𝑖=1   (8) 

 
where 𝛼𝛼𝑖𝑖𝑖𝑖 and 𝛼𝛼ˆ𝑖𝑖𝑖𝑖 are the original and reconstructed values for feature j at timestep i. The reconstruction error, captured 

by the MSE, is utilized to classify the machine's health status, with a low MSE indicating a healthy state, a medium MSE 
suggesting a degraded state, and a high MSE signaling a potential fault. This approach enables early detection of machinery 
faults, allowing for timely maintenance interventions.  
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IV. EXPERIMENTAL SETUP 
Dataset Description  
This dataset, fetched from Kaggle, comprises 1,951 multivariate time-series samples gathered employing the SpectraQuest 
Machinery Fault Simulator (MFS) Alignment-Balance-Vibration (ABVT). It incorporates data for six operational states: 
Normal function, Imbalance faults, Horizontal and vertical misalignment faults, and Inner and outer bearing faults. 

Every sequence is captured over 5 seconds at a sample rate of 50 kHz. 
 
Key Fault Conditions 

● Normal Operation: 49 sequences  
● Imbalance Faults: 333 sequences with weights ranging from 6 g to 35 g 
● Horizontal Misalignment: 197 sequences with shifts from 0.5 mm to 2.0 mm 
● Vertical Misalignment: 301 sequences with shifts from 0.51 mm to 1.90 mm 
● Bearing Faults: 558 sequences for underhang bearings and 513 sequences for overhang bearings, addressing issues 

with rolling components, inner tracks, and exterior tracks.  
The data is obtained using high-precision accelerometers, a tachometer, a microphone, and an analog acquisition 

module. Table 1 and 2 illustrate vital aspects of the experimental setup and dataset composition. 
 

Table 1. Specifications of the Experimental Bench 
Specification Value Unit 
Motor 1/4 CV DC 
Frequency range 700-3600 rpm 
System weight 22 kg 
Axis diameter 16 mm 
Axis length 520 mm 
Rotor 15.24 cm 
Bearings distance 390 mm 
Number of balls 8  
Balls diameter 0.7145 cm 
Cage diameter 2.8519 cm 
FTF 0.3750 CPM/rpm 
BPFO 2.9980 CPM/rpm 
BPFI 5.0020 CPM/rpm 
BSF 1.8710 CPM/rpm 

 
Table 2. Summary of Each Type of Sequence 

Sequence Measurements 
Normal 49 
Horizontal misalignment 197 
Vertical misalignment 301 
Imbalance 333 

Underhang bearing 
Cage fault 188 
Outer race 184 
Ball fault 186 

Overhang bearing 
Cage fault 188 
Outer race 188 
Ball fault 137 
Total 1951 

  
Experimental Setup  
All models were trained with Tensorflow, a Python-based deep learning toolset. Tensorflow enables the transparent 
execution of incredibly efficient mathematical procedures on GPUs. A computational graph defines all necessary activities 
for the specified calculations. Due to a lack of adequate assessment during the project, speedup may have changed. 
AutoEncoder and LSTM models minimize validation loss. Adam employs 128 mini-batches and a learning rate of 0.0001 
for stochastic gradient descent strategy. Table 3 displays the model specifications and experimental summary. 
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Table 3. Summary of the Model Experiment. 
Parameter Value 
Optimizer Adam 
Loss  Mae 
Activation  Relu 
Regulizer  L2 
Epoch 100 
Batch Size 128 
Trainable params 249219 
Non-trainable params 0 

 
Evaluation Metrics  
Precision 
Precision measures how accurate the model's positive predictions are. It is computed using: 
 
 Precision = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
  (9) 

 
Recall 
Recall estimates the model's capacity to properly identify all relevant examples, or, in this case, all genuine problems. It is 
calculated by: 
 
 Recall = 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹
 (10) 

 
F-score 
The mean of precision and recall is the F-score (also known as the F1-score), which delivers a balanced assessment that 
accounts for both false positives and false negatives. This is computed by: 
 
 F-score = 2*  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
 (11) 

 
Accuracy 
The simplest statistic is accuracy, this represents the proportion of genuine positives and true negatives to all predictions. 
This ratio indicates how accurate the model is overall. It is provided by: 
 
 Accuracy = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹𝐹𝐹
 (12) 

 
Outcomes of the Models 

Table 4. Training, Testing, and Validation Accuracy of Different Models 
Model Training Accuracy (%) Testing Accuracy (%) Validation Accuracy (%) 
KNN 92 88 87 
SVM 93 89 89 
DNN 95 93 92 
LSTM Autoencoder 99 98 99 

 
In this study, we compared four models' training, testing, and validation accuracies for detecting machinery 

faults, shown in Table 4: KNN, SVM, DNN, and LSTM Autoencoder. The KNN model obtained 92% training accuracy, 
88% testing accuracy, and 87% validation accuracy. Although KNN is straightforward, its poor performance, particularly 
in testing and validation, shows limited generalization possibilities for complicated defect detection applications. Training 
Accuracy: 93% Testing and Validation Accuracy: SVM model training performance was slightly better with a Training 
accuracy of 93%, testing, validation both were at an accuracy rate of 89%. The similarity in the proportions reflects a 
balance between model complexity and generalization, which can be interpreted as an SVM being a reliable replacement 
for defect identification. At the same time, it may miss some subtle patterns in the data. The DNN model randomly given 
much better score of 95% training accuracy, 93% testing and also91 % validation accuracy. This illustrates the increased 
power of DNN to model data with non-linear relationships fully, leading to better generalization across datasets. 
Nevertheless, it was the LSTM Autoencoder that performed best of all–training accuracy 99%, testing accuracy 98% and 
validation accuracy after just two epochs. As shown in the above performances scores, high precision of LSTM 
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Autoencoder at all phases indicated that it can learn and reproduce temporal patterns effectively making them suitable for 
time-series industrial data like machinery defect detection.  

 

 
Fig 4. Training, Testing and Validation Accuracy of All Models. 

 
Fig 4 in our study examines more comprehensively all the models explored based on training, testing and validation 

accuracy. This is a plot of the performance of each LSTM Autoencoder, KNN (K-nearest neighbors), SVM and DNN 
model in training phase, testing phase (how well they generalize to new data) and validation set(each how consistently). 
Indeed, the LSTM Autoencoder was extremely accurate across all three phases and generated almost perfect results since 
it is such an effective fault detection method. Fig 4 graphically represents both positive and negative sides of each model; 
it provides a qualitative view on the models to other researchers that whether can generalize well or not, as well as whether 
are reliable enough on diagnosing faulty equipment. 

Following the results, Fig 5 and 6 graphically depict the training and validation curves and the associated loss metrics. 
This image demonstrates the model's learning dynamics across multiple epochs and the training process's efficacy and 
convergence patterns. The consistency between the training and validation curves, in particular for the LSTM Autoencoder, 
demonstrates the model's greater generalization potential and enhances its robustness in precisely recognizing machinery 
faults across multiple datasets. 
 

Table 5. Precision, Recall, and F1-Score of Individual Models 
Model Precision (%) Recall (%) F1-Score (%) 
KNN 89 87 88 
SVM 90 89 89 
DNN 93 92 93 
LSTM Autoencoder 99 99 99 

 
Several evaluation measures were employed to further analyze the models' performance in detecting machinery defects. 

A more detailed knowledge of the models' advantages and weaknesses can be obtained by comparing the MFD models 
based on precision, recall, and F1-score, as shown in Table 5. With an F1-score of 88%, recall of 87%, and accuracy of 
89%, the KNN model shows that, while it can effectively recognize machine conditions, it struggles with borderline cases. 
The model's relatively low recall indicates that it ignores certain problematic conditions, increasing the likelihood of false 
negative outcomes. This means that, while KNN may be useful for easier-to-understand datasets, it may not effectively 
reflect the complexity involved in machinery fault identification. The SVM model performs better, achieving 90% 
precision and 90% recall. This improvement comes from SVM's ability to determine the optimal borders between classes, 
which boosts its dependability when determining a machine's healthy and malfunctioning states. Even if SVM performs 
better than KNN in this specific situation, the F1-score of 89% indicates that SVM is still not ideal, especially when there 
are noisy or overlapping classes. The DNN model gets 93% F1 score, 92% recall, and 93% precision, considerably 
improving performance. 



ISSN: 2788–7669 Journal of Machine and Computing 4(4)(2024) 

939 
 
 

 

 
Fig 5. Training and Validation Curves Over Epochs. 

 

 
Fig 6. Training and Validation Loss Over Epochs. 

 
This suggests that because the DNN is much better at figuring out complex, non-linear relationships from the data, it 

can identify errors with more accuracy. Its strong memory, which indicates that it successfully records real positives, and 
higher precision, which points to fewer false positives, make it a good choice for this task. Though DNN models perform 
better than KNN and SVM models, they might still struggle with successful generalization. This is especially true if the 
model is not properly calibrated or if the training data does not accurately reflect all possible fault scenarios. Compared to 
the other models, the LSTM Autoencoder performs far better, with F1 scores, recall, and precision all at 99%. Sequential 
data is very well used in LSTM development since temporal linkages are essential for detecting machinery problems. Its 
excellent precision shows that it can identify fault conditions with minimal false positives, and its near-perfect recall 
ensures that almost all defective circumstances are correctly diagnosed.  

The F1-score validates the outstanding balance between the two metrics in the model. This demonstrates the accuracy 
and dependability of the LSTM Autoencoder across a range of operational conditions. This comprehensive analysis shows 
that the LSTM Autoencoder is the most effective model for identifying machine problems, particularly in situations where 
temporal data is critical to assessing the health of the machine. Because of its remarkable accuracy and memory, which 
show that it can generalize across various defect kinds and operating conditions, it is a crucial component of predictive 
maintenance plans. Conversely, while KNN and SVM provide a solid foundation, it is clear that they cannot handle 
complex data structures. Despite its strength, the DNN can still not analyze time-series data with the same accuracy and 
dependability as the LSTM Autoencoder.  

 



ISSN: 2788–7669 Journal of Machine and Computing 4(4)(2024) 

940 
 
 

 

 
Fig 7. Precision, recall and f-score of all models  

 
Fig 7 of our study provides a full comparison of the assessment metrics we utilized for each of the models that were 

evaluated: LSTM Autoencoder, KNN, SVM, and DNN. This image efficiently demonstrates how well each particular 
model performs in terms of remembering all relevant fault scenarios (recall), accurately identifying equipment flaws 
(accuracy), and striking a balance between these two attributes (F-score). The LSTM Autoencoder stands out as having a 
stronger ability to precisely identify flaws and decrease false positives and negatives, obtaining the highest scores in all 
three criteria. 
 
Discussion 
In the evolving field of MFD, acquiring high accuracy and efficiency remains a crucial challenge. Recent advancements 
have presented various models to improve fault detection capabilities across industrial applications. A discussion is 
conducted to show the effectiveness of our proposed LSTM Autoencoder model in detecting machinery faults, comparing 
its performance with existing approaches. Table 6 outlines the objectives, models, and accuracy of different fault detection 
approaches, including our suggested LSTM Autoencoder model, showing its superior performance compared to existing 
methods. 
 

Table 6. Comparative Performance of Fault Detection Models 
Reference Objective Model  Accuracy 
Kafeel et al. [24] Vibration signals fault detection SVM (Gaussian kernel) 98.2% 
Hou et al. [25] Energy-efficient fault detection SVM 98% 
Jiao et al. [26] Industrial robot fault detection Deep belief network (DBN) 97.96% 
Ahn et al. [27] Industrial robot fault detection Conditional GAN 95.6% 
Wang et al. [28] Bearing fault detection XGBoost 98.60% 
Helmi et al. [29] Rolling bearing fault detection  Adaptive neuro-fuzzy interface system 

(ANFIS) 
98% 

Tang et al. [30] Turbine gearbox fault detection LightGBM 98.67% 
Hao et al. [31] Gearbox fault detection DBN 97% 
Fawwaz et al. [32] Hydraulic fault detection LSTM autoencoder 98% 
Chen et al. [33] Electric Motors fault detection Capsule Network with CNN 98% 
Proposed Model Machinery fault detection LSTM Autoencoder 99% 

 
When discussing objectives, the existing studies address a range of fault detection scenarios, including vibration signals, 

energy efficiency, and specific industrial components like robots and bearings. For instance, Kafeel et al. [24] and Hou et 
al. [25] targeted vibration and energy-efficient fault detection using SVM, while Ahn et al. [27] and Jiao et al. [26] focused 
on fault detection in industrial robots with Conditional GAN and DBN, respectively. However, our work extended the 
scope to general MFD, focusing on a more all-encompassing method that can handle diverse fault types. 

In terms of models, a range of approaches have been utilized. SVM with Gaussian kernels [24] and other SVM variants 
[25] have been widespread, while models like DBN [26], Conditional GANs [27], and XGBoost [28] have shown 
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significant promise. Our proposed model, the LSTM Autoencoder, defined a cutting-edge approach that integrated 
temporal sequence analysis with anomaly detection, significantly improving these methods. Notably, our model surpassed 
existing approaches, including DBN [31], XGBoost [28], and others, with a recorded accuracy of 99%, compared to the 
highest accuracy of 98.67% performed by LightGBM [30]. Regarding accuracy, our proposed LSTM Autoencoder 
performed a commendable 99%, outperforming the accuracy of models like SVM (98.2% to 98%), DBN (97% to 97.96%), 
and LightGBM (98.67%). This exceptional performance highlighted the effectiveness of our approach in capturing intricate 
patterns within time-series data, leading to more precise fault detection. Our model's remarkable accuracy indicated its 
robustness and dependability in practical scenarios, enhancing the performance of existing works.  

Our work presented a significant advancement in MFD by using an LSTM Autoencoder, which differentiates itself 
through its ability to model sequential data effectively and provide higher accuracy. Combining sophisticated DL 
techniques and a comprehensive approach to fault detection sets our model apart from existing methods, promising 
improved performance and reliability in practical applications. This study contributes to understanding MFD and points 
toward possible future advances in fault detection technology. In our study, Table 6 shows how well our model performs 
in comparison to earlier findings in the area of machinery failure identification. Several key measures showed how our 
LSTM Autoencoder model and other assessed models perform better than or in line with current methods.  

 
V. CONCLUSION 

This study explored the application of cutting-edge ML techniques for effective MFD, focusing on real-world industrial 
scenarios. The dataset employed in our study, sourced from Kaggle, contains 1,951 multivariate time-series samples 
generated by the ABVT. The MFS provides an extensive platform for assessing fault diagnosis techniques since it is 
intended to replicate actual machinery malfunctions in a controlled setting. This dataset is perfect for testing different fault 
detection algorithms in industrial settings since it focuses on three main fault types: vibration anomalies, imbalances, and 
alignment difficulties. The models included KNN, SVM, DNN, and an LSTM Autoencoder; each model was evaluated 
based on key performance metrics, with the LSTM Autoencoder performing superior results across the board, producing 
99% accuracy. These findings underscore the potential of advanced DL architectures in diagnosing machinery faults with 
exceptional accuracy. Such predictive power is invaluable in minimizing unexpected downtime, lowering maintenance 
costs, and providing the longevity and reliability of critical machinery. Combining these cutting-edge MFD systems can 
transform maintenance procedures as industries move toward more automated and data-driven environments. Due to these 
models' scalability and versatility, future research should concentrate on expanding the application of this method to a 
broader range of manufacturing environments, improving fault diagnosis skills, and developing intelligent maintenance 
systems to push the boundaries.  
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