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Abstract – Across the globe, people are working to build "smart cities" that will employ technology to make people's 
lives better and safer. Installing cameras at strategic spots across the city to monitor public spaces besides provide real-
time footage to law enforcement besides other local authorities is a crucial part of smart city infrastructure, which 
includes video surveillance. A more effective answer is provided by deep learning algorithms, however research in this 
area still faces significant problems from changes in target size, form change, occlusion, and illumination circumstances 
as seen from the drone's perspective. In light of the aforementioned issues, this study presents a highly effective and 
resilient approach for aerial picture identification. To begin, the concept of Bi-PAN-FPN is presented to enhance the neck 
component of YOLOv8-s, taking into consideration the prevalent issue of small targets being easily misdetected or 
ignored in aerial photos. We achieve a more advanced and thorough feature fusion procedure much as feasible by 
completely considering and reusing multiscale features. To further reduce the amount of parameters in the model and 
prevent info loss during long-distance feature transfer, the benchmark model's backbone incorporates the GhostblockV2 
structure in lieu of a portion of the C2f module. With the help of the Enhanced Dwarf Mongoose Optimization Algorithm 
(EDMOA), the suggested model's hyper-parameters are optimised. Lastly, a dynamic nonmonotonic focusing mechanism 
is employed in conjunction with WiseIoU loss as bounding box regression loss. The detector accounts for varying anchor 
box quality by utilizing "outlier" evaluations, thus improving the complete presentation of the detection task. 

Keywords – Video Surveillance, Enhanced Dwarf Mongoose Optimization Algorithm, GhostblockV2, Smart Cities, 
YOLOv8. 

I. INTRODUCTION
Drones are airplanes that do not have a pilot on board. They go by the acronym "UAV" for "unmanned aerial vehicle" [1]. 
They run without the need for a human pilot. Their degrees of independence vary. Drones can avoid collisions by using 
in-built schemes that include Light Detection detectors and other sensitive sensors to determine their location and the 
airspace around them [2]. Autopilot and enhanced autonomy are terms that describe this. Additionally, it is capable of 
what is called remotely piloted autonomy, which allows a human to control its motions. The size and design of a drone 
might vary according to its intended use [3]. They can go different distances and at different speeds. A drone with a very 
short range can cover a distance of up to three miles. Hobbyists frequently utilize these. Drones designed for shorter 
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flights can reach distances of up to 30 miles [4]. A drone's maximum altitude can be more than three thousand feet, or 
four hundred kilometers. 

From delivering groceries to rescuing individuals buried by avalanches or rubble to gathering data for scientists, their 
uses are practically endless. Dangerous tasks often involve these drones [5]. The aerospace industry and the military were 
the initial users of these tools. Common safety applications for drones included checking if an area was safe for troops to 
move into or if anyone was buried under rubble entered. Drones equipped with weapons, such bombs, might even replace 
humans in some situations [6, 7]. Drones have gained popularity and are making their way into civilian hands as a result 
of the efficiency and effective safety they provide. Civilian drones have several potential applications, such as delivering 
groceries to a customer's door or taking aerial photographs of any desired location [8]. 

In addition to human guards, drones may survey sites, film resources from above, secure perimeters, and deter 
intruders. Worksite patrols can also make use of them. Because they are integrated with AI technology, they can deliver 
round-the-clock real-time data streaming [9]. The surveillance drone, on the other hand, heralds new uses for 
"tomorrow's security" thanks to its remarkable mobility and observation capabilities, which are enhanced by cutting-edge 
tech [10]. In complicated or high-stakes situations, whether involving public or private security, it is a vital air asset due 
to its wide variety of applications and great operational value [11]. Operations and maintenance capabilities, application 
intelligence, besides professional adoption are thus more important than technological aspects in determining a drone 
safety system's success. 

Through the use of data-driven solutions and cutting-edge information technology, cities around the globe are 
becoming into "smart" communities [12]. A smart city is an urban area that has invested in its infrastructure to the point 
where it can maximize urban services like transportation, energy distribution, communications, and public safety while 
also improving the quality of life for its residents and making the city more sustainable [13]. Public safety, crime 
prevention, traffic management, and environmental monitoring are just a few of the smart city applications that can be 
detected and identified by a video surveillance system (VSS). The installation of video cameras in public spaces allows 
for the round-the-clock surveillance of citizen behavior for the purpose of public safety. These cameras can detect 
suspicious movements within crowds, as well as criminal acts like vandalism, theft, and public disturbances [14]. This is 
accomplished by utilizing motion-based approaches, such as frame distinguishing, optical action recognition. These 
methods are applied in real-time on a nearby server. Further, encoder and classifier tasks can be handled by deep learning 
algorithms like CNN, LSTM, RNN, and DNN, which allow for the detection and classification of restricted human 
movements in a given environment [15]. The safety of the public depends on the regulation of cold weapons in public 
spaces. Recently, fine-grained algorithms based on deep learning have shown promise for handheld cold weapons 
because to their resemblance to mobile phones, wallets, and cards. Furthermore, computer vision algorithms based on 
color, form, and texture are mainly responsible for the development of urban greenery and building deployments [16]. As 
an example, in order to keep an eye on plant diseases, color-based classification methods like SVM and k-nearest 
neighbor (kNN) are utilized. On the other hand, city buildings are analyzed using texture-based approaches like Gabor 
filtering besides local binary patterns (LBP) histograms. 

The primary benefits of this study are as follows. 
• By focusing on large-scale feature maps besides proposing the concept of Bi-PAN-FPN, this study enhances the 

model's detection capability for small targets while simultaneously increasing the likelihood and duration of 
fusion, leading to improved feature engineering.  

• One typical issue with UAV photos is that small targets are often overlooked or misdetected. This is now 
resolved. Enhances the model's loss function and backbone network.  

• Improve the model's generalization performance from feature diversity, long-distance feature info collection, 
and avoidance of geometric factors by integrating the Ghostblock unit and regression loss.  

• Reduces the model's parameter count without sacrificing accuracy. The problems of long-range information loss 
and anchor prediction balance are both resolved by this. 

• We show that our proposed model is better by comparing it to other models already in use. To further 
demonstrate why this strategy is preferable, we compare the interpretability of three top-notch models. 

The rest of the paper is prearranged as follows: Section 2 mentions the related works; Section 3 presents the projected 
procedure; Section 4 discuss the results examination and finally, the conclusion of the research work is given in Section 
5.  

 
II. RELATED WORKS 

The innovative firefighting drone introduced by Jahan et al. [17] can put out fires while simultaneously monitoring gas 
concentration, fire location, and giving real-time images, all with the goal of reducing dangers to firefighters. The 
suggested intelligent quadcopter processes data using the Pixhawk Telemetry system and uses the Pixhawk PX4 
microprocessor for accurate control. Several gas sensors, a servo motor to put out the fire, a camera to capture fire events 
in real time, frame, NodeMCU, and an Arduino Nano make up the suggested gadget. It facilitates effective navigation 
with the Flysky I6X controller by transmitting a live video feed to the ground via its FPV camera and video transmitter. 
Using an adaptive optimization practise called fuzzy-based backstepping control, the drone is guided to fly at the desired 
height and location. Data on gas emissions from controlled burns of different materials are collected and analyzed in this 
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article to show how successful the device is. The drone collected useful data for firefighting operations by measuring CO, 
CO2, O3, SO2, and NO2 concentrations in the impacted locations. Depending on the concentration, various quantities of 
gasses have been measured when burning various things such as alcohol, clothing, plastic, paper, leaves, and more. This 
work is unique because it builds and analyzes a firefighting drone that uses the internet of things (IoT) to conduct 
extensive trials in real time. 

Airport operations, such as protecting runways from wildlife, maintaining infrastructure, and detecting foreign object 
debris (FOD), can benefit from the approaches developed by Kovács et al., [18]. When it comes to surface diagnostics, 
drones with remote sensing devices are invaluable for evaluating taxiways, runways, and aprons. Furthermore, drones 
can improve airport security by providing data to bolster current air traffic control models and systems and by effectively 
monitoring and detecting threats. Our goal in writing this article is to share what we've learned about using UAVs 
equipped with high-resolution RGB, thermal, and LiDAR sensors in possible airport applications. Our study seeks to 
transform airport operations, safety, and security procedures through interdisciplinary collaboration and novel techniques. 
Our goal is to provide a route toward a safer and more efficient airport environment. 

A categorization method for the delivery drone dropping procedure at a preset target has been proposed by Alsawy et 
al., [19] using image processing. With the use of GPS data and a single onboard camera, it uses live streaming. On the 
basis of picture segmentation and classification, a two-step processing method is suggested. Camera and lighting settings, 
drop zone size, drone height from the ground, and other relevant parameters are considered in the classification. Based on 
the experimental results, the suggested method offers a quick way with trustworthy accuracy using low-order 
calculations. 

To dropping off delivery drones at specified locations, Abdelhak et al. [20] suggests a categorization method based on 
image analysis. It makes use of GPS data and a single onboard camera to broadcast live video. An approach with two 
steps is suggested for processing. using picture categorization and segmentation. Camera and lighting settings, drop zone 
size, drone height from the ground, and other relevant parameters are considered in the classification. As far as we are 
aware, this the initial effort to tackle the issue of drone delivery. Based on low-demand computations, the testing findings 
show that the suggested method gives dependable accuracy. 

Using the YOLOv8 algorithm, Chen et al. [21] introduce a method for risk assessment using drones. By iteratively 
improving the algorithm, the performance has been quadrupled, allowing low-altitude law enforcement to detect more 
accurately and surpassing the limitations of current surveillance technology. Moreover, five big marathons were 
subjected to the algorithm's security risk assessments using EWM-TOPSIS and FCM clustering. The events were ranked 
in order of risk: Zhanjiang, Shanghai, Qingdao, Jiangsu, and Tianjin. The Zhanjiang Marathon had the highest people risk 
index of 72.12, suggesting that more security measures are needed. By bringing AI to the field of public safety, this study 
provides a scalable answer to many security problems. 

By using a constructive research technique, Jacobsen et al. [22] have connected innovation needs with ideas, designs, 
and validations, which involve showing and simulating important design components. We take into account the UAS's 
complexity in our design process and offer a range of technological components for control software and hardware, 
including algorithms for autonomous service interface. Using UAS communication technologies, an AI-powered drone 
perception system with accelerated onboard computing, swarm membership, fault detection algorithms are presented in 
the study. With today's cutting-edge hardware, software, and communication capabilities, we have determined that it is 
very feasible to create a swarm of cooperative drones and incorporate them into a purpose-built UAS for infrastructure 
inspection. 

 
III. PROPOSED METHODOLOGY 

In this section, the thorough explanation of the predictable methodology is given in Fig 1. 
 

 
 

Fig 1. Workflow of The Projected Model. 
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Dataset Collection 
If you want to train a deep learning system to classify UAV images for use in disaster management and emergency 
response, you'll need to gather a good dataset. We were unable to find any publicly available dataset that is frequently 
utilized for response applications. Consequently, AIDER (Aerial Image Dataset for Emergency Response applications) is 
built as a specialized database for this purpose. Each of the five disaster types—fire/smoke, flood, collapsed 
building/rubble, and traffic accidents—and the normal case (a single class) were manually collected during the dataset 
preparation [23]. Pictures with common visual elements are combined, for instance, pictures of smoke and raging flames. 
Classification at a finer level is certainly doable, but will have to wait for another project. 

Search terms like "Aerial View," "UAV," or "Drone" plus an event name like "Fire," "Earthquake," "Highway 
accident," etc., were used to gather the aerial snaps for the catastrophic occurrences from a variety of online sources (e.g., 
Google photographs, Bing Images, YouTube, news agency web sites, etc.). Before training, images are normalized from 
varying sizes. First, each image was carefully reviewed by hand to ensure it contained the relevant event. Then, to 
prevent any geometric alterations used for augmentation from erasing it, the event was centered inside the image. Various 
catastrophic occurrences were recorded during the data gathering procedure using different resolutions and in varying 
lighting and perspective conditions. Lastly, the dataset is skewed toward the Normal class in order to reflect real-world 
situations. Naturally, this can make training more difficult; nevertheless, a suitable approach is used to overcome this 
throughout training, as will be shown later on. 

It is crucial that the dataset consist of "clean" and "clear" photographs because the UAV's operational conditions can 
differ based on the environment. Data collection also has the potential to be costly and time-consuming. Therefore, each 
image is probabilistically enhanced with a number of random enhancements before being included to the training batch, 
in order to further improve the dataset. In particular, these encompass both the geometric transformations and the image 
alterations (such as changes in illumination, color shifting, blurring, sharpening, and shadowing) that take place along the 
horizontal axis. To further improve the training set, we additionally use sample pairing to combine images [24]. So that 
the network doesn't pick up on the augmentation qualities inherent to the dataset, we apply transformations with a 
random probability that is configured such that only a subset of photos in a training batch are altered. The goal of these 
changes is to improve generalizability by reducing the likelihood of overfitting and increasing the degree of variability in 
the training set. In general, over 17 times more data was collected compared to related publications that address 
multiclass problems, such as [25]. Therefore, augmentations approaches were employed to further improve the baseline 
dataset. We believe this establishes AIDER as a reliable supplementary data source for establishing besides evaluating 
data-driven approaches in catastrophe monitoring and emergency response domains. The dataset is described in full in 
Table 1. 

 
Table 1. Summary of the Aider Applications 

Class Set Whole Pre class Train Validation Testing 
Traffic Accidents 400. 100 200 700 

Normal 2700 1000 2000 5700 
Collapsed Rubble 420 100 210 700 

Smoke 400 110 210 740 
Flood 420 100 200 700 

Overall Per Set 4320 1410 2810 Inclusive: 8540 
 
Improved Aerial Image Detection Model 
The three components that make up this paper's approach for UAV aerial image identification that are both fast and 
accurate are: To begin with, an upsampling progression is incorporated to concentrate on features, pyramid networks (Bi-
PAN-FPN) are substituted for the PAN-FPN in YOLOv8. This is done to address the common issue of small targets in 
aerial images being misdetected or missed. We attain more sophisticated and thorough feature fusion while minimizing 
parameter costs by thoroughly analyzing and reusing features across scales. Secondly, since only a handful of parameters 
have been added to FPN for improvement, it is suggested to substitute some C2f modules in the backbone with the 
GhostblockV2 structure. This would greatly reduce the number of model parameters while simultaneously suppressing 
info transmission. Last but not least, WiseIoU loss is switched out for bounding box regression loss from CIoU loss. The 
detector takes into consideration anchor boxes of varying qualities and enhances the overall task by including a dynamic 
nonmonotonic mechanism to assess anchor box quality utilizing "outlier. 
 
Improvement of the Neck 
According to YOLOv8, feature maps are categorized into five scale feature types in descending order: B1-B5, P3-P5, and 
N4-N5 in the case of backbone, FPN, and PAN structures, respectively. The original YOLOv8 made use of a PAN-FPN 
structure, which is an extension of the conventional FPN that transfers deep semantic characteristics in a top-down 
fashion. There is some loss of location information due to the semantic enhancement of the feature pyramid achieved by 
combining B3-P3 and B4-P4. The bottom-up structure of the FPN is supplemented by PAN-FPN, and the learning of 
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localization features is strengthened by fusing P4-N4 and P5-N5, resulting in a complementing effect. Nevertheless, there 
is potential for enhancement when this structure is used for small target object detection. Firstly, the detection model 
might miss out on some valuable features and lower detection quality because large-scale feature maps aren't taken into 
account. Secondly, feature reuse is low and original info after path, even when B, P, and N features are considered and 
fused and supplemented. The UAV aerial photography dataset underwent the following neck structural adjustments: 

Our initial emphasis was on feature maps on a grand scale. The detection effect for small targets was enhanced by 
adding an upsampling technique to the FPN and fusing it with the features in the B2 layer of the backbone. In a manner 
analogous to the prior FPN upsampling procedure, the C2f module was employed to augment the post-fusion feature 
extraction's quality. A significant enhancement over its predecessor, the C3 module, the C2f takes advantage of 
YOLOv7's ELAN structure and its better gradient information. In order to get more detailed information about the 
gradient flow while keeping the module lightweight, this one uses the bottleneck module to enlarge the gradient branch 
and removes one typical convolutional layer.  

Next, we presented the concept of Bi-PAN-FPN [26]. Improving the likelihood and timeframes of multiscale feature 
fusion to achieve improved detection accuracy is the central notion of this structure. Here are the steps to implement it: 
Feature maps with a single input path do not undergo any additional processing. In a typical scenario, these features don't 
add much to feature engineering. If the feature maps' sizes are equal, an extra path is added from the backbone features 
and the features in PAN input paths. Additional parameter cost is not introduced by such a processing method. As a last 
step, improve blending by treating each top-bottom and bottom-top bidirectional path as a unit and reusing this. Extra 
routes of B3-N3 and B4-N4 were unit was employed, considering the modest weight of the model. Here is an expression 
for this process: 

 
 𝑁𝑁5𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶2𝑓𝑓(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁5𝑖𝑖𝑖𝑖�,𝐵𝐵5𝑜𝑜𝑜𝑜𝑜𝑜�,𝐶𝐶) (1) 

 
 𝑁𝑁𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐶𝐶2𝑓𝑓(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖�,𝐵𝐵𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 ,𝑃𝑃𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜�,𝐶𝐶) (2) 

 
in which C2f and Conv are the matching module actions, and B, P, and N are the feature maps at the backbone, FPN, 

and PAN levels, simultaneously; The value of i can be three or four, and n is the number of times C2f has been used. 
 
Improvement of the Backbone 
Thanks to the standard convolution unit and the C2f module, YOLOv8 was able to downsample images and extract 
features with great quality. The combination of Bi-PAN-FPN and an upsampling method in the neck section did, 
however, enhance the model's complexity and parameter count. This post will present the Ghostblock concept in 
backbone and demonstrate how to replace certain C2f modules using this framework. An optimization method for 
lightweight convolution called GhostNet is Ghostblock [27]. There are two key areas where its benefits are most 
apparent. Ghostblock, on the one hand, is based on the core principles of GhostNet. The basic feature map is generated 
using traditional convolution. To improve the feature map's information, it combines many linear transformation 
processes. This guarantees that characteristics are diverse while being effectively extracted. A decoupled fully connected 
(DFC) attention mechanism, however, is suggested. This mechanism is unique in that it may capture feature information 
across great distances while avoiding the computational complexity limits of conventional attention techniques. The 
overall structure's feature engineering is improved by the structure's advantages. In particular, GhostNet employs a 
convolutional form known as the cheap operation. These are the steps involved in putting it into action: 
 
 Υ′ = 𝑋𝑋 ∗ 𝐹𝐹1∗1  (3) 

 
 Υ = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(�Υ′,Υ′ ∗ 𝐹𝐹𝑑𝑑𝑑𝑑�)  (4) 

 
where 𝑋𝑋 ∈ 𝑅𝑅𝐶𝐶,𝐻𝐻,𝑊𝑊 ,𝑌𝑌 ∈ 𝑅𝑅𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

𝐶𝐶′ ,𝐻𝐻,𝑊𝑊;  𝐹𝐹1∗1 characterizes pointwise convolution; 𝐹𝐹dp represents depth-wise convolution; 
and 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜′ ≤  𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜. To start the cheap operation, instead of using conventional convolution, we use pointwise convolution 
to get a feature map that is half the size of the actual output standard. Then, we use depth-wise convolution to get a linear 
transformation. The output is obtained by splicing the feature maps of the two phases. By recycling features and 
discarding redundant information that may present in conventional convolutions, this processing method greatly lessens 
the parameter cost and computing cost. The downsides of this approach are equally apparent: feature maps created using 
depth-wise convolution capture spatial information, but pointwise convolution misses the interaction process with other 
pixels in space. This will have an effect on the model's detection accuracy because spatial information will be drastically 
underrepresented. The self-attention mechanism can quickly raise the model's complexity, in contrast to the convolutional 
structure's limited ability to concentrate on local input. 

The aforementioned issues can be effectively addressed by the DFC attention mechanism. Directly obtaining the 
attention map with global information by means of a deeply separable structure with a simple construction is the 
fundamental idea. The particular method of calculation is illustrated in Equations (5) and (6). 
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 𝛼𝛼ℎ𝑤𝑤′ = ∑ 𝐹𝐹ℎ,ℎ′𝜔𝜔

𝐻𝐻 ⨀𝑋𝑋ℎ′𝑤𝑤′ℎ = 1,2, … ,𝐻𝐻,𝜔𝜔 = 1,2, … ,𝑊𝑊𝐻𝐻
ℎ′=1   (5) 

 
 𝑥𝑥ℎ𝑤𝑤 = ∑ 𝐹𝐹ℎ,ℎ′𝜔𝜔

𝐻𝐻 ⨀𝐶𝐶ℎ𝑤𝑤′
′ ℎ = 1,2, . . ,𝐻𝐻,𝜔𝜔 = 1,2, … ,𝑊𝑊𝑊𝑊

𝑤𝑤′=1  (6) 
 
where 𝑋𝑋 ∈ 𝑅𝑅𝐶𝐶,𝐻𝐻,𝑊𝑊, where the input is given by Equation (3); F is a convolution process that is separable along depth 

and is separated into horizontal (𝐾𝐾𝑊𝑊 ∗ 1) and vertical (1 ∗  𝐾𝐾𝐻𝐻) in two different directions: a' represents the direction and 
an is the attention map in the horizontal direction based on a'. Removing the link between the two ways makes extracting 
feature global information much easier. The usage of deep separable structures, too, like 1 ∗  𝐾𝐾𝐻𝐻 and 𝐾𝐾𝑊𝑊  ∗  1, the 
intricacy of the DFC is greatly summary (full connection: 𝑂𝑂(𝐻𝐻2𝑊𝑊 +  𝐻𝐻𝑊𝑊2);  𝐷𝐷𝐹𝐹𝐶𝐶: 𝑂𝑂(𝐾𝐾𝐻𝐻𝐻𝐻𝑊𝑊 +  𝐾𝐾𝑊𝑊𝐻𝐻𝑊𝑊)). By 
integrating DFC with Ghostblock, we can drastically simplify the model while still accounting for feature global 
information, all while keeping the cost of operation low. 

 
Improvement of the Loss Function 
The loss function of YOLOv8 is significantly different from the YOLOv5 series since the anchor-free idea is used. 
Classification and regression make up its optimization direction. The binary cross entropy loss (BCEL) is still used for 
the classification loss, and DFL and BBRL are used for the regression component. One way to express the entire loss 
function is: 
 
 𝑓𝑓𝑓𝑓𝐶𝐶𝑓𝑓𝑓𝑓 = 𝜆𝜆1𝑓𝑓𝐵𝐵𝐶𝐶𝐵𝐵𝐵𝐵 + 𝜆𝜆2𝑓𝑓𝐷𝐷𝐷𝐷𝐵𝐵 + 𝜆𝜆1𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵   (7) 

 
Among them, the prediction sort loss is fundamentally the loss, besides the appearance is: 
 

 𝑓𝑓𝐵𝐵𝐶𝐶𝐵𝐵𝐵𝐵 = 𝑤𝑤𝐶𝐶𝑤𝑤𝑤𝑤ℎ𝐶𝐶[𝐶𝐶𝑓𝑓𝐶𝐶𝑓𝑓𝑓𝑓](−𝑥𝑥[𝐶𝐶𝑓𝑓𝐶𝐶𝑓𝑓𝑓𝑓] = 𝑓𝑓𝐶𝐶𝑤𝑤�∑ exp (𝑥𝑥[𝑗𝑗])𝑗𝑗 �)  (8) 
 
when x is the probability value following sigmoid activation, class is the number of categories, and weight[class] is 

the set of weights for each class. Optimizing the focal loss function, which integrates the discrete classification results 
into unceasing ones, is what DFL is all about. This word means: 

 
 𝑓𝑓𝐷𝐷𝐷𝐷𝐵𝐵(𝑆𝑆𝑖𝑖 , 𝑆𝑆𝑖𝑖+1) = −�(𝑦𝑦𝑖𝑖+1 − 𝑦𝑦) log(𝑆𝑆𝑖𝑖) + (𝑦𝑦 − 𝑦𝑦𝑖𝑖)log (𝑆𝑆𝑖𝑖+1)�  (9) 

 
where 𝑦𝑦i, 𝑦𝑦i+1 characterizes the values from the left besides consecutive labels y, satisfying 𝑦𝑦𝑖𝑖 < 𝑦𝑦 < 𝑦𝑦𝑖𝑖+1, 𝑦𝑦 =

 ∑ 𝑃𝑃(𝑦𝑦𝑖𝑖)𝑦𝑦𝑖𝑖𝑖𝑖
𝑖𝑖=0  ; among the equation, P can be applied finished a softmax layer, 𝑃𝑃(𝑦𝑦𝑖𝑖), that is, 𝑆𝑆i. 
Here, the bounding box regression loss is the Wise-IoU function, which differs from the CIoU loss used in YoloV8. 

When the training data labeling quality is poor, the loss function uses a "outlier" to assess the anchor frame quality and 
prevent the model from being penalized too much for geometric factors like distance and aspect ratio. When there is a 
high degree of coincidence between the prediction box and function decreases the penalty of geometric variables, 
allowing the model to achieve superior generalization ability with less training intervention. This research utilizes Wise-
IoU v3, which incorporates a two-layer attention nonmonotonic FM mechanism, based on this framework. Here is its 
expression: 

 

 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = �1 − 𝑊𝑊𝑖𝑖𝐻𝐻𝑖𝑖
𝑆𝑆𝑜𝑜

� 𝐶𝐶𝑥𝑥𝑒𝑒 ��𝑥𝑥𝑝𝑝−𝑥𝑥𝑔𝑔𝑜𝑜�
2
+�𝑦𝑦𝑝𝑝−𝑦𝑦𝑔𝑔𝑜𝑜�

2

�𝑊𝑊𝑔𝑔
2+𝐻𝐻𝑔𝑔2�

� 𝛾𝛾  (10) 

 
 𝛾𝛾 = 𝛽𝛽/𝛿𝛿𝛼𝛼𝛽𝛽−𝛿𝛿  (11) 

 
where 𝛽𝛽 signifies the level of discordance with the anticipated box; a lower level of discordance suggests a better 

anchor box quality. Therefore, using 𝛽𝛽 In order to build a nonmonotonic focus number, it is possible to reduce the 
detrimental gradients of low-quality training tasters by assigning tiny gradient with big outliers; 𝐶𝐶 and 𝛿𝛿 are 
hyperparameters. The meanings of the supplementary restrictions are publicised in Fig 2. 𝑥𝑥p and 𝑦𝑦p represent the 
coordinate standards of the forecast box, while 𝑥𝑥gt and 𝑦𝑦gt serve as the coordinate standards representing the Ground 
truth. The two boxes' width and height are denoted by the appropriate H and W numbers, correspondingly. It can be seen 
that 𝑆𝑆𝑜𝑜 =  𝑤𝑤ℎ +  𝑤𝑤𝑔𝑔𝑜𝑜ℎ𝑔𝑔𝑜𝑜  −  𝑊𝑊𝑖𝑖𝐻𝐻𝑖𝑖 . The loss, backbone, and neck functions are better than the original YOLOv8. The 
figures graphic labels have the details of the revisions. 

 
Fine-tuning using Enhanced DMOA 
There are three distinct social strata in the dwarf mongoose (DM) population in the DMOA: the alpha group, the 
babysitters, and the scouts. In a family foraging team, the alpha female takes the lead and decides where to sleep, how far 
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to go, and what direction to go. Babysitters are provided by a subset of the DM population that is typically a mix of male 
and female kinds. They accompany the kids till the remainder of the group shows up in the afternoon. First, during the 
exploitation period, the babysitters are switched so that they can start foraging with the group. In order to find a fresh 
area to forage, the DM group never builds a nest; instead, they constantly move the sleeping mound. The DMs have 
settled into a seminomadic lifestyle in an expansive region that can house all of the party members (the exploration 
phase). Nomadic conduct is characterized by a lack of attachment to any one area. Additionally, it checks that no 
previously visited sleeping mounds are revisited by ensuring that the entire terrain is surveyed. 

For each NDM individual's potential solution, the DMOA randomly generates an initial DM population in the 
following ways: 

 
 𝐷𝐷𝑗𝑗,𝑑𝑑(0) = 𝐷𝐷𝑚𝑚𝑖𝑖𝑖𝑖,𝑑𝑑 = 𝑟𝑟𝐶𝐶𝐶𝐶𝑟𝑟(0,1). �𝐷𝐷𝑚𝑚𝑚𝑚𝑥𝑥,𝑑𝑑 − 𝐷𝐷𝑚𝑚𝑖𝑖𝑖𝑖,𝑑𝑑�, 𝑗𝑗 = 1:𝑁𝑁𝐷𝐷𝐷𝐷,𝑟𝑟 = 1:𝐷𝐷𝑤𝑤𝐷𝐷 (12) 

 
where 𝐷𝐷𝑗𝑗,𝑑𝑑 represents the location as a searching individual concerning each 𝐷𝐷𝐷𝐷(𝑗𝑗) and each control variable (d); 

𝐷𝐷𝑚𝑚𝑖𝑖𝑖𝑖,𝑑𝑑 and 𝐷𝐷𝑚𝑚𝑚𝑚𝑥𝑥,𝑑𝑑 denote the bounds of each control variable (d); Dim refers to the sum of the decision variables task. 
After the population is initialized, the solution is determined. The probable worth of each group's fitness is determined 

by Equation (13) besides the alpha female (α) on this likelihood. 
 

 𝐶𝐶 =
𝐷𝐷𝑗𝑗

∑ 𝐷𝐷𝑗𝑗
𝑁𝑁𝐷𝐷𝐷𝐷
𝑗𝑗=1

  (13) 

 
The alpha group's DM count is proportional to the discrepancy between the total group size (NDM) and the babysitter 

count (Bst). The symbol bs represents the total number of babysitters. Peep is the DM family's guiding vocalization, 
which comes from the alpha female. The first sleeping mound, designated for ˘, is where every DM goes to sleep. 
Equation (14) is the formula that the DMOA uses to create a possible food position. 

 
 𝐷𝐷𝑘𝑘,𝑑𝑑(𝑤𝑤 + 1) = 𝐷𝐷𝑘𝑘,𝑑𝑑(𝑤𝑤) + 𝑟𝑟𝐶𝐶𝐶𝐶𝑟𝑟(0,1) × 𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒, 𝑘𝑘 = 1:𝑁𝑁𝐷𝐷𝐷𝐷 − 𝐵𝐵𝑓𝑓𝐶𝐶,𝑟𝑟 = 1:𝐷𝐷𝑤𝑤𝐷𝐷  (14) 

 
where "i" denotes the current iteration. Following each cycle, the sleeping mound can be constructed in the following 

way: 
 

 𝑆𝑆𝐷𝐷𝑖𝑖 =
𝐷𝐷𝑗𝑗+1−𝐷𝐷𝑗𝑗

𝑚𝑚𝑚𝑚𝑥𝑥��𝐷𝐷𝑗𝑗+1−𝐷𝐷𝑗𝑗��
   𝑗𝑗 = 1:𝑁𝑁𝐷𝐷𝐷𝐷 − 𝐵𝐵𝑓𝑓  (15) 

 
where j mentions to each DM in group which are the alteration among the whole group number (NDM) and the sum 

of babysitters (Bst). 
According to that, Equation (16) gives the mean value (y) of the discovered. 
 

 𝜓𝜓𝑗𝑗 =
∑ 𝑆𝑆𝐷𝐷𝑗𝑗
𝑁𝑁𝐷𝐷𝐷𝐷
𝑗𝑗=1
𝑁𝑁𝐷𝐷𝐷𝐷

  𝑗𝑗 = 1:𝑁𝑁𝐷𝐷𝐷𝐷 − 𝐵𝐵𝑓𝑓𝐶𝐶  (16) 
 
Once the childcare exchange threshold is satisfied, the DMOA approach moves to the scouting stage, when a 

subsequent found. While foraging, scouts in DMOA look for a different sleeping mound to make sure they've explored 
everything. Based on the complete mongooses, the resultant motion is shown as an evaluation of whether or not to create 
a new mound. 

 

 𝐷𝐷𝑘𝑘,𝑑𝑑(𝑤𝑤 + 1) = �
𝐷𝐷𝑘𝑘,𝑑𝑑(𝑤𝑤) − 𝐶𝐶𝐹𝐹 × 𝑟𝑟𝐶𝐶𝐶𝐶𝑟𝑟(0,1) × �𝐷𝐷𝑘𝑘,𝑑𝑑(𝑤𝑤) −𝐷𝐷� 𝑤𝑤𝑓𝑓 𝜓𝜓𝑗𝑗+1 > 𝜓𝜓𝑗𝑗
𝐷𝐷𝑘𝑘,𝑑𝑑(𝑤𝑤) + 𝐶𝐶𝐹𝐹 × 𝑟𝑟𝐶𝐶𝐶𝐶𝑟𝑟(0,1) × �𝐷𝐷𝑘𝑘,𝑑𝑑(𝑤𝑤) −𝐷𝐷�    𝐸𝐸𝑓𝑓𝑓𝑓𝐶𝐶        

𝑘𝑘 = 1:𝑁𝑁𝐷𝐷𝐷𝐷,𝑟𝑟 = 1:𝐷𝐷𝑤𝑤𝐷𝐷
 (17) 

 
where CF decreases linearly with the number of repeats, as shown in Equation (18), and M is a vector that determines 

where the mongoose will sleep, as shown in Equation (19). The CF limit controls the collective volitional movements of 
the mongoose group. 

 

 𝐶𝐶𝐹𝐹 = �1 − 𝑖𝑖
𝐼𝐼𝑜𝑜𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

�
� 2×𝑖𝑖
𝐼𝐼𝑜𝑜𝐼𝐼𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚

�
 (18) 

 
 𝐷𝐷 = ∑ 𝐷𝐷𝑗𝑗×𝑆𝑆𝐷𝐷𝑗𝑗

𝐷𝐷𝑗𝑗

𝑁𝑁𝐷𝐷𝐷𝐷
𝑗𝑗=1  (19) 
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where 𝐼𝐼𝐶𝐶𝐶𝐶𝑟𝑟max refers to the highest sum of repetitions. 
 

Proposed EDMOA 
Here we provide a novel EDMOA that incorporates an Learning Strategy (LS) to address various mathematical 
benchmarking tasks and engineering obstacles. The revised alpha partially guides the updating process of the improved 
LS, which is part of the unique proposed solver and improves the searching capabilities. In an attempt to improve the 
searching capabilities, the alpha-directed LS is combined with the formula given in Equation (14) to produce a possible 
food site. Consequently, each search solution's location inside the search space is enhanced in the subsequent way: 
 

 𝐷𝐷𝑘𝑘,𝑑𝑑(𝑤𝑤 + 1) = �
𝐵𝐵𝐶𝐶𝑓𝑓𝐶𝐶𝐷𝐷𝐷𝐷𝑑𝑑(𝑤𝑤) + 𝑟𝑟𝐶𝐶𝐶𝐶𝑟𝑟(0,1) × �𝐷𝐷𝑘𝑘,𝑑𝑑(𝑤𝑤) − 𝐷𝐷𝐵𝐵,𝑑𝑑(𝑤𝑤)� 𝑤𝑤𝑓𝑓 𝑟𝑟𝐶𝐶𝐶𝐶𝑟𝑟 > 𝐶𝐶𝑃𝑃

𝐷𝐷𝑘𝑘,𝑑𝑑(𝑤𝑤) + 𝑟𝑟𝐶𝐶𝐶𝐶𝑟𝑟(0,1) × 𝑒𝑒𝐶𝐶𝐶𝐶𝑒𝑒  𝐸𝐸𝑓𝑓𝑓𝑓𝐶𝐶        
𝑘𝑘 = 1:𝑁𝑁𝐷𝐷𝐷𝐷 − 𝐵𝐵𝑓𝑓𝐶𝐶,𝑟𝑟 = 1:𝐷𝐷𝑤𝑤𝐷𝐷

  (20) 

 
DR,d is a randomly designated searching separate from the DM populace; CP is the choice probability; and BestDMd 

is the site as the seeking separate with the best fitness score. Equation (20) mentions greater exploitation qualities, and 
Equation (14) mentions exploratory features; to maintain a balance between the two, CP is set to 50%. Utilizing the 
aforementioned structure results in substantial and powerful exploitation characteristics while preserving and obtaining 
exploratory seeking qualities using the conventional way simultaneously. 

 
IV. RESULTS AND DISCUSSION 

The trials are directed on a PC with an 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝑓𝑓 𝐶𝐶𝐶𝐶𝑟𝑟𝐶𝐶 𝑤𝑤5 − 7200 𝐶𝐶𝑃𝑃𝐶𝐶, 8 GB of RAM, and a processing speed of 2.7 GHz. 
The processes are executed using a specialized User Interface (UI) and Jupyter Notebook on Windows 10, a 64-bit 
operating scheme (Python 3.7) The setting.  
 
Learning Rate Analysis 
The presentation of the projected model is tested with different learning rate in terms of different metrics that is exposed 
in Fig 2. 

 

 
 

Fig 2. Investigation of Proposed Classical on Learning Rate. 
 
In Fig 2 represent as proposed model on learning rate. In the analysis of 0.01 learning rate condition, the accuracy as 

94.47 then precision ranges of 94.55 and also recall as 94.45 and then f1-score as 94.48 and also AUC rate as 98.53 
congruently. Then the 0.001 learning rate condition, the accuracy as 96.33 then precision ranges of 95.30 and also recall 
as 96.35 and then f1-score as 95.30 and also AUC rate as 98.60 congruently. Then the 0.0001 learning rate condition, the 
accuracy as 97.35 then precision ranges of 97.32 and also recall as 97.35 and then f1-score as 97.37 and also AUC rate as 
99.64 similarly.   
 
Comparative Analysis of Proposed model  
The existing model is tested with proposed model’s effectiveness in terms of different metrics is exposed in Fig 3. 
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Fig 3. Visual Representation of The Projected Model with Existing Actions. 
 
In Fig 3 represent the Visual Illustration of the proposed model with existing techniques. In the analysis of CNN 

technique attained the accuracy as 92.82 then precision ranges of 94.29 and also recall as 93.76 and then f1-score as 
91.52 and also AUC rate as 94.38 similarly. Then the LSTM technique attained the accuracy as 93.52 then precision 
ranges of 95.21 and also recall as 94.43 and then f1-score as 92.11 and also AUC rate as 96.96 correspondingly. Then the 
BiLSTM technique attained the accuracy as 95.45 then precision ranges of 96.61 and then f1-score as 95.80 and then f1-
score as 90.40 and also AUC rate as 97.80 harmoniously. Then the Yolo V8 technique attained the accuracy as 96.29 then 
precision ranges of 96.83 and also recall as 96.90 and then f1-score as 95.87 and also AUC rate as 98.28 congruently. 
Then the EDMO-Yolo technique attained the accuracy as 97.35 then precision ranges of 97.32 97.35 and then f1-score as 
97.37 and AUC rate as 99.64 congruently. 

 
V. CONCLUSION 

In order to automatically detect and categorize catastrophic situations in real-time from a UAV, a study was conducted on 
the design besides application of an effective deep learning system. The suggested approach strikes a good balance 
between accuracy, implication speed, and complexity; moreover, it can serve as a foundation for future use-cases that 
have comparable requirements. The goal of this study is to present a YOLOv8-s based aerial image identification 
algorithm that, when deployed, can reliably identify targets in aerial images in real time. This model eliminates the 
detrimental impacts of several elements on the identification task, such as camera angle, lighting, and backdrop. First, the 
concept of Bi-PAN-FPN is proposed to enhance the neck part in YOLOv8-s, addressing the prevalent issue of small 
targets being misdetected or missing in aerial photos. We achieve a more progressive and thorough feature fusion 
procedure while upholding the parameter cost as much as feasible by completely seeing and reusing multiscale features. 
Secondly, in order to improve the overall presentation of task, the sensor takes into consideration different quality anchor 
boxes "outlier" to evaluate their quality. Lastly, the GhostblockV2 structure is used in perfect to substitute part of the C2f 
module. This structure effectively reduces the number of model limits while suppressing transmission. To improve 
classification accuracy, EDMOA optimally selects the model's fine-tuning.  Unfortunately, another issue surfaced 
throughout the experiment: the ablation tests showed that the model presented in this article does not outperform other 
structures in any of the small categories. We intend to address these issues in our future studies by combining them with 
individualized detection tasks and investigating how to adaptively alter the representation's structure from the viewpoints 
of the representation's hyperparameters and the network's composition. 
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