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Abstract – The rapid growth of the Internet of Things (IoT) has indeed introduced new security challenges, and the 
proliferation of compromised IoT devices has become a significant concern. Botnet attacks, where multiple corrupted 
devices are managed by a particular object, have become a widespread threat in IoT environments. These are used for a 
variety of malicious activities, including distributed DDoS attacks, data breaches, and malware distribution. However, 
detecting IoT botnets poses several challenges due to the resource constraints inherent in many IoT devices. The 
limitations in computation, storage, and communication capabilities make it challenging to deploy complex ML and deep 
learning models directly on these devices. This paper proposes an ensemble classification model ECBoA-OFS (Ensemble 
Classification for Botnet Attack Prediction using Optimal Feature Selection). It focuses on enhancing the accuracy of 
botnet attack prediction through the integration of ensemble methods and optimal feature selection. It describes a method 
for optimal feature selection in the context of analyzing the behavior of BoA and malicious traffic flow features in a 
network using Central Pivot Ranges (CPR). Feature selection is an important step in machine learning and data analysis 
because it supports to identification of the most important features for a given problem, thereby improving model 
performance and interpretation. The extracted features are used for model training and ensemble classification for 
prediction. To evaluate ECBoA-OFS, the N-BaIoT-2021 dataset consisting of regular IoT network traffic and BoA traffic 
records of corrupted IoT devices is utilized, considering detection precision, sensitivity, specificity, accuracy, and F1-
score. Although all ensemble classifier models achieved better detection accuracy through optimal feature selection, the 
proposed ECBA-OFS shows better results compared to other ensemble classifier results. 
 
Keywords – Internet of Things (IoT), Botnet Attacks, Feature Selection, Central Pivot Range, Ensemble Classification. 
 

I. INTRODUCTION 
The IoT (Internet of Things) refers to a network of physical devices, automobiles, buildings, and other objects 
surrounded by sensors, software, and network connectivity. These devices collect and share information, creating an 
ecosystem that communicates with each other and with centralized systems [1]. The past decade has seen a remarkable 
rise in the level of interconnectivity, giving rise to the IoT. The IoT signifies a standard move in the manner devices, 
machines, and services communicate and interact with each other [2]. This interconnected network enables seamless 
communication and data exchange, fostering a more efficient and integrated approach to various aspects of daily life, 
industry, and technology. The IoT indeed poses significant security challenges due to its widespread integration into 
various facets of daily life. The increasing prevalence and complexity of anomalies and security breaches on IoT devices 
pose a serious threat to the overall security of the IoT ecosystem. 

The incorporation of Machine Learning (ML) with IoT services has indeed paved the way for innovative applications 
across diverse domains. To ensure the effectiveness of these applications, particularly in areas like security, surveillance, 
healthcare, transportation, control, and object monitoring, the precision and accuracy of ML models play a crucial role 
[3], [4].  It describes a strategy commonly used in cybersecurity called anomaly detection or behavioral analysis, where 
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ML is employed to model legitimate user behavior and identify deviations from this norm that may indicate potential 
security threats. So, designing IoT environments with security in mind is crucial to mitigate potential security threats. 

A Botnet Attack on IoT devices, often referred to as an IoT Botnet Attack (BoA), is a kind of cyber threat where a 
network of compromised IoT devices is controlled remotely by attackers. In this scenario, the attackers typically exploit 
vulnerabilities in the security of IoT devices, allowing them to gain unauthorized access and control over these devices. 
One of the prominent threats associated with IoT botnets is their potential to launch DDoS attacks. This can result in 
service disruptions, financial losses, and damage to the targeted organization's reputation [5]. Mirai is a notorious 
malware that targets IoT devices, particularly those with weak security measures. It was responsible for several high-
profile DDoS attacks, disrupting major websites and online services in 2016. The malware scans the internet for 
vulnerable IoT devices that still have default usernames and passwords, exploiting them to create a large network of 
suppressed nodes, identified as a botnet. Mirai's impact highlighted the security risks associated with poorly protected 
IoT devices, as many of these devices lacked basic security measures and were easily exploited. It also emphasizes the 
need for increased awareness and vigilance among device manufacturers, users, and the broader cybersecurity 
community to mitigate the risks posed by such malware threats. 

Predicting and preventing IoT botnet attacks pose significant challenges due to the unique characteristics of IoT 
devices. The diversity of IoT Devices, heterogeneous configurations, restricted properties, and active environment of IoT 
make it highly challenging in anomaly detection and feature selections. To mitigate these limitations, researchers and 
experts are exploring innovative approaches such as ML models tailored for IoT environments, lightweight encryption 
techniques, behavior-based anomaly detection, and collaborative defense mechanisms that leverage information sharing 
among devices in the network. Additionally, ongoing efforts focus on developing standards and best practices for 
securing IoT devices and networks [6].  

Utilizing ML techniques is favorable for IoT botnet prediction to solve the security challenges of IoT environments 
[7], [8]. In the context of IoT botnet prediction, ML can be used to detect unusual or malicious activities by learning from 
historical data. Traditional ML techniques, while effective in many cases, can struggle to adapt to and detect innovative 
or previously unseen threats. It faces limitations in handling advanced and evolving cyber-attacks due to limited training 
data, static feature representation, overfitting, and lack of context awareness. It's significant to observe that the area of 
cybersecurity is active, and researchers continually explore new methods to improve threat detection. A combination of 
traditional and more advanced ML techniques, along with a strong emphasis on real-time monitoring and adaptation is 
often recommended to enhance overall security posture. The passage underscores the evolving nature of cyber threats 
and the inadequacy of conventional ML models in addressing these challenges. The proposed solution involves adopting 
a more sophisticated approach through ensemble learning and classification to enhance the accuracy and adaptability of 
IoT attack detection systems [9]. 

Ensemble Learning (EL) involves combining multiple models to enhance overall performance. In this context, it 
suggests that a combination of models may be more effective in capturing the diversity of IoT attack patterns and 
improving detection capabilities. Over-fitting occurs when a model learns the training data very well and picks up noise 
or extraneous patterns that don't generalize well to invisible data. It can be a common problem, especially true when 
dealing with high-dimensional feature spaces as discussed in the context of traffic flow. This work intends to propose a 
solution through EL and classification methods to address the problem of over-fitting in traffic flow feature learning 
models. 

This paper proposes a solution to address overfitting in the context of enhancing botnet classification and prediction 
accuracy. The proposed method employs Optimal Feature Selection (OFS) which is utilized in conjunction with an 
ensemble classifier model known as "ECBoA-OFS". It usually combines the predictions of several underlying classifiers 
to improve overall performance. It leverages the optimal feature selection method to enhance its classification and 
prediction accuracy. Feature selection is to choose the most relevant features and eliminate irrelevant or redundant ones, 
preventing overfitting and improving generalization to new data. By combining OFS with an ensemble classifier, the goal 
is to build a more robust and precise model for detecting botnet activity. The Central Pivot Ranges (CPR) technique is 
used to build OFS. Ensemble classification will improve overall prediction accuracy performance. The proposal will 
provide key benefits for using EL for anomaly detection, mainly from the perspective of detecting BoA. This will 
improve the robustness of the traffic flow features learning model and mitigate the risk of over-fitting.  

We utilized the N-BaIoT2021 dataset [10] for detecting abnormal network behavior related to IoT botnets, 
specifically focusing on the Bashlite and Mirai vectors. This dataset is likely employed for developing and evaluating 
intrusion detection or anomaly detection systems that aim to identify compromised IoT devices within a network. It aims 
to contribute a system for improving the security of IoT devices by employing an EL strategy, optimized feature 
selection, and a classification model. The OFS uses CPR, and a focus on training efficiency to enhance IoT device 
security by accurately identifying botnet assaults through a detailed understanding of network traffic behavior. 

The following structure of a paper is outlined; Section 2 provides related works. Section 3 presents methods and 
procedures for each major module. Section 4 presents evaluation results and performance analysis. Section 5 concludes 
the presented work. 
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II. RELATED WORKS 
IoT is an interconnected system of various devices, sensors, networks, and applications. It has several common security 
issues including insecure device configurations, lack of firmware updates, insufficient encryption, and inadequate access 
controls [11]. Addressing these challenges needs a holistic process that integrates technical solutions, industry standards, 
and user awareness. The increasing prevalence of anomalies and security breaches in IoT devices is a significant concern. 
Additionally, collaboration among stakeholders, industry-wide standards, and regulatory frameworks play a vital role in 
enhancing the complete security posture of the IoT ecosystem. This capability to seamlessly integrate the physical world 
with digital systems can lead to innovative and advanced information services that benefit individuals, businesses, and 
society at large. However, as the IoT infrastructure framework becomes more complex and interconnected, it also 
introduces challenges and vulnerabilities that are necessary to be sensibly solved for each layer as shown in Fig 1. 
 

 
 

Fig 1. Provision of Attacks in IoT. 
 

The intersection of IoT and ML has led to the development of numerous applications across diverse domains. While 
these innovations offer substantial benefits, they also introduce security challenges that need to be addressed to play a 
significant role in various aspects of communal life, prioritizing security is paramount to ensure a safe and trustworthy 
ecosystem. While ML offers significant advantages, it's essential to have a holistic approach to cybersecurity, including 
proper planning, implementation of best practices, and regular updates in enhancing security strategies for safeguarding 
IoT devices [12]. 
 
Feature Selection 
Feature selection is a context of developing a predictive model, specifically for classification tasks like IoT detection 
from network traffic data. It aims to choose the most relevant and significant features from the original set of features 
that contribute the most to the predictive performance of the model. Dimensionality Reduction can reduce the number of 
data dimensions by selecting only the most relevant features. It overcomes the computational costs associated with 
modeling high-dimensional data and can improve the overall performance of the model. Therefore, by focusing on more 
useful features, the model can improve the detention of the underlying data and increase prediction accuracy. This is 
particularly crucial in classification tasks where accurately identifying patterns is essential. In the specific case of 
network traffic data for IoT detection, irrelevant or redundant features may not contribute meaningfully to distinguishing 
IoT devices from other network activities. Removing such features through feature selection can enhance the model's 
ability to identify patterns associated with IoT devices. It involves selecting the most relevant and informative features 
from a data set, which can improve model performance, decrease overfitting, and improve interpretability. 

Nomm and Bahsi [13] presented a work on IoT botnet detection specifically mentioning their emphasis on feature 
selection using an unsupervised model. It proposes training a single model for all IoT devices instead of having dedicated 
models for each device, to achieve resource optimization. The proposed solution involves multiple methods of feature 
selection, including Hopkins statistics-based feature selection, entropy-based, and variance-based methods. It conducted 
sampling on the original unbalanced dataset to obtain a balanced dataset for analysis. SVM performed well on the 
unbalanced dataset, showing notable accuracy, in comparison to isolation forest with entropy-based feature selection, it 
outperformed other combinations of feature selection methods and models. 

In [14] author describes a process related to dimensionality reduction using autoencoder models. Using an 
autoencoder for dimensionality reduction allows the extraction of meaningful information from the input data in a lower-
dimensional space, facilitating tasks such as feature learning, data visualization, and noise reduction. Palmieri et al [15] 
propose an anomaly network detection using independent component analysis (ICA) in a distributed approach. 
Implementing ICA in the context of network anomaly detection can potentially enhance the ability to identify unusual 
patterns or deviations from normal behavior in the network. By separating independent components, this approach can 
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provide a better empathy of the fundamental structure of network data, contributing to the overall effectiveness of 
anomaly detection systems. 

 
CPR: Central Pivot Range 
Central Pivot Range (CPR) [16] describes a method related to financial markets and technical analysis, specifically the 
use of pivot points. Pivot points are commonly used in trading to identify potential support and resistance levels for a 
given asset. These points are calculated based on the high, low, and close (or mean) prices of the previous period. It is 
emphasized, and it likely plays a crucial role in determining potential support and resistance levels. The CPR might refer 
to a range around the Central Pivot Point that traders use to gauge the significance of price movements. Pivot points can 
be calculated using various methods, and traders often use them to make decisions about entering or exiting trades. They 
are considered a technical analysis tool and are used to identify key levels that might influence the price movement of an 
asset. 

CPR is a statistical calculation used in technical analysis, derived from the previous high, low, and close values. The 
three key levels in the CPR are the Central Pivot Point (CPP), Top Central Level (TCL), and Bottom Central Level 
(BCL). These are calculated using the Eq. (1), Eq. (2), and Eq. (3), 
 

 
_ _ _

3
High Val Low Val Close ValCPP + +

=   (1) 

 
 ( _ _ )TCL CPP High Val Low Val= + −   (2) 

 
 ( _ _ )BCL CPP High Val Low Val= − −   (3) 
 

The CPR is a technical calculation from the make-spans or volumes of previous data observations. It can help traders 
identify potential support and resistance levels for the upcoming data. It is a sequence containing TCL, CPP, and BCL in 
that order. However, variations in the CPR range develop based on the volume and operating range of the indicator 
observed in the past. 

 

 
 

Fig 2. Data Flow Diagram for pivotRanges( ) Function. 
 

To perform optimal feature selection (OFS) using CPR, we treat the set of found values for each indicator as a vector, 
fv, and call the method pivotRanges (fv), which receives the vector fv as a parameter and calculates two support (S) values 
and two resistance (R) values, which are used considered for feature selection. The data flow of the pivot calculation is 
shown in Fig 2.  Based on the calculated resistance and support values, optimal feature selection is performed to obtain 
higher support with lower resistance features. 
 
Ensemble Learning and Classification 
Ensemble Learning (EL) is an influential technique in ML that combines predictions from different models to create a 
more reliable and accurate prediction model. They are generally less sensitive to noise and outliers in the data. Outliers 
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can affect individual models disproportionately, but their impact is often reduced when combined with data from other 
models. This makes the ensemble more robust in the presence of noisy or outlying data points. The EL system around 
IDS refers to the process of merging several separate models to build a more robust, accurate, and reliable model for 
detecting and classifying network intrusions. This approach is widely recognized in the field for its ability to address the 
limitations of individual models while improving the overall performance of high-dimensional and dynamic data. 

In the context of botnet attack detection on IoT devices, using an ensemble approach can enhance accuracy and 
resilience. It can achieve high accuracy, a low false positive rate, and resilience against adversarial attacks, surpassing the 
limitations of earlier methods in the field. 

Ibrahim et al. [17] proposed an ML-based approach using a multilayer perceptron for botnet detection. The key focus 
of their framework is to overcome the limitations of traditional signature-based analysis, specifically in detecting unseen 
botnets that can evade such methods. The framework introduced is comprised of two main modules: filtering and 
classification. These modules utilize ML algorithms to accomplish the task of botnet detection. The filtering module 
likely preprocesses the data or extracts relevant features to improve the outcome of the subsequent classification module. 
The classification module, based on a multilayer perceptron, is designed to identify the attack command of the botnet and 
subsequently take control of the server. This suggests that the system not only detects the presence of a botnet but also 
aims to mitigate its impact by understanding and responding to the attack commands. It shows an enhanced accuracy of 
up to 92% and a low false-negative value of 1.5% suggesting the effectiveness of the framework in detecting botnet 
activities. 

Alkahtani et al. [18] focus on detecting BoA in IoT applications utilizing a hybrid learning approach based on 
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) for improved accuracy in detecting botnet 
attacks. It effectively classifies both benign and malicious patterns evaluating the N-BaIoT dataset. It specifically focuses 
on predicting the BoA from doorbell devices and thermostat devices. The experimental results indicate the efficiency of 
the CNN-LSTM model in predicting BoA with accuracy rates for doorbell devices reported as 90.88% and 88.61%, 
while thermostat devices achieve an accuracy rate of 88.53%. 

Leevy et al. [19] focused on evaluating ensemble feature selection techniques (FSTs) in the context of classification 
performance for specific attack instances. It utilized a combination of EL (RF, XGBoost, Light GBM, CatBoost), non-EL 
(DT, LR, NB), and MLP (multi-layer perceptron). It suggests that ensemble FSTs may not directly impact classification 
performance but they prove beneficial due to other factors. Specifically, the ensemble FSTs were observed to offer 
advantages in terms of feature reduction, which can ease the computational burden. The combination of multiple FSTs in 
an ensemble, comprising both ensemble and non-ensemble learners, does not necessarily enhance classification 
performance directly. However, the benefits lie in the reduction of features, leading to a lighter computational load and 
improved data visualization, which can be valuable for understanding the dataset and gaining insights. 

Al-Haija et al. [20] present an EL model designed for detecting BoA in IoT networks known as “ELBA-IoT”. The 
model focuses on behavioral characteristics specific to IoT networks and uses EL to recognize anomalous network traffic 
originating from negotiated IoT devices. It also evaluates the performance of three different ML techniques falling under 
decision tree methods. The experimentation utilizes the N-BaIoT2021 dataset, and according to the results analysis, there 
is an observed improvement in detection accuracy, reaching approximately 99.6%. 

Rezaei [21] proposed a technique for the prediction of BoA in IoT utilizing the EL technique termed ELT-DB. It 
aimed to improve accuracy in botnet detection on IoT devices while minimizing the number of features required. It 
combines supervised, unsupervised, and regression approaches to learn botnet features to optimize accuracy and reduce 
the number of features needed for detection. The strengths of the ML technique were leveraged in forming the ensemble, 
but the union of selected features might lead to overlooking redundancy and irrelevance. This could potentially result in a 
larger feature set, which may have implications for efficiency and interpretability. This work result achieves a high 
accuracy rate of around 99% for botnet detection on IoT devices through the use of several tuning learning data features. 
It should be noted that although high accuracy is a positive result, the possibility of a larger set of features due to 
association work must be considered. 

Shafiq et al. [22] propose a new framework model for malicious bot-IoT traffic detection employing a feature 
selection metric based on CorrAUC in combination with TOPSIS and Shannon entropy for evaluating the chosen feature 
sets. The CorrAUC effectively filters features and selects output features for the selected ML algorithm by measuring the 
area under curvature (AUC). Analysis of results showed that the proposed method was effective and the average 
accuracy was more than 96%. The method relies on random entropy, which makes probabilistic decisions to determine 
feature accuracy. The use of the AUROC curve adapts to select an ML algorithm, emphasizing the need for highly 
accurate features and the models verified on datasets with defined features, demonstrating high sensitivity and 
specificity. However, decision accuracy in real-time scenarios suggests potential challenges in practical applications. 

The IoT-Botnet database focuses on detecting attacks on IoT networks by selecting EL-based features and developing 
classifiers to detect malicious traffic in IoT networks [23]. Studying the effect of ensemble classifiers on the performance 
of different attack classes highlights the importance of optimal feature selection to improve efficiency compared to 
individual selection methods. In the next section, we discuss the feature selection process and its effect on prediction, an 
important aspect of ML, especially in intrusion detection and security in IoT networks. It includes the discussion of the 
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optimal feature selection process along with the Ensemble Classifiers and their effect on model performance with 
consideration of various attack classes. 
 

III. PROPOSED METHODOLOGY 
The proposed ECBoA-OFS is designed for processing and classifying traffic in an IoT network, specifically focusing on 
botnets for normal and malicious behaviors. The OFS Module is responsible for selecting the most relevant features from 
the input dataset (N-BaIoT 2021 dataset). Feature selection reduces dimensionality and improves the efficiency and 
effectiveness of the model. It includes using EL techniques to improve overall performance and generalization 
capabilities through a sequential process of processing and predicting selected features. 
 
Optimal Features Selection (OFS) 
N-BaloT2021 dataset [10] is associated with a large number (611,359 samples) of features for training a classifier to 
detect anomalous network behavior, specifically related to IoT botnet attacks. It dataset contains both normal and botnet 
traffic samples, with the botnet traffic further categorized into Bashlite (4737 samples) and Mirai (3000 samples) attacks. 
It major concern is that having a large number of features for training the classifier might lead to process complexity, 
weak conditions for botnet detection, and potentially result in false alarms. In the general observation in supervised 
learning having more than 50 features may lead to overfitting, and it is important to find a balance between having 
enough features for accurate classification and avoiding underfitting. To address these concerns and optimize the 
classification process, we propose arranging the extracted features from the dataset in a two-dimensional matrix format, 
where each column represents the values obtained for each feature in the form of a malicious or benign class. This 
behavior is common in ML, where every record resembles a sample of data and every column resembles a feature. It's 
essential to carefully select relevant features and potentially employ feature selection techniques to reduce dimensionality 
and improve the efficiency of the classifier to overcome the challenges in botnet detection by optimizing feature 
selection. 
 
Features Selection 
The feature selection process for identifying optimal botnet features using a diversity assessment measure by using the 
Wilcoxon rank-sum test (WRST) [24] method. It works on the values of each feature, treating them as two vectors 
corresponding to the attack, and benign labels are represented as two vectors ,a bfv fv .  

The WRST which is a non-parametric test used to compare two independent samples with a two-sided test has been 
performed, indicating an interest in differences between populations without specifying a particular direction. When a 
one-tailed test is employed it will show a clear direction of interest, as True or false changes in one inhabitant relative to 
another. The selection of a one-tailed or two-tailed test relies on the exploration demand and the way of the anticipated 
results. The testing process involves combining observations of two data into a single data and noting to which sample 
each reflection belongs. It allows the comparison of distributions without making assumptions about the underlying 
population distribution. Then, the identified samples are sorted in ascending order from 1 to 1 2n n+ , and selects the top 
20 features from the 204 identified features from the sample, as listed in Table 1. 
 

Table 1. Features Selected using WSRT 
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Optimization of Features 
A feature selection process using the correlation coefficient value (CCV) between botnet features and traffic flow 
features is described here. This approach is commonly used in ML to recognize the highest relevant features that add 
positively to the model's results, particularly in the environment of identifying and dealing with botnet activities in 
network traffic. The selection of features depends on their association with the destination response, specifically using 
the Pearson correlation coefficient (PCC) [25]. Features that are positively correlated with the target are selected for 
inclusion in the model. Positive correlation specifies that as the significance of a feature increases, the target response 
value also tends to increase and a negative impact on the model's performance is avoided. A negative correlation suggests 
that as the value of a feature increases, the target variable's value tends to decrease. PCC calculates the strength and way 
of the linear association among every feature and the destination variable using Eq. (4). So, using the CVV for feature 
selection can help reduce processing overhead and ensure that only relevant features are measured. 
 

 

cov( , )( , )
X Y

X YX Yρ
σ σ

=
⋅

 (4) 

where, 
1

1cov( , ) ( ( ))( ( ))
N

i
X Y X mean x Y mean y

N =

= − −∑  

 
Here, the Pearson correlation coefficient ( , )X Yρ is calculated cov(X, Y) (covariance) divided by X Yσ σ⋅  (standard 

deviations), The range of value lies between -1 and 1. A positive result specifies a positive association, a negative result 
specifies a negative association and a value of 0 specifies no linear association. The association between traffic and 
botnet features is used to select standard botnet features among the selected best botnet features to train the classifier, as 
shown in Table 2. 

The process of estimating the scope and impact of botnet attacks using certain optimal features, as well as calculating 
confidence scores for each botnet feature in a given unlabelled record to do botnet detection. For each unlabelled traffic 
flow record, extract and analyze the relevant features to estimate the scope of botnet attacks based on traffic flow 
features. Based on the values derived from both traffic flow features and botnet features, categorize the scope of botnet 
attacks into four classes: "severe", "moderate", "mild" and "benign". Table 3 defines the conditions for each class based 
on the severity of the attack as reflected in the features. 
 

Table 2. Optimal Features Selected Between Traffic Flow and Botnet Features 

 
 

Table 3. Class Label and Their Impact Condition 
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ECBoA-OFS Classification 
A classification methodology called "ECBoA-OFS" is proposed for botnet attack detection on a benchmark dataset that 
contains examples of botnet attacks. The benchmark dataset is divided into two portions through a dataset-splitting 
process. One portion is used for training the classification model and the other portion is used for testing the model. The 
ensemble approach of the methodology combines three different classification algorithms, RF (Random Forest, AB 
(AdaBoost), and KNN (K-Nearest Neighbors). The combination of these algorithms is referred to as the "RAK 
technique”. This technique utilizes fully optimized features, specifically selected from traffic flow features and botnet 
features to achieve efficient botnet attack detection results. Fig 3 illustrates the proposed ECBoA-OFS Classification 
methodology. It likely provides a graphical representation of the workflow or components of the proposed approach. 
 

 
 

Fig 3. Methodology for Botnet Attack Detection using RAK Technique. 
Data Splitting 
Splitting data into training and test sets is a general process in ML to evaluate a model's performance and generalization 
ability. The 80:20 splitting ratio is chosen for the splitting, but the specific ratio can fluctuate depending on the size of the 
dataset and the kind of research problem. This helps identify biases that can occur when a model performs well on 
training data but fails to generalize to new observable data. Assessing the model on a distinct test set allows for 
determining whether it has learned specific outlines in the training data or can create accurate detections for unidentified 
cases. 
 
Ensemble Learning Methods 
RF (Random Forest) 
RF is a recognized ML algorithm that leverages the concept of EL to combine multiple models to increase prediction 
accuracy [26, 27]. The algorithm generates several DTs, each trained on a subset of arbitrary data and features which 
helps in reducing overfitting. The results from distinct DTs are aggregated to create an ultimate detection. For 
classification tasks, this might involve a majority vote, while for regression tasks, it could be an average. It is known to 
be simpler, less prone to overfitting compared to individual DT, and capable of handling high-dimensional datasets with 
various features. Each DT in RF is prepared with different training data sets and arbitrary feature collections. These 
differences help improve the robustness and accuracy of the overall model. The assessment rules and result possibilities 
for individual DTs as well as the ensemble of the RF. 

The RF consists of a set of n DT. Each DT is trained on a features subset (Fi ) and training data (Di.). The branches, 
Bi. j represents prospective results or predictions. Every node j in a DT i represents a selection or coincidental occurrence 
based on the training data Di, j. Branches Bi.j.k lead to sub-node l and have a possibility of happening pi, j, k. The 
collection of branches Bi.j.k can stand for potential outcomes or their probabilities. Conditional possibility or combined 
probability is used to describe the probability of each event taking into account legal rules and precedents. RF improves 
overall performance and flexibility by combining information from multiple decision trees. The final number has always 
been obtained by adding the numbers for all trees. 

RF is an EL method that works by building multiple DTs during training and extracting the prediction method or 
average of the individual trees. Each tree in the set provides a prediction, and the summation process determines the final 
prediction or estimate. They are known for capturing complex relationships in data, reducing overfitting, and providing 
robust and accurate predictions. Due to their efficiency and flexibility, they are widely used in various ML tasks, 
including classification and regression. 
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AdaBoost (AB) 
AdaBoost is a standard EL method implemented for both regression and classification tasks in ML. It stands for Adaptive 
Boosting, and it belongs to the family of boosting algorithms. The algorithm starts by assigning equal weights to all the 
training instances. A weak classifier (often a decision tree with limited depth) is trained on the data. It focuses on getting 
the correct classification for the instances that were misclassified in the previous rounds. The performance of the weak 
classifier is evaluated, and instances that were misclassified receive higher weights. The weight of each bad rater’s 
decision is determined by its accuracy and its event values are updated according to true or false classification. 
Misclassified events receive more weight so that they can be given more importance in the next round. Repeat the 
previous 2 steps for a determined number of cycles or until the specified level of accuracy is reached. The final model is 
a mixture of weights for all dynamic classes, where the weights are determined by their performance in the training 
process. It is famous for its ability to improve the accuracy of weak learners and create reliable and accurate models. It 
tends to extremes and extremes. However, it is sensitive to noisy data and outliers. 

The algorithm iteratively allocates weights to events in the training data, focusing more on instances that are 
misclassified by the current set of weak classifiers. Let T= {t1, t2, . . , tn } represent the training dataset with n instances. 
Each instance ti  is accompanied by a class ci. Let W= {w1, w2, . . , wT } is a set of weak classifiers. Each weak classifier 
wt takes an event t as input and outputs a binary detection w(t) ∈ {−1, 1}. Let Dt = {dt,1, dt,2, …, dt,n } represent the weight 
sharing over the training data at repetition x. Each dt,i is the weight allocated to events i at repetition x. The weights are 
adjusted in all analyses based on the number of samples that were misclassified in the first analysis. It aims to improve 
the overall performance by giving more emphasis to instances that are challenging to classify, making it particularly 
effective in situations with noisy or complex data. 
 
K-Neighbors classifier (KNN) 
The KNN algorithm is a common learning algorithm used in ML classification tasks [28]. It involves finding the k-
nearest neighbors of a new record and assigning a class to a new group based on the number of neighboring classes. The 
KNN algorithm is modest and effective and is often placed in the base model for assessment with more difficult 
algorithms. However, KNN has some limitations. This means that performance can deteriorate as the number of features 
or dimensions in data increases due to the curse of size. In addition, KNN can be computationally costly, particularly for 
big data sets, because it has to calculate the difference between a new and all current data points. 

Let X be the feature space, xi  be a data point in X, and Y be the corresponding output variable (class label). The KNN 
algorithm expects the class label for a fresh data point x by considering the majority class among its k- k-nearest 
neighbors. The distance between two instances, xi, and xj , in a dataset, can be calculated by implementing several 
distance factors such as “Euclidean Distance”, “Manhattan Distance (L1 Norm)” and “Minkowski Distance”. The 
estimate for the new data point x is determined by a state vote. KNN is a non-parametric delayed learning algorithm 
utilized for both classification and detection tasks. 

Ensemble models have proven to be highly effective in various domains, including network attack detection. The 
concept of EL contains merging several models to build a stronger and additional reliable predictive model than any 
individual model. This approach is particularly beneficial in the context of network security, where the accuracy and 
robustness of attack detection systems are of utmost importance. Their ability to leverage diverse models, reduce 
overfitting, improve accuracy, and provide robustness makes them a valuable approach in the ever-evolving landscape of 
cybersecurity. 
 

IV. EXPERIMENT EVALUATION 
The N-BaIoT dataset [10] is chosen for experiment evaluation due to its relevance to the focus on IoT security. Since it is 
set from an IoT context, it aligns well with the research objectives. The dataset contains inserted malicious traffic related 
to BoA. This inclusion allows for a realistic evaluation of the particular ML algorithms in identifying and qualifying 
BoA, which is crucial for assessing their effectiveness. The presence of injected botnet attacks in the dataset creates a 
realistic scenario for evaluation. This characteristic simplifies the assessment of the proposed ECBoA-OFS results with 
state-of-the-art works, providing a standardized basis for evaluating their effectiveness. 
 
Evaluation Measures 
The evaluation for the ECBoA-OFS model is performed using standard evaluation measures [29] over k-fold datasets to 
obtain a comprehensive understanding of its performance across different impact class variants. The evaluation metrics 
—Precision, Sensitivity, Specificity, Accuracy, and F1-Score are utilized to assess the classification outcomes of a model 
[30]. The confusion matrix table summarizes the model's predictions as given in Fig 4. 
 
Result Analysis 
A comparative analysis with different ensemble models such as ELBA-IoT [20], ELT-DB [21], and CorrAUC [22] 
against the proposed model ECBoA-OFS is performed. The evaluation is based on 4-Folds Cross Validation, and the 
classes being considered are “Severe”, “Moderate”, “Mild”, and “Benign”. The 4-Folds Cross Validation divides the 
dataset into four subsets or folds. The model was developed for 4-folds and tested on the remaining data. This method is 
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iterated four times, each time using a diverse test set. Evaluation criteria are then calculated based on these cross-
validation results. 
 

 
 

Fig 4. Evaluation Metrics and Measures. 
 
Precision Comparison Analysis 
 

  
(a) Severe (b) Moderate 

  
(c) Mild (d) Benign 

 
Fig 5. Precision Comparison Analysis for Different Attack Class. 
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Fig 5 illustrates precision comparison analysis with four impact classes. Precision is the ratio of TP calculations to the 
total number of True detections identified by the model, and it assesses the accuracy of True detections. The comparison 
analysis shows ECBoA-OFS performs better compared to other cases across the four impact classes. Precision values are 
likely higher for ECBoA-OFS in each impact class. Table 4 provides a comprehensive comparison of the average 
performance for each impact class. These metrics or values summarize the model's overall performance across the 
different impact classes. 
 

Table 4. Average Precision Result Comparison 
Class ELT-DB [21] CorrAUC [22] ELBA-IoT [20] prop. ECBoA-OFS 
Severe 0.927 0.915 0.990 0.996 
Moderate 0.866 0.800 0.981 0.992 
Mild 0.924 0.989 0.997 0.924 
Benign 0.739 0.739 0.933 0.986 

 
The performance of precision metrics of the proposed method ECBoA-OFS has shown improvement in comparison to 

others, reaching a highest value of 0.996% with severe class prediction and a lowest value of 0.924% with mild class 
prediction. Generally, a higher precision value specifies a lower rate of FP, which significance the model predicts is more 
likely to be true. 
 
Sensitivity Comparison Analysis 
 

  
(a) Severe (b) Moderate 

  
(c) Mild (d) Benign 

 
Fig 6. Sensitivity Comparison Analysis for Different Attack Class. 

 
Fig 6 depicts a sensitivity comparison analysis with four impact classes. Sensitivity (recall) or TP rate, is a measure 

that assesses the model's capability to predict all True instances. It indicates how well the model identifies instances in 
each of the four impact classes. The proposed ECBoA-OFS demonstrates better results across all four impact classes 
compared to other cases. This suggests that ECBoA-OFS has a higher true positive rate or recall for positive instances in 
each class. Table 5 will provide an average performance comparison for every class and present a further comprehensive 
view of the model's outcome through the diverse impact classes. 
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Table 5. Average Sensitivity Result Comparison 
Class ELT-DB [21] CorrAUC [22] ELBA-IoT [20] prop. ECBoA-OFS 
Severe 0.875 0.860 0.974 0.993 
Moderate 0.865 0.856 0.961 0.988 
Mild 0.879 0.866 0.976 0.992 
Benign 0.871 0.866 0.955 0.979 

 
Sensitivity computes the capability of a model to suitably recognize true instances concerning the traffic sample 

tested. The proposed ECBoA-OFS shows a high sensitivity score, which indicates the model's efficiency in predicting 
instances of severe predictions, even though it may result in a few false positives. A high sensitivity score with the 
highest 0.993% and lowest 0.979% suggests the model is capturing a significant portion of the positive instances for all 
class predictions. It describes "better efficiency in predicting negative results" which states the potential of the classifier 
performing well in identifying instances where there are no intrusions (benign). The lowest score of 0.979% for benign 
predictions shows the model is slightly less sensitive to benign instances but still maintains a reasonably high level of 
accuracy. 
 
Specificity Comparison Analysis 
 

  
(a) Severe (b) Moderate 

  
(c) Mild (d) Benign 

 
Fig 7. Specificity Comparison Analysis for Different Attack Class. 

 
Fig 7 illustrates a specificity comparison analysis with four impact classes. Specificity is defined as the ratio of TN 

predictions to the total number of complete negative instances. It essentially computes the model's capability to correctly 
recognize negative instances. The results indicate that in all four impact classes, the proposed ECBoA-OFS demonstrates 
better specificity compared to other cases. A comparison analysis of the average performance for each class is given in 
Table 6.  

The specificity metrics and the performance of the proposed ECBoA-OFS for predicting negative results are given in 
Table 6. It measures the classifier's ability to properly detect TN out of complete negatives. The proposed ECBoA-OFS 
demonstrates better efficiency in predicting negative results and provides the highest specificity values of 99.0% for mild 
and the lowest specificity of 98.2% for benign. It suggests the effectiveness of correctly identifying negative results, and 
it is desirable to have high specificity for avoiding false positives (incorrectly predicting a positive result). 
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Table 6. Average Specificity Result Comparison 

Class ELT-DB [21] CorrAUC [22] ELBA-IoT [20] prop. ECBoA-OFS 
Severe 88.5 87.8 96.1 98.7 
Moderate 88.3 87.9 96.6 98.4 
Mild 88.2 88.0 96.4 99.0 
Benign 87.6 87.3 96.3 98.2 

 
Accuracy Comparison Analysis 
Fig 8 represents a graphical comparison of accuracy across the four impact classes. The accuracy metric is used to 
evaluate the complete accuracy of a model's detections. In comparing the accuracy of different models the proposed 
ECBoA-OFS shows better results in the context of four impact classes. Table 7 provides the average accuracy of the 
model's performance for each impact class. 
 

  
(a) Severe (b) Moderate 

  
(c) Mild (d) Benign 

 
Fig 8. Accuracy Comparison Analysis for Different Attack Class. 

 
Table 7. Average Accuracy Result Comparison 

Class ELT-DB [21] CorrAUC [22] ELBA-IoT [20] prop. ECBoA-OFS 
Severe 87.1 86.5 97.5 99.7 
Moderate 86.8 86.5 96.1 98.5 
Mild 88.1 86.4 96.9 98.7 
Benign 87.8 88.1 96.6 99.8 

 
The accuracy of system attack detection measures the overall correctness of the identified samples of traffic. It 

signifies the ratio of accurately identified testers to the complete number of identified test data. It suggests that the 
proposed ECBoA-OFS has a high accuracy (close to 99.8%) in identifying benign traffic and a slightly lower accuracy 
(98.5%) in identifying moderate traffic. The accuracy values indicate how well the model performs in correctly 
identifying different types of traffic. The ECBoA-OFS method seems to be quite effective, especially in identifying 
benign traffic, and a slightly lower accuracy rate for other classes but still maintains a reasonable level of accuracy. 
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F-1 Score Comparison Analysis 
Fig 9 presents a comparison analysis of F1-Scores for 4 impact classes. The F1-Score is a measure that utilizes precision 
and sensitivity for computation to consider a balanced assessment of a model's outcomes, especially in binary 
classification problems. The proposed ECBoA-OFS exhibits better results across all four impact classes compared to 
other approaches. This suggests that ECBoA-OFS achieves a better balance between precision and recall for the class 
prediction. Table 8 provides the average performance for each impact class for a more granular understanding of how 
well the model performs across different categories in the environment of intrusion predictions. 
 

  
(a) Severe (b) Moderate 

  
(c) Mild (d) Benign 

 
Fig 9. F1-Score Comparison Analysis for Different Attack Class. 

 
Table 8. Average F1-Score Result Comparison 

Class ELT-DB [21] CorrAUC [22] ELBA-IoT [20] prop. ECBoA-OFS 
Severe 0.900 0.887 0.982 0.994 
Moderate 0.865 0.825 0.971 0.990 
Mild 0.907 0.894 0.983 0.995 
Benign 0.800 0.797 0.943 0.982 

 
The performance comparison of F1-Score between existing and proposed ECBoA-OFS models considers both 

precision and recall, making it useful for assessing a model's ability to balance true positive detections and minimize 
false positives. The comparison is conducted using a 4-fold cross-validation approach. The proposed ECBoA-OFS model 
achieved a maximal F1-Score of 0.995% with mild attacks and a lowest score of 0.982% with benign instances.  A high 
F1 score (such as 0.995%) suggests that the ECBoA-OFS model is effective in detecting intrusions while keeping false 
alarms to a minimum. The results indicate that the ECBoA-OFS model performs well in intrusion detection, achieving 
high F1-Scores across different attack classes. 
 

V. CONCLUSION 
This paper presents an ensemble classification model named ECBoA-OFS, designed to enhance the prediction of botnet 
attacks. The key focus is on feature selection, utilizing fully optimized features from both traffic flow and botnet features. 
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A CPR technique is applied to build the most optimal feature selection. The ECBoA-OFS classification methodology 
aims to improve botnet attack detection by employing an ensemble approach that combines RF, AdaBoost, and KNN 
algorithms. The N-BaIoT-2021 dataset is utilized as a benchmark to evaluate the outcomes of the proposed ECBoA-OFS 
model in comparison to existing works. Data is split into training and testing for evaluation. The outcomes specify that 
the ECBoA-OFS attains impressive result scores, with an average precision of 99.6%, sensitivity of 99.3%, specificity of 
99.0%, accuracy of 99.8%, and F1 score of 99.5%. Furthermore, the use of optimized feature selection and k-fold cross-
validation is highlighted to validate the results of the ECBoA-OFS model. The comparison analysis suggests that the 
ECBoA-OFS outperforms state-of-the-art studies in terms of botnet attack prediction, emphasizing the significance of 
ensemble methods and feature optimization in enhancing the correctness and reliability of detection systems. In feature, it 
can advance models that can quickly adapt to new feature selections with minimal data by leveraging meta-learning 
techniques to adaptively balance training data based on real-time feedback during model training to different classes or 
instances. 
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