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Abstract – Alzheimer's disease (AD), is a gradual cognitive decline and memory impairment. It is a major health concern 
worldwide. Despite intensive research efforts, accurate and early diagnosis remains difficult to achieve, largely due to the 
complexity of AD pathology and the absence of definitive biomarkers. Existing diagnostic approaches often rely on costly 
and invasive procedures, leading to delays in diagnosis and treatment initiation, and limiting the effectiveness of therapeutic 
interventions. To overcome these issues, this work suggests a novel approach for AD classification using EEG signals. 
EEG signals offer a non-invasive and cost-effective means of assessing brain activity, making them an attractive candidate 
for biomarker discovery and disease classification. The proposed work integrates preprocessing, feature extraction, and 
classification methodologies to accurately differentiate between AD, normal/healthy states, and Frontotemporal Dementia 
(FTD). The proposed solution begins with Sequential Savitzky-Golay filtering (SEQ-SG) to enhance the quality of EEG 
signals by reducing noise and enhancing relevant features. Subsequently, an Improved Principal Component Analysis 
(IPCA) approach is employed for feature extraction, incorporating feature scaling using StandardScaler to ensure uniform 
contribution from all features. Finally, classification is achieved using a hybrid approach named HMLCAD (Hybridization 
of Machine Learning for Classification of Alzheimer's Disease), which combines Random Forest and Gradient Boosting 
through a voting classifier ensemble. This methodology offers a promising framework for accurate and early detection of 
AD, enabling timely intervention and improved patient outcomes. 
 
Keywords – Alzheimer's Disease, Hybrid Model, HMLCAD, SEQ-SG. Machine Learning, Mild Cognitive Impairment, 
Fronto Temporal Dementia. 
 

I. INTRODUCTION 
A long-term neurological disorder that damages the brain is identified as Alzheimer's disease (AD) [1]. In elderly people, 
Alzheimer's disease (AD) is a neurodegenerative disease that affects people more frequently [2]. Consequently, it is 
exceedingly challenging to identify AD in its initial stages with accuracy [3, 4], and clever strategies are required to assist 
medical professionals in the individualized diagnosis of this disease [5]. The urgency for timely and precise AD diagnosis 
cannot be overstated, as it is paramount for implementing effective management and intervention strategies. Among the 
various diagnostic modalities, Electroencephalography (EEG) has emerged as an essential tool for AD assessment, offering 
non-invasive access to brain activity and cognitive states [5]. 

Despite its promise, the analysis of EEG data for AD classification poses significant challenges. EEG signals exhibit a 
high degree of complexity, reflecting intricate neural dynamics and cognitive processes. Deciphering these signals 
necessitates sophisticated analytical methods and robust classification algorithms capable of distinguishing subtle 
differences associated with AD pathology. Moreover, EEG data are often contaminated with noise from various sources, 
further complicating the analysis and necessitating preprocessing steps to enhance signal quality [6].  

In this context, the development of advanced classification algorithms tailored for EEG-based AD diagnosis becomes 
imperative. These algorithms should be capable of extracting relevant features from EEG signals, discerning distinctive 
patterns indicative of AD, and discriminating between different cognitive states with high accuracy [7]. Furthermore, they 
should be robust to variations in EEG data and capable of generalizing well to unseen samples. 
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Addressing these challenges requires a multidisciplinary approach that leverages insights from neuroscience, signal 
processing, and machine learning. By integrating domain knowledge with cutting-edge methodologies, researchers aim to 
develop innovative algorithms capable of unraveling the complexities of EEG data and advancing the frontier of AD 
diagnosis. Such advancements hold the promise of revolutionizing clinical practice, enabling earlier detection of AD, 
facilitating personalized treatment approaches, and ultimately improving outcomes for individuals affected by this 
debilitating condition.  

This work presents a unique technique for EEG-based classification of cognitive states, including AD, FTD, and 
normal/healthy states is proposed. Leveraging advanced machine learning technique ensemble methods includes Random 
Forest (RF) Gradient Boosting (GB) aims for the accuracy improvement of AD. Building upon existing algorithms known 
for their efficacy in handling high-dimensional data and improving classification performance, the effective proposed 
methodology is demonstrated through experimental validation using real-world EEG datasets.  

The paper is structured into several sections. Section II provides a review of related works, discussing prior research 
and methodologies in the field of EEG-based classification for cognitive states, including Alzheimer's disease. Section III 
elaborates on the proposed method, outlining the steps involved in preprocessing EEG data, extracting relevant features, 
and utilizing advanced machine-learning techniques for classification. In Section IV, the paper presents the results and 
discussion of the findings, including experimental validation and performance evaluation of the proposed methodology. In 
the last Section V offers the conclusion, summarizing the key findings of the study and highlighting upcoming pathways 
for research in EEG-based classification for cognitive states. 

 
II. RELATED WORKS 

Several approaches for predicting Alzheimer's disease (AD) by using electroencephalogram (EEG) signals have emerged 
in the last few decades. Many comprehensive review papers have provided light on this issue, and multiple studies 
addressing this field of research are mentioned in the research papers.  For instance, Roy et al [8] showed an extensive 
review, providing insights into the diverse methodologies and advancements in EEG-based AD prediction. Similarly, 
Merlin Praveena et al. [9] offered a comprehensive overview of the existing literature, summarizing the key findings and 
methodologies employed in EEG-based AD prediction studies.  

These review papers serve as valuable resources, synthesizing the collective knowledge and highlighting the 
advancements made in the field. Their systematic analyses and evaluations provide researchers and practitioners with a 
significant view into the current study to identify potential avenues for future exploration. EEG signal-based disease 
prediction and traditional machine-learning techniques are extensively used, particularly in the field of AD. Neto et al. [10]  
conducted a study for extracting features from EEG data, encompassing both frequency and time domains, which were 
utilized to identify AD and normal control (NC) by applying Support Vector Machine (SVM) with 67% accuracy, the 
trained model differentiates AD and NC groups, underscoring the potential of EEG-based features for disease classification. 

Trambaiolli et al. [11] identified the important frequency bands for model training using the frequency waves for AD 
disease. Their research highlighted the significance of theta and alpha waves in connection to AD. By incorporating these 
relevant frequency bands into an SVM model and subjecting them to iterative training, the accuracy of AD classification 
significantly improved, achieving a notable accuracy rate of 71.18%.  

This study shows the importance of selecting appropriate frequency bands to maximize classifier performance in 
identifying AD and NC patients. Kashefpoor et al. [12] investigated the pathological association between normal control 
(NC) subjects Using EEG data and the correlation modeling technique, persons suffering from frontotemporal dementia 
(FTD) were able to determine which signal had the highest level of correlation. This EEG signal was then used as input for 
a continuous Neuro-Fuzzy k-nearest Neighbor Classifier training process. 58.89% accuracy of FTD prediction on the test 
dataset was much improved by this method. 

Rallabandi et al. [13] designed a machine learning algorithm to classify into four categories according to their cognitive 
status: late mild cognitive impairment, Alzheimer's disease, early mild cognitive impairment, and normal aging. Their 
approach utilized MRI images as input to classify these MCI classes. Employing a Support Vector Machine (SVM) 75% 
accuracy, 77% specificity, and 75% sensitivity is attained. However, a notable limitation of their model is the extended 
time required for disease progression analysis from one stage to another. 

 Kashefpoor et al. [14] presented a novel approach called Correlation-based label-consistent K-SVD (CLC-KSVD) 
applied to identify Mild Cognitive Impairment (MCI) using electroencephalography (EEG) data. Their approach, 
leveraging the MRI dataset, aimed to identify discriminative features (sparse coefficients) from EEG time series and 
spectral features. With this method, they achieved an accuracy of 88.9%. It is noted that the created approach is limited to 
identifying between the two mentioned groups, which limits its value to more general categorization tasks. While 
significant strides have been made in leveraging machine learning techniques to extract AD-related signals from EEG data, 
Recognizing the dependence on complex pre-processing techniques is essential. This dependence poses a serious challenge 
to accurate and flexible environmental screening for AD in the initial stages of its development. Table 1 shows Accuracy 
of Related Words. 
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Table 1. Accuracy of Related Words 
Author Methodology Key findings Accuracy 

A. Miltiadous et 
al. [15] 

Resting-state EEG 
dataset 

Provided detailed description of EEG dataset for 
individuals with AD and frontotemporal dementia, aiding 
in further research. 

73% 

Pirrone, et al 
[16] DT, SVM, KNN  a novel, easy technique that uses a finite response filter 

(FIR) to efficiently extract features  70-97% 

G. Biagetti et al. 
[17] 

Robust-principal 
component 

analysis (R-PCA) 

Effective extraction of features for classification of AD 
from EEG signals. 93.18% 

W. Xia et al. 
[18[ EEG classification Novel approach improves diagnosis accuracy of AD and 

MCI using EEG. 97.10% 

Hülya AKKAŞ 
et al [19] 

Analysis of 
publicly available 

EEG data 

AD patients and healthy individuals were analyzed by 
using EEG signals for diagnostic purposes. 100% 

 
III. PROPOSED METHODOLOGY 

The proposed methodology aims to classify EEG signals into distinct categories representing, Alzheimer’s disease (AD), 
normal/healthy states, and Frontotemporal Dementia (FTD) and. Fig 1 describes the overall proposed flow of the process. 
 

 
Fig 1. Overall Proposed Methodology for Alzheimer's Disease Classification. 

 
Initially, EEG datasets are collected from diverse subjects to ensure representative samples. Following data collection, 

Sequential Savitzky-Golay filtering (SEQ-SG) is applied to preprocess the EEG signals. SEQ-SG filtering effectively 
enhances signal quality by reducing noise and smoothing the data, ensuring that subsequent analysis is conducted on clean 
and reliable signals. Feature extraction is then performed using an Improved Principal Component Analysis (IPCA) 
technique, which includes feature scaling using StandardScaler to normalize the data and ensure consistent feature 
contributions. PCA aids in reducing the dimensionality of the dataset while retaining crucial information, facilitating 
efficient feature extraction. Finally, classification is conducted using a hybrid approach known as HMLCAD 
(Hybridization of Machine Learning for Classification of Alzheimer's Disease). HMLCAD combines Random Forest and 
Gradient Boosting through a voting classifier ensemble, leveraging the strengths of both models for accurate classification. 
This comprehensive methodology integrates preprocessing, feature extraction, and classification techniques to provide a 
robust framework for EEG-based cognitive disorder classification. 
 
Preprocessing 
Sequential Savitzky-Golay filtering (SEQ-SG) [20] is a widely used technique in EEG signal processing for noise reduction 
and smoothing. This method applies a moving polynomial regression to the data, effectively reducing high-frequency noise 
while preserving important signal features. To implement SEQ-SG filtering on EEG signals, the following steps are 
typically followed: 
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Window Selection 
Determine the window length and polynomial order for the filtering process. The window length specifies the number of 
data points over which the polynomial regression is applied, while the polynomial order defines the degree of the 
polynomial used in the regression. 
 
Data Segmentation 
Divide the EEG signal into overlapping segments of appropriate length. Overlapping segments help maintain continuity in 
the filtered signal and ensure that no information is lost during the filtering process. 
 
Savitzky-Golay Filtering 
Apply the Savitzky-Golay filter sequentially to each segment of the EEG signal. The filter performs a polynomial 
regression on each segment, effectively smoothing out noise and artifacts while retaining important signal features. 
 
Overlap-Add Method 
Combine the filtered segments using the overlap-add method to reconstruct the complete filtered EEG signal. This method 
ensures smooth transitions between segments and preserves the temporal structure of the original signal. 

By applying Sequential Savitzky-Golay filtering to EEG signals, high-frequency noise, and artifacts are effectively 
removed, resulting in a cleaner and smoother signal for subsequent analysis. This preprocessing step is essential for 
improving the accuracy and reliability of feature extraction and classification algorithms applied to EEG data, ultimately 
enhancing the performance of cognitive state classification tasks such as distinguishing between frontal temporal Dementia, 
Alzheimer's disease, and normal/healthy states. 

 
Feature Extraction using IPCA 
To decrease the dimension of the data, Improved Principal Component Analysis (IPCA) is applied while preserving critical 
features for extracting features in EEG signals [21]. The process starts with feature scaling using StandardScaler, ensuring 
consistent contributions from all features by normalizing the data. Feature scaling transforms each feature 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒  into a 
standardized form 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 using the formula: 
 
 𝒙𝒙𝒆𝒆𝒆𝒆𝒆𝒆_𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 = 𝒙𝒙𝒆𝒆𝒆𝒆𝒆𝒆−𝝁𝝁𝒆𝒆𝒆𝒆𝒆𝒆

𝝈𝝈𝒆𝒆𝒆𝒆𝒆𝒆
                           (1) 

 
where 𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 represents the mean of the feature and 𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒 denotes its standard deviation. Once the data is scaled, IPCA 

proceeds with covariance matrix calculation. The covariance matrix on  𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒 is computed to capture relationships between 
different features. Eigenvalue decomposition is then performed on  𝜖𝜖𝑒𝑒𝑒𝑒𝑒𝑒, yielding eigenvectors 𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒 and eigenvalues 𝛾𝛾𝑒𝑒𝑒𝑒𝑒𝑒. 
These eigenvectors represent principal components, while eigenvalues denote the variance explained by each component. 
Next, dimensionality reduction occurs by selecting the top principal components that capture the majority of data variance. 
This involves sorting eigenvalues in descending order and retaining corresponding eigenvectors. Finally, feature extraction 
takes place by overlaying the scaled EEG data onto the selected principal components. This procedure yields a reduced-
dimensional depiction of the original EEG signals, where each feature is a linear combination of principal components. 
Through IPCA, EEG data is effectively transformed into a compact and informative feature space, facilitating subsequent 
analysis. 

 
Classification using the HMLCAD Model 
The HMLCAD (Hybridization of Machine Learning for Classification of Alzheimer's Disease) integrates Random Forest 
and Gradient Boosting algorithms via a voting classifier ensemble to categorize EEG signals into distinct cognitive states: 
Alzheimer's disease, normal/healthy states, and Frontotemporal Dementia (FTD). Initially, EEG data needs to take place 
the preprocessing and feature extraction, followed by dataset division into training and testing subsets. The training data 
trains individual Random Forest and Gradient Boosting classifiers, with Random Forest adept at handling high-dimensional 
data and providing robust classification. At the same time, Gradient Boosting iteratively improves model performance by 
focusing on misclassified samples. The classifiers are then merged using a voting classifier ensemble, where each 
classifier's prediction carries equal weight. During classification, each classifier predicts the class label for a given EEG 
sample, and the final prediction results from a majority vote. This ensemble strategy ensures robustness and enhances 
classification accuracy by capitalizing on the combined strengths of Gradient Boosting and Random Forest. Overall, the 
HMLCAD module offers a robust EEG-based cognitive state classification framework, contributing to advancements in 
Alzheimer's disease and cognitive disorder diagnosis  
 
Random Forest  
The Random Forest is a powerful machine learning algorithm for classification that effectively handles high-dimensional 
datasets such as EEG features [23]. In the input phase, it takes a training dataset 𝐷𝐷 comprising pairs of EEG features 𝑥𝑥𝑖𝑖 
and their corresponding class labels 𝑦𝑦𝑖𝑖 , where 𝑖𝑖 ranges from 1 to 𝑁𝑁, representing the number of samples. The output of the 
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algorithm is a trained Random Forest classifier 𝑅𝑅𝑅𝑅. The procedure involves constructing a collection of decision trees. A 
subset of features in the ensemble for each tree is randomly selected, and with replacement, a subset of training data is 
sampled from the original dataset. Subsequently, a decision tree is trained on the selected subset of features and data. This 
process is repeated for a predefined number of iterations 𝑇𝑇, resulting in decision trees comprising the Random Forest 
classifier 𝑅𝑅𝑅𝑅.  Each decision tree in the ensemble learns different aspects of the data, contributing to the overall robustness 
and accuracy of the classifier. During the prediction phase, each decision tree predicts the class label on its own for a given 
input sample, and by taking the mean of each decision tree's predictions. the final prediction is identified in the ensemble. 
Through the combination of multiple decision trees trained on random subsets of features and data, the Random Forest 
Classifier offers robust classification performance. 
 
Gradient Boosting 
The Machine learning algorithms such as Gradient Boosting Classifiers used for classification tasks, are renowned for their 
capability to iteratively improve model performance by focusing on previously misclassified samples [22]. It takes as input 
a training dataset 𝐷𝐷 comprising pairs of EEG features 𝑥𝑥𝑖𝑖  and their corresponding class labels 𝑦𝑦𝑖𝑖  where 𝑖𝑖 ranges from 1 to 
𝑁𝑁 . The output of the algorithm is a trained gradient-boosting classifier 𝐺𝐺𝐺𝐺 . The procedure begins by initializing the 
ensemble prediction function 𝐹𝐹0(𝑥𝑥)  to zero. For each iteration 𝑡𝑡  from 1 to 𝑇𝑇 , the loss function’s negative gradient 
concerning the previous ensemble prediction is computed, representing the residuals or errors in the predictions. A weak 
learner ℎ𝑡𝑡(𝑥𝑥)  is then fitted to these negative gradients using a loss function minimization approach, such as least squares. 
The learning rate ∝ controls each weak learner to the ensemble prediction, with smaller values typically leading to more 
conservative updates. The ensemble prediction function 𝐹𝐹𝑡𝑡(𝑥𝑥)  is updated by adding the product of the learning rate and 
the predictions of the weak learner ℎ𝑡𝑡(𝑥𝑥). The process iterates for a predefined number of iterations 𝑇𝑇, resulting in a series 
of ensemble prediction functions 𝐹𝐹1(𝑥𝑥),𝐹𝐹2(𝑥𝑥), … ,𝐹𝐹𝑇𝑇(𝑥𝑥) . The final gradient-boosting classifier 𝐺𝐺𝐺𝐺  consists of these 
ensemble prediction functions, collectively leveraging the iterative refinement process to improve classification accuracy 
and robustness. 
 
Voting Classifier 
The Voting Classifier Ensemble combines the predictions from the Random Forest classifier 𝑅𝑅𝑅𝑅 and the Gradient Boosting 
classifier 𝐺𝐺𝐺𝐺 to classify EEG signals in the testing dataset 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡[23-25]. In the input phase, it takes as input the trained 
Random Forest classifier 𝑅𝑅𝑅𝑅, the Gradient Boosting classifier 𝐺𝐺𝐺𝐺, and the testing dataset 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, consisting of EEG feature 
samples 𝑥𝑥𝑖𝑖 where 𝑖𝑖 ranges from 1 to 𝑀𝑀. The output of the algorithm is the predicted class labels for the testing dataset 
𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 . The procedure involves iterating through each sample 𝑥𝑥𝑖𝑖 in the testing dataset 𝐷𝐷𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , where the class label prediction 
is obtained from each classifier in 𝑅𝑅𝑅𝑅 and  𝐺𝐺𝐺𝐺.  

These individual predictions are then aggregated using a majority voting scheme, where the final predicted class label 
for each sample is determined by selecting the class label with the highest frequency among the predictions. This ensemble 
approach ensures robustness and enhances classification accuracy by leveraging the collective insights from both the 
Random Forest and gradient-boosting classifiers. Finally, the Voting Classifier Ensemble returns the final predicted class 
labels for the testing dataset as shown in Fig 2, providing a reliable framework for cognitive state classification in EEG 
signals.  

 

 
Fig 2. Voting Classifier Ensemble Working Structure. 
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IV. EXPERIMENTAL RESULTS 
The experimental results presented in this section are designed and applied by the proposed method HMLCAD for 
classifying cognitive states using EEG, including Alzheimer's disease (AD), normal/healthy states, and Frontotemporal 
Dementia (FTD). Real-world EEG datasets were utilized for conducting the experiments, and the performance of the 
classification algorithms was evaluated based on various metrics. 

Initially, an overview of the datasets used in the experiments, including their characteristics and preprocessing steps, is 
provided. Subsequently, the results of the classification experiments are presented, encompassing accuracy, F1-score, 
recall, and precision for each cognitive state in that accuracy represents the percentage of AD samples that were properly 
classified out of all the samples. It reflects the precision of the classifier in identifying AD cases accurately without falsely 
labeling healthy or other cognitive states as AD. Recall, within the context of AD classification, reflects the percentage of 
accurate positive predictions among all actual AD samples in the dataset. Lastly, the F1-score in AD classification serves 
as the harmonic mean of accuracy and recall, delivering a fair assessment of the classifier's overall performance in 
identifying AD cases while simultaneously considering both precision and recall. This metric provides insight into the 
classifier's ability to achieve both high precision and recall in AD classification tasks, thus indicating its robustness and 
effectiveness. 

 

 
Fig 3. Sample Different Channels of EEG Signals from the Dataset (Raw and Preprocessed). 

 
The dataset utilized for evaluating the effectiveness of the proposed methodology is the Alzheimer’s disease and Fronto 

Temporal Diseases and healthy control dataset (AD-FTD-CN). It was obtained from the following link: 
https://openneuro.org/datasets/ds004504/versions/1.0.6. This dataset includes EEG records from 23 frontotemporal 
dementia patients, 36 Alzheimer’s patients, and 29 healthy age-matched subjects. Specifically, it includes EEG closed-eye 
measurements from 88 participants during their resting state [15]. This dataset also contains preprocessed EEG signals 
from acquiring the raw signal, which is shown in Fig 3.  

 

 
Fig 4. Confusion Matrix of HMLCAD Model. 

 
Initially, we obtained a confusion matrix, depicted in Fig 4, focusing primarily on the positive class. A significant 

number of true positives contributed to the high performance in categorizing cognitive states. In the matrix, the proposed 
methodology accurately classified 30 signals of Alzheimer’s disease, 17 FTD disease samples, and 27 healthy signals. 
Only a few signals were misclassified within the Alzheimer’s disease and healthy classes.  
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Table 2. Performance Analysis of the HMLCAD Model 

Metrics Performance  
Accuracy 84.09% 
Precision 85.00% 
Recall 83.00% 
F1-score 84.00% 

 
In Table 2, the performance metrics of HMLCAD are presented, including Accuracy, Precision, F1-score, and Recall. 

These metrics collectively assess the effectiveness of HMLCAD in accurately classifying cognitive states, such as AD, 
FTD, and healthy states. The obtained accuracy for EEG signal-based classification of cognitive states (AD, FTD, healthy) 
is 84.09%. The proportion of the samples that were correctly classified is the measure of accuracy that is measured among 
all samples in the dataset, indicating the overall effectiveness of the classifier in distinguishing between cognitive states 
based on EEG signals. The proportion of true positive predictions among all positive predictions is measured by precision, 
which is 85.00%. This metric assesses the classifier's ability to accurately identify specific cognitive states, such as AD, 
FTD, or healthy, without misclassifying other states. Recall, representing the proportion of true positive predictions among 
all actual samples of a particular cognitive state, is 83.00%. It evaluates the classifier's ability to capture instances of a 
specific cognitive state within the dataset. Lastly, the F1-score, calculated as the harmonic mean of precision and recall, 
provides an accurate measure of overall performance, considering both precision and recall simultaneously. The F1-score 
of 84.00% indicates the classifier's robustness in achieving a balance between accurate identification and comprehensive 
coverage of cognitive states. These metrics demonstrate the effectiveness of the EEG signal-based classification approach 
in accurately categorizing cognitive states, including AD, FTD, and healthy states, based on patterns observed in EEG 
signals.  
 

Table 3. Comparative Analysis of Proposed HMLCAD Classifier and Single Classifier Model 
Models Accuracy 
RF 82.46% 
GB 81.24% 
Proposed (HMLCAD) 84.09% 

 
The accuracy scores of different models such as Gradient Boosting (GB), Random Forest (RF), and the proposed 

HMLCAD classifier are presented in Table 3. The HMLCAD classifier outperforms the single classifiers, RF and GB, 
with an accuracy of 84.09%, indicating its effectiveness in accurately classifying cognitive states based on EEG signals.  

The Receiver Operating Characteristic (ROC) curve for the HMLCAD classifier is depicted in Fig 5. The ROC Area 
Under the Curve (ROC AUC) score for the HMLCAD classifier is 0.8767. This metric assesses the ability of the classifier, 
specifically HMLCAD, to differentiate between classes, with a higher ROC AUC indicating better discrimination 
performance. A value of 0.8767 suggests that the HMLCAD classifier performs well in separating the classes, further 
demonstrating its effectiveness in classifying cognitive states based on EEG signals. 

 

 
Fig 5. ROC Curve Analysis for AD Classification using HMLCAD Model. 
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V. CONCLUSION 
The proposed HMLCAD approach demonstrates the promising performance of Cognitive states, including Alzheimer's 
disease (AD), Frontotemporal Dementia (FTD), and healthy states, which are classified using EEG data. Leveraging 
advanced machine learning techniques such as Random Forest and Gradient Boosting, the HMLCAD classifier achieves 
an accuracy of 84.09%, outperforming single classifiers like Random Forest (82.46%) and Gradient Boosting (81.24%). 
This high accuracy reflects the effectiveness of the HMLCAD classifier in distinguishing between these cognitive states 
based on patterns observed in EEG signals. Furthermore, recall, precision, and F1-score metrics validate the classifier's 
robustness, with recall at 83.00%, precision at 85.00%, and an F1-score of 84.00%. These metrics collectively showcase 
the classifier's ability to accurately identify specific cognitive states while maintaining comprehensive coverage of the 
dataset. Additionally, the HMLCAD classifier provides robust discrimination between different cognitive states, as 
evidenced by its high ROC AUC score of 0.8767. These results underscore the effectiveness of the proposed methodology 
in EEG-based classification, highlighting its potential for aiding in the early diagnosis of Alzheimer's disease and related 
cognitive disorders. 
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