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Abstract – Recently, several applications of data mining and pattern recognition require statistical signal processing (SP) 
to be used and machine learning (ML) techniques for processing massive data volumes in energy-constrained contexts. It 
is developing interest in executing difficult ML techniques like convolutional neural network (CNN) on lesser power 
embedding environments to allow on-device learning and inference. Several of these platforms are that utilized as lower 
power sensor nodes with lower to medium throughput conditions. Near threshold processor (NT) proposals are appropriate 
for these applications where as affected by a vital enhancement in variants. This research offers an Artificial Ecosystem 
Optimizer with Hybrid Deep Learning for Variation-Tolerant Near-Threshold Processor (AEOHDL-VTNT). The inference 
of embedded systems at the network edge serves as the foundation for the AEOHDL-VTNT approach that is being 
discussed. In the described AEOHDL-VTNT approach involves two primary processes: HDL-based VTNT design and 
hyper parameter tweaking. Initially, the HDL model is used to develop the VTNT. Next, in the second step, the AEO 
method is used for hyper parameter tweaking of the HDL model, which improves the HDL's overall performance. A number 
of simulations were carried out to show how the AEOHDL-VTNT approach improved performance. The simulation results 
showed that the AEOHDL-VTNT approach outperformed other models. 
 
Keywords – Near-Threshold Processor, Variation-Tolerant, Deep Learning, Parameter Tuning, Artificial Ecosystem 
Optimizer.  
 

I. INTRODUCTION 
Recently, in-memory architectures have been suggested to directly address the cost of memory access in ML systems via 
embedding analog computation in closer proximity to the memory bit-cell array (BCA) which makes in-memory structures 
massively and intrinsically parallel and well-suited to the data flow of ML algorithm [1]. On the other hand, its inherent 
analogue nature makes an in-memory architecture vulnerable to process, voltage, and temperature (PVT) variation. The 
Delay and energy costs of modern ML algorithm inhibit their deployment for real-time inference on sensor-rich platforms 
namely Internet of Things (IoT) [2], wearable’s, UAVs, personal biomedical devices, etc. This application involves devices 
that process and acquire data to derive action and interpretation for monitoring or automating different tasks without human 
interference [3]. Such approaches need to be understood as computationally intensive ML algorithms under rigorous 
constraints on form-factor, energy, and latency. As is generally known that the latency and energy costs of realizing ML 
algorithms are under the control of memory access [4]. In recent times, various IC implementations and energy efficient 
digital architectures were introduced that make an attempt to decrease the number of memory accesses through approaches 
like efficient data-flow, data reuse, and minimizing computations [5]. Dropping supply voltage to the near threshold voltage 
(NTV) area is the potential technique for accomplishing high energy effectiveness in energy-constraint circuits [6]. 
However, NTV operation causes additional difficulties as a result of the rising delay caused by PVT variation under the 
scaling voltage [7]. This challenge was precisely demonstrated as follows: (1) a five-fold increase in the rate at which 
memory and logic circuits malfunction, (2) over 10× loss in performance, and (3) 5× increase in performance variation. 
Furthermore, the PVT-induced variation affects data paths and clock signals, such the critical path fails to supply the output 
dataset within the provided clock period [8]. Moreover, timing error in dataset path could not be endured by concealing 
since delay of bit flipping would be accumulated recurrently in circuits namely the multiply-accumulate (MAC) unit in the 
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neural network (NN) processors. Therefore, the transmission of timing errors incurs a substantial accuracy loss, particularly 
in the DNN accelerator encompassing a wide variety of MACs [9]. Classical integrated circuit design avoids PVT-induced 
timing error by preserving timing margins and voltage as a timing guard band. But conservative guard bands lead to a 
decline in excessive throughput cost of energy wastage since circuit doesn’t work in worst case. Timing error-tolerant 
technique related to error detection and correction (EDAC) circuit has developed as a potential solution [10]. This research 
presents an Artificial Ecosystem Optimizer with Hybrid Deep Learning for Variation-Tolerant Near-Threshold Processor 
(AEOHDL-VTNT). The inference of embedded systems at the network's interface serves as the foundation for the 
AEOHDL-VTNT approach that is being discussed. The two main procedures of the AEOHDL-VTNT approach that is 
being discussed are hyper parameter tweaking and HDL based VTNT design. At the initial stage, the HDL model is 
employed for the design of VTNT. At the first stage, the HDL model is used for the design of VTNT. Next, in the second 
step, the AEO method is used for hyper parameter tweaking of the HDL model, which improves the HDL's overall 
performance. To show the improved performance of the AEOHDL-VTNT approach, a series of simulations were 
conducted. 
 

II. RELATED WORKS 
Lin and Cavallaro [11] present a variation-tolerant architecture for CNN capable of operating in NTC systems for energy 
efficacy. Especially, the author constructs strong CNN from two lower costs untrustworthy designs that have dissimilar 
error information: a K-means approximated design where weight vectors in the CNN were clustered to lessen complication 
and NTC paradigm with full precision. Wang et al. [12] propose a 3D optimization algorithm that could efficiently 
recognize the system configuration to balance amongst energy, reliability, and performance. The author uses a dynamic 
programming system for determining the approximate level and proper voltage based on three predictors: output quality, 
system performance, and energy consumption. The author suggests an output quality forecast that uses collaborative design 
fault injection platforms in hardware or software to assess the effect of defects on output reliability under NTC. 

Fan et al. [13] propose a light-weight timing resilient system to allow the NTC effectual ICs. The system that is being 
shown uses nine extra transistors in the node transition signal detector (NTSD) approach. A circuit that integrated using 
edge-triggered flip-flops was injected into the targeted ICs' monitored location. The author develops a combination 
selection strategy that takes failure awareness into account in order to further reduce overheads. Fan et al. [14] propose a 
lightweight timing error-tolerant flip-flop (ETFF) scheme. The proposal uses just nine transistors to create node transition 
signal detectors, which can identify timing faults and rectify them in a comparable clock cycle. Furthermore, transistor 
dimensions was discovered to augment the tradeoff amongst area overhead and performance. The original flip-flops are 
replaced at timing-monitored points in monitored circuits with the anticipated ETFF. A variation-tolerant architecture for 
CNN is introduced by Lin et al. [15]; it can perform robust operations in the NTV zone for conservation of energy. The 
main goal was to derive low-cost estimators for error identification and compensation by taking use of intrinsic redundancy 
in matrix-vector multiplication, often known as dot product ensemble, a power-hungry operation in CNN.  

A meta stability condition detection and correction (MEDAC) approach is developed by Lin et al. [16] and is included 
in near-threshold voltage (NTV) network-on-chip (NoC) circuitry. As the projected method presents double-sampling-
based circuitry for detecting either input data reaches closely enough to receiver clock edge that is determined as meta 
stability condition. Also, MEDAC has a meta stability condition mitigation system for monitoring whether the existence 
of meta stability condition is recurrent and tuning the receiver clock stage adaptively to rise the mean time amongst meta 
stability conditions.  Pandey et al. [17] develop Low-power NTC TPU variant called Green TPU. Green TPU detects a 
pattern in the error-causing activation sequence in the systolic array and periodically increases the operating voltages 
associated with the multiplier-and-accumulator unit in the TPU to prevent additional timing error from the related pattern. 
This ensures higher inference accuracy at a lower voltage operation. 
 

III. THE PROPOSED MODEL 
During this research, we have developed a novel AEOHDL-VTNT approach via the hybridization of DL models. The 
presented AEOHDL-VTNT   technique is primarily grounded in integrated system inference on the network's edge. The 
two main procedures of the AEOHDL-VTNT approach that is being discussed are hyper parameter tweaking and HDL 
based VTNT design. 
 
Process involved in HDL Model 
Primarily, the HDL model is employed for the design of VTNT. The HDL model is derived by the use of CNN with LSTM 
models. LSTM was utilized to resolve learning model for the Recurrent Neural Network (RNN) to generate potential 
outcomes on a different task involving construction of language and prediction model [18]. Tasks with complex time delays 
that the RNN algorithm was unable to solve are addressed by the LSTM. The LSTM learning model can learn long-term 
relationships by substituting a cell with memory in place of the RNN hidden layer. 

The technique includes or excludes data to cell state named Get. The input gate (it), forget gate (f) and output gate (O) 
and it is determined by: 

 
 ft=σ(Wf.[ht-1.xt]+bf⋅) (1) 
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 it=σ(Wi.[ht-1,xt]+bi),  (2) 
 

 Ci=tanh(Wc.[hc-1.xt]+bc),  (3) 
 

 Ct=ft*Ct-1+it*Ct,  (4) 
 

 Oi=σ(Wo.[ht-1.xt]+bo),  (5) 
 

 ht=Ot*tanh*(Ct),  (6) 
 

Combining CNN and LSTM in an efficient way was introduced for limiting the employment of CNN to get learning 
ability and invaluable knowledge with great efficacy of LSTM in a time-series-internal-representation-dependent way to 
drastically model and discover the long -and short -term temporal relationship cornified in the data. Fig 1 shows the 
structure of CNN-LSTM. 

 

 
 

Fig 1. Structure of CNN-LSTM. 
 
To accomplish the aforementioned objective, the presented CNN-LSTM is composed of two fundamental modules: 
1D-CNN, which is composed of pooling and convolutional layers to carry out mathematical process on input dataset 

and thereby generate feature.  
To exploit the feature, by applying dense layers and LSTM. The presented CNN-LSTM technique makes use of CNN 

as encoder, whereas LSTM acts as a decoder correspondingly. An encoder learned the attributes provided to the decoder 
(LSTM) via the source dataset. Then, decoder models and identifies each of them, could be long and short term temporal 
relations from data. The series of an event of all the steps are concisely discussed in the following: Source layer: receive 
the source dataset;1st Convolution layer: scan through input dataset of (1) above prior to subjecting the outcome on the 
feature map; 2nd Convolution layers: find feature map again, to improve notable features with 32 feature maps for each 
kernel size and convolution layer of 3 times steps to read input series would be applied; Max pooling layers: remove 
particular feature from (3) above so that over simplifying feature map and producing matric which has a smaller dimension; 
Dropout layers: improves learning network to secure the model from being over fitting; Flatten layers: fatten the distilled 
feature map into single long vector that is harnessed as input for decoding purposes; Repeat Vector layers: the internal 
demonstration of input sequence was reiterated, once for every time step in output series; LSTM decoders: has a 100-unit 
hidden layer can able to output the entire arrangement all of them containing 100 units which provide value everyday, 
which serves as foundation to forecast what would have happened in the following days in the output order; Fully connected 
layers: comprehend every step in output sequence to end up having same layer to predict a single sequence output indicates 
that LSTM decoder can able to operate at provided given time similar to fully connected and output layers; Output layer: 
Prediction of class label. 
 
AEO based Hyper Parameter Tuning Process 
In this study, the AEO algorithm is applied for the hyper parameter tuning of the HDL model. AEO is a kind of population‐
related optimized technique [19]. It imitates the processes of creation, breakdown, and utilization that occur in living things. 
The flow of energy through an ecosystem is described by this model. Throughout the environment, producer uses carbon 
dioxide, water, and sunlight for making food energy. Likewise, the production process will improve the balance between 
exploitation and exploration. Then, the consumer was unable to prepare their food. They acquire nutrients and energy from 
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other producers or consumers. The next phase will enhance the investigative process. Finally. Decomposer feeds on both 
consumers and producers. The phase will improve the exploitation. 
 
Producer 
In this phase, the best individual (x) and a random individual (xrandi) are produced at random. The decomposer (best 
individual) and lower and upper limitations update the producer (worse individual). It facilitates other individuals to search 
for separate regions and in the following expression, it is mathematically expressed. 
 
 x1(ti+1)=(1-a)xq(ti)+axrandi(ti) (7) 

 
Whereas 

 a= �1- ti
It
� *r1 (8) 

 
 xrandi=r*(Up-Lw)+Lw (9) 

 
 x2(ti+1)=x2(ti)+K[x2(ti)-x1(ti)] (10) 

 
The equation denotes a linear weight coefficient, q indicates the population size, r_1 and r indicate a random integer 

that lies in [0,1], it demonstrates maximal iteration, and the Lw and Up denote the lesser and higher bounds, respectively. 
The purpose of the flight tax, K, is to enhance the research phase: 

 
 K=0.5* v1

|v2|
 (11) 

 
Where v2 = N(0,1) and v1 =∼ N(0,1) . N(0,1) represents uniform distribution. 

 
Consumption 
This phase improves exploration by allowing the algorithm to update individual solutions. The consumer is categorized 
into herbivore, omnivore and carnivore. The herbivore feed on consumer and the producer. The second feed on consumers 
having high energy levels. Lastly, feed on the producer and/or consumer with high energy levels. Herbivore as a consumer 
is mathematically expressed below: 

 
 xi(ti+1)=xi(ti)+K[xi(ti)-xi(ti)], i∈[3, …, n] (12) 

 
Consumer as a carnivore is mathematically expressed below: 
 

 �
xi(ti+1)=xi(ti)+K[xi(ti)-χj(ti)],
i∈[3, …,n], j=randi([2i-1])

 (13) 

 
Omnivore consumer can is mathematically expressed as: 
 

 �
xi(ti+1)=xi(ti)+K[r2(xi(ti)-x1(ti))+(1-r2)(xi(ti)-xj(ti))],
i∈[3, …,n], j=randi([2i-1])  (14) 

 
Where r2 lies within [0,1] interval. 

 
Dissection 
The dissection stage is essential because it completes the food chain and feeds the producer. After the consumer in the 
ecosystem dies, the decomposer consumes its residues. The component was the weight coefficient (w_e and h_e) and the 
decomposition factor (D_e). By updating each site in accordance with a better solution, the dissection facilitates utilization 
in the manner described below. 
 
 xi(ti+1)=xn(ti)+De�wexn(ti)-hexi(tt)�, i=1, …,n (15) 

 
The newly introduced factor was defined by:  
 

 �
De=3u, u∼N(0,1)
we=r3*randi([1,2])-1 𝑥𝑥
he=2*r3-1 𝑥𝑥

 (16) 
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r3 is located inside the interval [0,1]. Fig 2 depicts the steps involved in AEO technique. 

 

 
 

Fig 2. Steps involved in AEO. 
 

Elimination 
During this stage, x_q is adjusted once everyone has reached the desired level of physical well-being. As a result, the 
ending criteria are assessed; if it is satisfied, the implementation is ended and xq is returned, otherwise, the first phase is 
reiterated. 
 
Algorithm 1: Pseudocode of AEO algorithm 

Initializes: arbitrary initialization of the AEO ecosystem, x1, and assessment of fitness, ffi, xq = better solution obtained. 
While ending criteria are not attained, implement: 
First Phase: Production 
Individualx1, upgrade its location using (7). 
Second Phase: Consumption 
Individual x1(i = 2, … , n) 
Herbivorous act takes place 
If rand < 1

3
, individual update was performed based on (12) 

Omnivorous act takes place 
Else if 1/3 and rand < 2/3 update to individual is performed based on (14) Carnivorous act takes place 
Else individual updates can be performed by (13) 
End if 
End if 
Third phase: Decomposition 
Individual updates can be performed by (15) 
Individual fitness c is evaluated 
Better location attained so far is upgraded, xq 
End while 
Fourth Phase: Termination 

Return  
 



ISSN: 2788–7669                 Journal of Machine and Computing 4(4)(2024) 

846 
 
 

 

IV. EXPERIMENTAL VALIDATION 
This section evaluates the scientific feasibility of the AEODHL-VTNT approach using eight datasets. This section uses 
these eight datasets to assess the scientific feasibility of the AEODHL-VTNT technique. Table 1 and Fig 3 show the NUTE 
analysis of the AEODHL-VTNT model with revised models on eight datasets. These data indicated that the AEODHL-
VTNT approach produced the lowest NUTE values across all normalized frequencies. Simultaneously, it is seen that when 
normalized frequencies increase, the AEODHL-VTNT model produces rising NUTE values. NUTE's value is minimal at 
1.0x normalized frequency and reaches its peak at 4.0x normalized frequency. 
 

Table 1. Comparison between the AEODHL-VTNT System using Eight Different Datasets using NUTE Analysis 

Total Undiscovered Timing Errors (log) 

Frequency 
(Normalized) SVHN CIFAR-10 IMDB GTSRB REUTERS MNIST FMNIST AMNIST 

4.0x 117,774,037 105,632,799 94,596,883 96,255,244 89,096,054 79,707,896 71,434,930 68,677,402 

3.0x 117,216,815 102,331,440 89,642,963 97,908,853 84,130,343 76,964,337 71,984,628 65,917,946 

2.4x 110,603,881 94,595,220 83,019,001 95,699,848 82,471,779 73,640,639 71,432,728 54,333,885 

2.0x 97,918,998 81,360,118 75,854,855 81,912,316 71,986,905 59,851,821 68,682,035 46,074,941 

1.71x 77,507,579 71,997,442 62,067,496 62,621,720 54,344,854 44,405,948 34,490,169 27,867,194 

1.5x 64,819,275 51,035,649 46,616,955 48,817,148 42,206,897 30,077,901 23,462,672 20,135,554 

1.33x 47,166,003 37,233,491 38,352,437 38,344,046 32,271,934 23,448,384 19,587,381 14,071,363 

1.2x 35,596,783 27,857,538 22,900,250 18,483,197 21,253,810 12,424,625 18,481,688 835,718 

1.09x 29,528,326 14,629,984 1,397,314 2,486,140 7,459,427 8,052 8,230 5,003 

1.0x 9,658,840 9,130 6,284 6,308 8,703 8,447 7,360 8,159 

 

 
 

Fig 3. NUTE Examines AEODHL-VTNT System with Distinct Eight Datasets. 
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Table 2 and Fig 4 deliver NACC inspection of the AEODHL-VTNT technique with recent approaches on eight datasets. 
These results denoted the AEODHL-VTNT algorithm has least values of NACC in all normalized frequencies. Meanwhile, 
it is noted that the AEODHL-VTNT method has gained reduced NACC values with an increase in normalized frequencies. 
i.e., the value of NACC was maximum at 1.0x normalized frequency and will reach minimum at 4.0x normalized frequency. 
 

Table 2. NACC Comparison between the AEODHL-VTNT System using Eight Independent Datasets 

Accuracy (Normalized) 

Frequency 
(Normalized) 1.0x 1.09x 1.2x 1.33x 1.5x 1.71x 2.0x 2.4x 3.0x 4.0x 

SVHN 0.9993 0.9964 0.9939 0.9873 0.9787 0.9476 0.8926 0.7414 0.6517 0.6419 

CIFAR-10 0.9864 0.9793 0.985 0.9669 0.9614 0.9177 0.719 0.4735 0.2928 0.3005 

IMDB 0.9822 0.9682 0.961 0.9522 0.917 0.8094 0.5502 0.2834 0.168 0.1679 

GTSRB 0.9966 0.9738 0.9578 0.9101 0.8105 0.6437 0.406 0.2165 0.1203 0.1141 

REUTERS 0.9694 0.9692 0.9358 0.8721 0.7549 0.5682 0.3127 0.2064 0.2115 0.1929 

MNIST 0.9523 0.9462 0.921 0.7906 0.5767 0.3764 0.2998 0.2603 0.2437 0.2241 

FMNIST 0.9756 0.9758 0.9185 0.7774 0.3757 0.1854 0.1541 0.1389 0.1382 0.1316 

AMNIST 0.98 0.9619 0.9528 0.8256 0.4739 0.2304 0.1443 0.1184 0.1356 0.1333 

 

 
 

Fig 4. NACC examines AEODHL-VTNT System with Distinct Eight Datasets. 
 

Table 3 offers comparative NACC outcomes of the AEOHDL-VTNT model with SVHN dataset [4]. The results of the 
experiment showed that, across all NFs, the IA(MRFF) model obtained the lowest values of NACC. Next, the BE (PRED) 
and IA(TED) techniques have tried to report closer NACC values. On the other hand, the IA(PRED) model exhibits 
certainly improved NACC. Although the EEHPT-DNN model has provided near optimal values of NACC, the AEOHDL-
VTNT model has shown increasing values of NACC under all NFs. 
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Table 3. NACC Comparison of the AEOHDL-VTNT Method with Alternative Systems using the SVHN Dataset  
Accuracy (Normalized)– SVHN 

Frequency 
(Normalized) 1.0x 1.075x 1.15x 1.255x 1.36x 1.515x 1.67x 1.875x 2.14x 2.57x 3.0x 4.0x 5.0x 

AEOHDL-
VTNT 0.9992 0.9979 0.9984 0.9988 0.9979 0.9966 0.9954 0.993 0.9935 0.9935 0.9927 0.9929 0.992 

EEHPT-
DNN 0.998 0.997 0.997 0.997 0.996 0.995 0.994 0.992 0.992 0.992 0.991 0.991 0.99 

IA(PRED) 0.974 0.98 0.981 0.973 0.981 0.98 0.978 0.97 0.974 0.97 0.97 0.972 0.97 

IA(MRFF) 0.973 0.973 0.976 0.971 0.976 0.968 0.977 0.971 0.966 0.852 0.584 0.394 0.312 

BE(PRED) 0 0 0 0 0 0 0.888 0.908 0.974 0.972 0.963 0.961 0.965 

IA(TED) 0.979 0.978 0.974 0.978 0.973 0.979 0.972 0.973 0.968 0.969 0.97 0.97 0.965 
 

Table 4 offers Comparing the AEOHDL-VTNT model's NACC results to the CIFAR-10 dataset. 
The results demonstrated that the IA(MRFF) method has gotten least values of NACC under all NFs. Next, the BE 

(PRED) and IA(TED) techniques have tried to report closer NACC values. On the other hand, IA(PRED) model exhibits 
certainly improved NACC. Although the EEHPT-DNN model has provided near optimal values of NACC, the AEOHDL-
VTNT model has shown increasing values of NACC under all NFs. 

 
Table 4. NACC Examine AEOHDL-VTNT Method with Alternative Systems using CIFAR-10 Dataset  

Accuracy (Normalized)- CIFAR-10 
Frequency 

(Normalized) 1.0x 1.075x 1.15x 1.255x 1.36x 1.515x 1.67x 1.875x 2.14x 2.57x 3.0x 4.0x 5.0x 

AEOHDL-
VTNT 0.9969 0.9929 0.9976 0.9779 0.9978 0.9873 0.9763 0.9849 0.997 0.9896 0.9842 0.979 0.9775 

EEHPT-DNN 0.995 0.992 0.996 0.977 0.997 0.986 0.975 0.984 0.996 0.988 0.983 0.978 0.976 

IA(PRED) 0.959 0.97 0.969 0.962 0.962 0.964 0.965 0.959 0.958 0.955 0.959 0.955 0.959 

IA(MRFF) 0.956 0.954 0.966 0.958 0.959 0.951 0.961 0.957 0.953 0.856 0.573 0.48 0.292 

BE(PRED) 0 0 0 0 0 0 0.876 0.892 0.958 0.953 0.943 0.949 0.91 

IA(TED) 0.962 0.968 0.957 0.961 0.96 0.965 0.962 0.959 0.949 0.956 0.957 0.952 0.928 
 

Table 5 offers comparative NACC outcomes of the AEOHDL-VTNT model with IMDB dataset. The outcomes 
demonstrated that the IA(MRFF) technique has gotten least values of NACC under all NFs. Next, the BE (PRED) and 
IA(TED) techniques have tried to report closer NACC values. On the other hand, the IA(PRED) model exhibits certainly 
improved NACC. Although the EEHPT-DNN model has provided near optimal values of NACC, the AEOHDL-VTNT 
model has shown increasing values of NACC under all NFs. 

 
Table 5. NACC Evolution of AEOHDL-VTNT Method with Alternative Systems using IMDB Dataset  

Accuracy (Normalized)– IMDB 
Frequency 

(Normalized) 1.0x 1.075x 1.15x 1.255x 1.36x 1.515x 1.67x 1.875x 2.14x 2.57x 3.0x 4.0x 5.0x 

AEOHDL-
VTNT 0.9823 0.9829 0.9873 0.9985 0.998 0.9968 0.9992 0.9798 0.9919 0.9902 0.9783 0.9805 0.9785 

EEHPT-DNN 0.981 0.982 0.986 0.997 0.996 0.995 0.998 0.979 0.991 0.989 0.977 0.979 0.977 

IA(PRED) 0.975 0.979 0.983 0.979 0.982 0.954 0.953 0.97 0.953 0.957 0.954 0.954 0.968 

IA(MRFF) 0.965 0.955 0.955 0.951 0.975 0.962 0.978 0.971 0.963 0.893 0.675 0.412 0.309 

BE(PRED) 0 0 0 0 0 0 0.88 0.911 0.951 0.967 0.956 0.95 0.905 

IA(TED) 0.977 0.971 0.969 0.97 0.972 0.954 0.958 0.968 0.956 0.967 0.954 0.969 0.857 
 



ISSN: 2788–7669                 Journal of Machine and Computing 4(4)(2024) 

849 
 
 

 

Table 6 offers comparative NACC outcomes of the AEOHDL-VTNT model with GTSRB dataset. The results 
demonstrated that the IA(MRFF) method has gotten the least values of NACC under all NFs. Next, the BE (PRED) and 
IA(TED) techniques have tried to report closer NACC values. On the other hand, the IA(PRED) model exhibits certainly 
improved NACC. Although the EEHPT-DNN model has provided near optimal values of NACC, the AEOHDL-VTNT 
model has shown increasing values of NACC under all NFs. 

 
Table 6. NACC Comparison of AEOHDL-VTNT Method with Alternative Systems using GTSRB Dataset 

Accuracy (Normalized)– GTSRB 

Frequency 
(Normalized) 1.0x 1.075x 1.15x 1.255x 1.36x 1.515x 1.67x 1.875x 2.14x 2.57x 3.0x 4.0x 5.0x 

AEOHDL-
VTNT 0.987 0.9914 0.9865 0.9991 0.9987 0.986 0.983 0.9965 0.9778 0.9852 0.987 0.9878 0.9806 

EEHPT-
DNN 0.978 0.984 0.98 0.995 0.992 0.982 0.975 0.991 0.973 0.979 0.981 0.981 0.976 

IA(PRED) 0.971 0.971 0.977 0.953 0.973 0.973 0.964 0.973 0.963 0.967 0.968 0.963 0.956 

IA(MRFF) 0.98 0.959 0.958 0.979 0.965 0.966 0.965 0.959 0.961 0.892 0.573 0.328 0.287 

BE(PRED) 0 0 0 0 0 0 0.871 0.906 0.951 0.962 0.953 0.955 0.846 

IA(TED) 0.973 0.97 0.975 0.98 0.965 0.968 0.969 0.961 0.95 0.96 0.965 0.963 0.89 

 
Table 7 offers comparative NACC outcomes of the AEOHDL-VTNT model with REUTERS dataset. The results 

demonstrated that the IA(MRFF) method has gotten least values of NACC under all NFs. Next, the BE (PRED) and 
IA(TED) techniques have tried to report closer NACC values. On the other hand, the IA(PRED) model exhibits certainly 
improved NACC. Although the EEHPT-DNN model has provided near optimal values of NACC, the AEOHDL-VTNT 
model has shown increasing values of NACC under all NFs. 

 
Table 7. NACC Study of AEOHDL-VTNT Method with Alternative Systems using REUTERS Dataset  

Accuracy (Normalized)– REUTERS 

Frequency 
(Normalized) 1.0x 1.075x 1.15x 1.255x 1.36x 1.515x 1.67x 1.875x 2.14x 3.0x 4.0x 5.0x 

AEOHDL-
VTNT 0.9848 0.9941 0.9861 0.9885 0.9965 0.9825 0.9886 0.9855 0.9854 0.9848 0.9758 0.9957 

EEHPT-
DNN 0.978 0.987 0.981 0.983 0.991 0.975 0.981 0.981 0.981 0.979 0.971 0.994 

IA(PRED) 0.972 0.951 0.964 0.964 0.952 0.951 0.946 0.962 0.945 0.966 0.956 0.945 

IA(MRFF) 0.975 0.957 0.959 0.961 0.963 0.961 0.95 0.967 0.952 0.573 0.374 0.298 

BE(PRED) 0 0 0 0 0 0 0.867 0.904 0.957 0.945 0.959 0.945 

IA(TED) 0.962 0.958 0.97 0.963 0.966 0.966 0.955 0.966 0.97 0.966 0.944 0.94 

 
Table 8 offers comparative NACC outcomes of the AEOHDL-VTNT model with MNIST dataset. The results 

demonstrated that the IA(MRFF) method has gotten least values of NACC under all NFs. Next, the BE (PRED) and 
IA(TED) techniques have tried to report closer NACC values. On the other hand, the IA(PRED) model exhibits certainly 
improved NACC. Although the EEHPT-DNN model has provided near optimal values of NACC, the AEOHDL-VTNT 
model has shown increasing values of NACC under all NFs. 
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Table 8. AEOHDL-VTNT Method with Alternative Systems using MNIST Dataset of NACC Study 
Accuracy (Normalized)– MNIST 

Frequency 
(Normalized) 5.0x 4.0x 3.0x 2.57x 2.14x 1.875x 1.67x 1.515x 1.36x 1.255x 1.15x 1.075x 1.0x 
AEOHDL-
VTNT 0.9832 0.9796 0.9925 0.9898 0.989 0.9959 0.993 0.98 0.9938 0.9989 0.9974 0.9929 0.9992 
EEHPT-
DNN 0.979 0.974 0.987 0.985 0.984 0.989 0.985 0.976 0.989 0.998 0.996 0.985 0.999 

IA(PRED) 0.953 0.943 0.944 0.968 0.957 0.943 0.95 0.963 0.964 0.955 0.968 0.972 0.962 

IA(MRFF) 0.294 0.481 0.581 0.837 0.959 0.952 0.964 0.967 0.963 0.953 0.968 0.969 0.969 

BE(PRED) 0.942 0.957 0.958 0.961 0.956 0.909 0.883 0 0 0 0 0 0 

IA(TED) 0.968 0.948 0.962 0.961 0.97 0.952 0.956 0.969 0.952 0.958 0.957 0.973 0.96 
 
Table 9 offers comparative NACC outcomes of the AEOHDL-VTNT model with FMNIST dataset. The outcomes 

demonstrated that the IA(MRFF) technique has gotten least values of NACC under all NFs. Next, the BE (PRED) and 
IA(TED) techniques have tried to report closer NACC values. On the other hand, the IA(PRED) model exhibits certainly 
improved NACC. Although the EEHPT-DNN model has provided near optimal values of NACC, the AEOHDL-VTNT 
model has shown increasing values of NACC under all NFs 

 
Table 9. NACC Study of AEOHDL-VTNT Method with Other Systems in the FMNIST Dataset 

Accuracy (Normalized)– FMNIST 
Frequency 

(Normalized) 5.0x 4.0x 3.0x 2.57x 2.14x 1.875x 1.67x 1.515x 1.36x 1.255x 1.15x 1.075x 1.0x 

AEOHDL-VTNT 0.9984 0.9754 0.9864 0.9981 0.9963 0.9825 0.9861 0.989 0.983 0.9978 0.99 0.999 0.9975 

EEHPT-DNN 0.992 0.971 0.979 0.996 0.995 0.976 0.982 0.983 0.978 0.992 0.983 0.991 0.997 

IA(PRED) 0.953 0.949 0.959 0.958 0.949 0.952 0.953 0.951 0.964 0.95 0.968 0.976 0.972 

IA(MRFF) 0.292 0.382 0.564 0.937 0.95 0.967 0.955 0.976 0.954 0.963 0.952 0.966 0.976 

BE(PRED) 0.952 0.955 0.957 0.956 0.953 0.902 0.861 0 0 0 0 0 0 

IA(TED) 0.949 0.957 0.959 0.968 0.962 0.962 0.951 0.966 0.969 0.967 0.951 0.971 0.969 
 
Table 10 offers comparative NACC outcomes of the AEOHDL-VTNT model with AMNIST dataset. The figure 

demonstrated that the IA(MRFF) approach has gotten least values of NACC under all NFs. Next, the BE (PRED) and 
IA(TED) techniques have tried to report closer NACC values. On the other hand, the IA(PRED) model exhibits certainly 
improved NACC. Although the EEHPT-DNN model has provided near optimal values of NACC, the AEOHDL-VTNT 
model has shown increasing values of NACC under all NFs. 

 
Table 10. NACC Comparison of the AEOHDL-VTNT Method with Other Systems using the AMNIST Dataset  

Accuracy (Normalized)– AMNIST 
Frequency 

(Normalized) 5.0x 4.0x 3.0x 2.57x 2.14x 1.875x 1.67x 1.515x 1.36x 1.255x 1.15x 1.075x 1.0x 

AEOHDL-VTNT 0.9958 0.9863 0.985 0.9977 0.9999 0.983 0.9835 0.9858 0.996 0.9991 0.9904 0.9985 0.9854 

EEHPT-DNN 0.991 0.981 0.977 0.996 0.993 0.976 0.976 0.98 0.989 0.995 0.984 0.998 0.981 

IA(PRED) 0.96 0.949 0.946 0.957 0.952 0.958 0.969 0.956 0.962 0.959 0.966 0.969 0.961 

IA(MRFF) 0.284 0.373 0.577 0.821 0.968 0.953 0.961 0.953 0.968 0.957 0.952 0.965 0.951 

BE(PRED) 0.94 0.949 0.946 0.966 0.953 0.89 0.874 0 0 0 0 0 0 

IA(TED) 0.944 0.96 0.95 0.953 0.961 0.969 0.951 0.97 0.945 0.954 0.969 0.973 0.952 
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Fig 5 Depicts the NACC outcomes of the AEOHDL-VTNT approach with other existing methods under distinct 
databases and varying NF. These results depicted the supreme performance of the AEOHDL-VTNT model. 

 

 
 
Fig 5. NACC examine AEOHDL-VTNT strategy (a) SVHN, (b) CIFAR-10, (c) IMDB, (d) GTSRB, (e) REUTERS, (f) 

MNIST, (g) FMNIST, and (h) AMNIST. 
 

V. CONCLUSION 
DL models have been hybridized in this work to create a novel AEOHDL-VTNT approach. The inference of systems 
embedded at the network's edge serves as the foundation for the AEOHDL-VTNT approach that is being discussed. the 
AEOHDL-VTNT approach that is being demonstrated, two major processes are involved namely HDL based VTNT design 
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and hyperparameter tuning. At the initial stage, the HDL model is employed for the design of VTNT. Next, in the second 
stage, the AEO algorithm is applied for the hyperparameter tuning of the HDL model and thereby enhances the overall 
efficacy of the HDL. TO demonstrate the enhanced performance of the AEOHDL-VTNT technique, a series of simulations 
were taken place. The simulation outcomes highlighted that the AEOHDL-VTNT technique reaches superior performance 
over other models. 
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