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Abstract – Object detection (OD) is a computer vision procedure for locating objects in digital images. Our study examines 

the crucial need for robust OD algorithms in human activity recognition, a vital domain spanning human-computer 

interaction, sports analysis, and surveillance. Nowadays, three-dimensional convolutional neural networks (3DCNNs) are 

a standard method for recognizing human activity. Utilizing recent advances in Deep Learning (DL), we present a novel 

framework designed to create a fusion model that enhances conventional methods at integrates three-dimensional 

convolutional neural networks (3DCNNs) with Convolutional Long-Short-Term Memory (ConvLSTM) layers. Our 

proposed model focuses on utilizing the spatiotemporal features innately present in video streams. An important aspect 

often missed in existing OD methods.  We assess the efficacy of our proposed architecture employing the UCF-50 dataset, 
which is well-known for its different range of human activities. In addition to designing a novel deep-learning architecture, 

we used data augmentation techniques that expand the dataset, improve model robustness, reduce overfitting, extend dataset 

size, and enhance performance on imbalanced data. The proposed model demonstrated outstanding performance through 

comprehensive experimentation, achieving an impressive accuracy of 98.11% in classifying human activity. Furthermore, 

when benchmarked against state-of-the-art methods, our system provides adequate accuracy and class average for 50 

activity categories. 

Keywords – Object Detection, Human Activity Recognization, Deep Learning, 3DCNN, ConvLSTM. 

I. INTRODUCTION

Object detection (OD) is a computer vision strategy that allows machines to detect and identify objects of interest in images 
or videos. The system will also return a confidence level that indicates its level of assurance about the accuracy of a forecast. 

The task involves identifying and classifying object positions and boundaries, which is crucial for vision recognition, image 

classification, and retrieval. OD [1] also benefits video surveillance or image recovery systems applications. The primary 

goal of OD in computer vision is to locate instances of visual objects such as people, cars, houses, and animals [2] in digital 

images and determine their locations within the image. OD plays a significant role in computer vision by identifying objects 

in images in particular classes [3]. OD in images is complicated due to objects’ extensive potential locations and sizes and 

each detection provides important positional information through careful exploration is required. The position, scale, 

bounding box, or segmentation mask of the object are all crucial information that could be included with any detection. In 

alternative situations, the more precise posture information contains the parameters of a linear or non-linear transformation. 

For instance, a face detector can determine the bounding box of the face and the positions of the mouth, nose, and eyes.  

     An alternative way to characterize the pose would be to use a three-dimensional transformation to indicate the object’s 

location on the camera. Nevertheless, it might be challenging to develop models that capture a large amount of diversity in 
images. OD is necessary for further computer vision tasks such as object tracking [4], image captioning [5], and instance 

segmentation [6]. OD advancements have been made in the past few years due to the quick development of Artificial 

Intelligence (AI) systems. Multiple real-world applications, such as autonomous driving [7], robotics [8], medical image 

analysis, and video surveillance [9], heavily depend on OD. Images of specific classes of objects are inconsistent. The actual 

imaging method is one cause of variation. Even in a static image, fluctuations in illumination, camera position, and 

digitization artifacts can cause noticeable differences in the appearance of an image. Additionally assuming no change in the 

imaging technique, the second source of variance arises from the intrinsic appearance variety of objects within a class. People 
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differ in terms of their shapes and clothing choices, for instance, and the handwritten number 7 can be written in various 

ways, such as with varied slants, stroke widths, and a combination of these characteristics. Creating computationally efficient 

invariant identification techniques for these alterations is the problematic part [1]. The primary tasks in this field include 

Referring Expression Comprehension (REC) [10], [11], [12], [13] and Open Vocabulary Object Detection (OVD) [14], [15], 

[16], [17]. OD, a vital aspect of computer vision, has multiple practical applications.  
     Consequently, there’s a significant drive to improve detection models, specifically in dealing with a broad range of 

objects. OD techniques are often classified into two primary categories: generative and discriminative [18]. Generative 

methods [19] involve constructing a probability model containing an object’s various and a model for how the object appears 

in an image that provides a particular pose. These methods also contain a model for background images that don’t include 

the detected object. The parameters of these models are specified from training data, and decisions are made based on the 

probabilities computed. poses In contrast, discriminative methods concentrate on building classifiers that differentiate 

between images containing instances of target objects and those that do not. These classifiers are developed to reduce errors 

in the training data, often with adjustments to control overfitting. Additional distinctions among detection algorithms include 

the instruments utilized for image scanning, the kind of image representation incorporated into the models, and the volume 

of training data required. Acknowledging the actions of humans in images or videos is a complex task involving looking at 

different factors, like what objects are present, how they’re positioned, how people are moving, their postures, and even 

when they’re resting. Understanding what people are doing requires the ability to accurately recognize human actions in 
images or videos, independent of the involvement of objects. 

   The system has essential stages, including identifying human movements such as cycling, jogging, walking, sleeping, 

standing, playing, sitting, running, handshaking, and more, and identifying objects [20]. Identifying human activity involves 

more than just individuals because it involves the things around them. For example, knowing if someone is wearing specific 

gear while jogging or carrying something like a water bottle is helpful. It helps us understand the situation. Scientists and 

researchers have spent a lot of effort studying how to identify these actions and objects in videos. Most researchers have 

delved into human activity and OD using video recognition techniques, focusing on the UCF-50 dataset [21]. This dataset 

incorporates a diverse set of 50 action categories, representing YouTube videos captured under realistic conditions. We, too, 

utilized the UCF-50 dataset to assess and precisely classify the actions in our study and to evaluate and accurately categorize 

the human activity in our work. 

The following is the study’s fundamental contribution: 

 We used rigorous preprocessing approaches and augmentation strategies to diversify and enrich our video dataset 

to overcome data restrictions and improve model performance and generalization. 

 We combined the 3DCNN and LSTM architectures in a novel way to create a new model that is better at capturing 

temporal and spatial characteristics, which improves the model’s ability to analyze complicated video data. 

 Our study includes a thorough analysis of every class in the dataset, where our suggested model consistently showed 

excellent accuracy, confirming its effectiveness in accurately classifying various activity types. 

 Compared with previous studies, our proposed approach greatly improves the accuracy of classifying human 

activity from video data, representing a noteworthy development in the activity recognition field. 

This paper is structured into multiple sections. In Section II, we will first review the current approaches to real-time OD 

and classifying human activities. We will also pinpoint some fundamental limitations of OD and the UCF-50 dataset. Then, 

in Section III, we will summarize our methodological statement and used materials for this purpose. Section IV briefly 
discusses the experimental outcomes for our proposed model implementation. Finally, Section VI will present the results 

and findings of our research. 

II. LITERATURE REVIEW 

Over the years, several scholars have conducted numerous studies to improve efficacy in OD and classification. Here, we 

present a few noteworthy and current studies in this field. 

Yun et al. [22] introduced a method for real-time estimation of occupant metabolic rates (MET) to enhance indoor thermal 

comfort by combining a pose-based activity classification model with an OD model, and different METs can be accurately 

evaluated. The custom OD model performed a real-time classification accuracy of 89%, with a 100% accuracy when 

evaluating over 15-second intervals. The MET estimation algorithm demonstrated an 83% real-time accuracy for six METs 

and 99% accuracy over 15-second intervals. Hu et al. [23] presented a novel approach for detecting hidden human targets 

by utilizing physiological characteristics and their spatiotemporal interdependencies. Experimental outcomes on a 

homemade hidden human object dataset indicated notable improvements over existing methods, performing detection 
accuracies of 64%, 44%, and 54% for indoor, outdoor, and overall scenarios, respectively. These accuracies surpassed YOLO 

v4 and traditional feature-based models (HOG, LBP, Haar) by at least 22%. Every module in the suggested strategy was 

shown to be effective through ablation experiments. Promising outcomes indicate potential applications in public security 

inquiries, military rescue, and other fields. The handcrafted dataset will be made accessible to the public upon acceptance, 

thereby advancing this field’s study. 

Su et al. [24] introduced a novel framework for Human Activity Recognition (HAR) using Graph Neural Networks 

(GNN) to examine human-object interactions and enhance the identification of Activities of Daily Living (ADL). Compared 

to prior methods, which frequently depended on object classification and posture estimates from camera frames, authors 

considered the relationships between ADL and human-object interactions. The framework deduced various actions and their 
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relevant environmental objects by automatically encoding these relationships. The results demonstrated better performance 

than traditional feed-forward neural networks, with an ADL classification accuracy of 0.88, using the Toyota Smart Home 

dataset for evaluation. Moreover, object-inference performance was improved by adding encoded information from 

relational data, resulting in an accuracy increase from 0.71 to 0.77. This work showed that GNNs can be beneficial for 

identifying everyday activities and showed how explicit examination of human-object interactions can lead to more reliable 
HAR systems. 

Nabiei et al. [25] studied real-time human activity recognition employing hidden Markov models (HMMs) and 

sensorized objects while focusing on making tea for stroke patients who have apraxia or action disorganization syndrome 

(AADS). The proposed method used parallel detectors with inputs from sensors on objects and hand coordinates, each in 

charge of identifying a sub-goal in the tea-making process. Experiments revealed different error rates: sensorized item 

detectors had less than 5% inaccuracy, whereas hand coordination depended up to 30% on detectors; however, the system 

operated in real time. 

Suriani et al. [26] presented a method using Histograms of Oriented Gradient (HOG) and Histograms of Oriented Optical 

Flow (HOOF) to understand human actions in monitored areas. The HOG technique allowed identify critical object features, 

while HOOF defined object states, mainly during human-object interactions. Their method is acceptable for distinguishing 

between passive and active objects in the observed space. HOG determined objects based on their special traits, involving a 

robust foundation for additional analysis. Meanwhile, HOOF captured how object properties differ over time. These features 
were categorized into activity classes using SVM techniques, allowing the system to learn patterns from the input video data. 

Through stringent testing across different scenarios, they achieved an 89% accuracy rate with an 11.3% error rate, presenting 

real-world applications demanding authentic human action recognition. 

Hashim et al. [27] proposed a hardware-based activity recognition system to support the independent living of older 

adults by using a Jetson Nano 2GB, a monitor, and a web camera. The system was developed to detect and recognize the 

activities of older adults in real time. Two datasets were built for training the YOLO network, with training employing 

Google Colab. After that, the trained weights were deployed on the Jetson Nano 2GB to be tested in a real-world 

environment. The hardware implementation and simulation accuracy exceeded 80%, indicating the system’s efficacy. The 

study emphasized how crucial hardware-based activity recognition systems were, especially for helping older people.  

After going over the body of research, we identified some constraints connected to OD and the UCF-50 dataset – One 

fundamental limitation of working with the UCF-50 dataset is the challenge of performing high accuracy. Most researchers 
who worked on this dataset have needed help to achieve no table levels of accuracy in tOur study investigates researchers 

concentrate just on a subset of classes within the dataset, which frequently leads to this issue. Moreover, using 3DCNN with 

ConvLSTM for training deepens this limitation because these advanced models require substantial volumes of high-quality 

data to generate satisfactory outcomes. Unfortunately, obtaining such data is a hurdle in many real-world applications where 

such resources are limited or unavailable. This constraint restricts the models’ ability to perform excellently in various tasks 

and situations. 

III. MATERIALS AND METHODS 

In our study, we’re investigating the combination of 3DCNN and ConvLSTM networks for video classification. 

ConvLSTM networks utilize their capability to retain temporal information, allowing them to grasp spatiotemporal patterns 

within videos. Meanwhile, 3DCNN networks employ the third dimension to discern features for classification. These 

networks are extensively used across industries and medical fields for video and image categorization tasks. 

 
Dataset Description 

The UCF50 dataset comprised 50 action categories, including YouTube videos that are realistic. The dataset showed many 

differences in lighting, disorderly backdrops, camera motion, etc. Video content in the same group may share 

commonalities like the same subject, backdrop, point of view, etc. There were 50 subcategories in the UCF50 dataset, 

including Baseball Pitch, Basketball Shooting, Bench Press, Biking, Billiards Shot, Breaststroke, Clean and Jerk, Diving, 

Drumming, Fencing, Golf Swing, Playing Guitar, High Jump, Horse Race, Horse Riding, Hula Hoop, Javelin Throw, 

Juggling Balls, Jump Rope, Jumping Jack, Kayaking, Lunges, Military Parade, Mixing Batter, Nun chucks, Playing Piano, 

Pizza Tossing, Pole Vault, Pommel Horse, Pull-Ups, Punch, Push Ups, Rock Climbing Indoor, Rope Climbing, Rowing, 

Salsa Spins, Skate Boarding, Skiing, Skijet, Soccer Juggling, Swing, Playing Tabla, TaiChi, Tennis Swing, Trampoline 

Jumping, Playing Violin, Volleyball Spiking, Walking with a Dog, and Yo-Yo [28]. Fig 1 illustrates the UCF50 dataset 

sample. 
 

Data Preprocessing and Augmentation 

Multiple phases are involved in preparing data for DL algorithms so that it is appropriate for training. The sequential nature 

of the frames and the requirement for size and scale uniformity make this process especially difficult for video data. Firstly, 

we extract the frames from the videos and systematically arrange them. Every video is made up of a sequence of frames 

that are shown over time. We select a certain number of frames from each video and resize them to a standard size, usually 

(58, 224, 224, 3), corresponding to 58 frames with 224×224 pixel dimensions and 3 RGB channels each. Confirming that 

all pixel values lower within the range of 0 to 1 is crucial for consistency across the dataset. This normalization step permits 

the model to interpret the data accurately and prevents any biases introduced by variations in pixel intensity. Furthermore, 
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data augmentation becomes essential when meeting with limited datasets to improve the model’s performance and avoid 

overfitting. Data augmentation concerns creating variations of existing data by using transformations like RandomCrop, 

HorizontalClip, VerticalClip, RandomFlip, GaussianBlur, and RandomRotate to each frame. These modifications 

artificially improve the dataset’s diversity, strengthening the model and reducing overfitting. However, despite these 

efforts, overfitting can still appear, mainly with complicated models like 3D CNNs. Techniques like regularization and 
dropout layers are typically utilized to address this issue. To keep the model from becoming excessively complicated, 

dropout layers randomly deactivate some neurons during training, encouraging the network to acquire more resilient 

features. Regularization works by placing penalties on large weight values. Data preprocessing and augmentation are 

crucial to preparing video data for DL studies. Standardizing, normalizing, and augmenting the dataset can enhance the 

model’s performance and generalization capabilities, showing more accurate outcomes on unseen data. 

 

 
 

Fig 1. Samples of the UCF50 Dataset. 

Proposed Method 

3DCNN Architecture:  

In particular, in medical imaging, the 3DCNN neural network can recognize and classify various moving 2D objects inside 

and 3D images. As illustrated in Fig 2, 3DCNN entails the dataset’s 3D convolution operation along three axes (x, y, and 
z) using a three-dimensional filter. The values in the layer of the three-dimensional filter must be exactly non-negative. 

The calculation for each place in the layer’s 3D convolution map of features is displayed in the equation below: 

 

 𝑧𝑚𝑛
𝑎𝑏𝑐  =  𝑡𝑎𝑛ℎ (𝑘𝑚𝑛) + ∑ ∑ ∑ ∑ 𝑤𝑚𝑛𝑥𝑧

𝑘𝑟𝑠𝑆𝑚−1
𝑠=0

𝑅𝑚−1
𝑟=0  𝑧(𝑓 + 𝑘) + (𝑔 + 𝑟) + (𝑒 + 𝑠) + (𝑚 − 1)𝑥

𝐾𝑚−1
𝑘=0𝑥   (1) 

 

Where 𝑤𝑚𝑛𝑥𝑧
𝑘𝑟𝑠  defines the value of the kernel connected to the convolutional feature map in the prior layer,𝑆𝑖 represents 

the size of the 3D kernel [29]. 3D convolution is made by stacking layers around the center of a cube, with connected 

convolution maps capturing motion data. However, individually, convolutional kernels can only extract one type of feature.  

 

 
Fig 2.  Analysis Of The Differences Between The Mathematical Operations Of 2D And 3D Convolution [30]. 

In essence, 3DCNN compares Conv2D, the 2D Convolutional Neural Network. Similar to 2D convolution, 

incorporating numerous convolutional layers can improve 3DCNN performance. Correctly specifying the number of layers, 

filters for each layer, and filter size is essential in 3DCNN construction. For the pooling size to fit the 3D data, three 
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dimensions must be included in the network design if pooling is used. A 3D volume space is the shape that a 3DCNN 

network outputs [30], [31]. 

 

ConvLSTM Architecture 

The ConvLSTM neural network was designed by incorporating a Convolutional Neural Network (CNN) with an LSTM 
network. Like the LSTM network, the ConvLSTM network operates as a memory network, performing convolution 

operations on the relations between layers. The internal structure of a ConvLSTM network is demonstrated in Fig 3 [32].  

 

 
Fig 3. Internal Architecture of ConvLSTM [32]. 

 

The ConvLSTM neural network is extensively used for recognizing time-dependent patterns in images and videos due 

to its capability to capture spatial and temporal relationships. ConvLSTM involves a convolutional operation to the 

transitions between states and inputs. This architecture allows the network to perceive changes over time, comparable to 

how it recognizes spatial features in traditional CNNs. A critical factor in ConvLSTM is the size of the transition kernel 

when we consider the states as representations of moving objects. A smaller transition kernel better captures slower 

motions, but the network can capture faster motions with a bigger transition kernel. Due to its flexibility in kernel size, 

ConvLSTM can be applied to various dynamic data problems. Here is a condensed form of the crucial equation: 
 

 Pq = σ (𝑍𝑥𝑖 ∗ 𝑌𝑡 + 𝑍ℎ𝑖 ∗ 𝑆𝑡−1 + 𝑍𝑐𝑖𝜊𝑇𝑡−1 + 𝑏𝑖)  (2) 

 

 Ft = σ (𝑍𝑥𝑓 ∗ 𝑌𝑡 + 𝑍ℎ𝑓 ∗ 𝑆𝑡−1 + 𝑍𝑐𝑓𝜊𝑇𝑡−1 + 𝑏𝑓)  (3) 

 

 𝑡𝑡  =  ft 𝜊 𝑇𝑡−1 + 𝑝𝑞 𝜊 𝑡𝑎𝑛ℎ (𝑍𝑥𝑐 ∗ 𝑌𝑡 + 𝑍ℎ𝑐 ∗ 𝑆𝑡−1 + 𝑏𝑓)   (4) 

 

 𝜊𝑡 = σ (𝑍𝑥𝑜 ∗ 𝑌𝑡 + 𝑍ℎ𝑜 ∗ 𝑆𝑡 + 𝑍𝑐𝑜𝜊𝑇𝑡−1 + 𝑏𝑜)  (5) 

 

 𝑠𝑡  = 𝑜𝑡 𝑡𝑎𝑛ℎ(𝑇𝑡)  (6) 

 

In this equation: 

- pq defines the input gate. 

- σ represents the sigmoidal function. 

- ∗ indicates the convolution operator. 

- ◦ represents the Hadamard (element-wise) product. 

- 𝑍𝑥𝑖 , 𝑍ℎ𝑖 , 𝑎𝑛𝑑 𝑍𝑐𝑖  the input, hidden state, and cell state, respectively, are represented by convolutional kernels. 

- 𝑍𝑡   denotes the cell inputs. 

- 𝑆𝑡−1   means the hidden states from the prior time step. 

- 𝑇𝑡−1   defines the cell states from the earlier time step. 

- 𝑏𝑖  indicates the bias term associated with the input gate. 

 

Proposed 3DCNN + ConvLSTM Architecture 

Our presented neural network architecture incorporates Conv3D layers with a ConvLSTM layer and a Conv2D layer. This 
architecture, known as 3DCNN + ConvLSTM, comprises a few Conv3D layers observed by a single ConvLSTM layer and 

a single Conv2D layer. These layers are illustrated in Fig 4. The following layers in this proposed architecture: 
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 Conv3D layers: These layers process input video data to extract spatiotemporal features. The number of Conv3D 

layers can be adjusted according to the task complexity. They employ a three-dimensional filter by convolving in 

three directions (x, y, and z). 

 

 
 

Fig 4. The Architecture of Proposed 3DCNN + ConvLSTM. 

 

 MaxPooling3D layer: This operation decreases 3D data.  

 ConvLSTM layer: Through processing features from the Conv3D layers, temporal dependencies between frames 

are captured. 

 Conv2D layer: This layer uses the output from the previous layers to conduct the final classification of 2D data 
convolving. 

 Flatten layer: It transforms the output matrix into a vector. 

This architecture combines Conv3D and ConvLSTM networks using their respective strengths. It incorporates multiple 

3D convolutional layers, a single ConvLSTM layer, a single 2D convolutional layer, batch normalization, a flattened layer, 

and a dense layer. The 3D convolutional component is adjusted from a previous study [29], while the ConvLSTM part is 

based on another study [33]. The output of Conv3D layers is ensured to be non-negative integers by mathematically 

determining hyperparameters such as the number of filters and kernel size for the 3D convolutional layers and MaxPooling. 

 

 
Fig 5.  An Illustration Of The Proposed Architecture’s Flow. 

 

Fig 5 displays the flowchart for this proposed architecture. The presented architecture in this study incorporates 3DCNN 

and ConvLSTM models. It combines six 3D convolution layers, four MaxPooling3D layers, one ConvLSTM layer, and a 

subsequent Conv2D layer.  
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Algorithm 1 Proposed 3DCNN + ConvLSTM Architecture 

 

1: Input: 3D Volumes (X), Labels (Y ) 

2: Output: Predicted Labels ( ˆY ) 

3: Initialization: Initialize network parameters 
4: Data Preprocessing: Normalize, augment, and split data into training and testing sets 

5: Define 3DCNN Backbone: Construct a 3DCNN architecture 

6: Define ConvLSTM Layer: Construct a ConvLSTM layer 

7: Connect 3DCNN and ConvLSTM: Incorporate the 3DCNN backbone and ConvLSTM 

layer 

8: Compile Model: Describe the loss function and optimizer 

9: Training: Train the incorporated model using training data 

10: Evaluation: Evaluate model performance on testing data 

11: Hyperparameter Tuning: Optimize hyperparameters employing cross-validation 

12: Prediction: Utilize the trained model to predict labels for new data 

13: Output Results: Show evaluation metrics and visualization of outcomes 

 

 

The input dimensions (width, height, and channels) are 100 × 100 × 3. The first 3D convolution layer contains 64 filters 

with a 3 × 3 × 3 kernel size. Every 3D convolution layer is followed by a MaxPooling3D layer with a stride of 2 and a 

length of 2 × 2 × 2. Two 3 convolution layers with 128 filters are the successive layers, and then there is another 

MaxPooling3D layer. The last two 3D convolution layers use 256 and 512 filters, respectively. After every MaxPooling3D 

layer, batch normalization layers are added to aid training. The ConvLSTM network comprises a single 3 × 3 ConvLSTM 

layer with 64 filters. After this layer, there is a Conv2D layer with 16 filters of size 2 × 2 and a batch normalization layer. 

Next, the Conv2D layer’s output is flattened to turn it into a vector. A final dense layer of a single neuron predicts the input 

class. The ”Adamax” optimization algorithm is employed, and its learning rate is 0.001. Algorithm 1 presents the Proposed 
3DCNN + ConvLSTM Architecture algorithm, reducing understanding and implementation complexity. 

Table 1 displays the total number of parameters and the number of trainable and non-trainable parameters. DL models 

were constructed employing Python frameworks like Keras and TensorFlow, while experimental outcomes were obtained 

using Nvidia CUDA libraries. The input dataset contained images of 100 × 100 pixels with 3 color channels. In each 

dataset, 70% of the samples were assigned for training, 20% for testing, and the remaining 10% for validation. 

 

Table 1. The Entire Number Of Parameters In Our Proposed Architecture 

Parameters of the Presented Architecture Value 

Total number of parameters 2,326,914 

Trainable number of parameters 2,325,250 

Non-trainable number of parameters 1664 

 

IV. RESULTS AND DISCUSSION 

We used a powerful GPU, such as the NVIDIA GeForce RTX or NVIDIA Tesla, and a high-performance workstation 

with a multi-core CPU to implement human activity recognition using DL on the UCF-50 dataset. Deep neural network 

training requires a lot of computation, which the GPU helped to speed up. On the other hand, enough RAM was needed to 

handle the massive amounts of video data and model parameters effectively during training. We mainly used Python, a 
flexible programming language popular in artificial intelligence and machine learning, for our software needs. We used 

two of the most popular DL frameworks, TensorFlow and PyTorch, renowned for their adaptability and broad support for 

creating intricate neural network architectures. 

 

Evaluation Criteria 

        The presented model is evaluated using several evaluation criteria. The evaluation metrics are listed below: 

 

Precision: 

 Precision evaluates the accuracy of the positive forecasts. 

 It is calculated as the ratio of total positive predictions (TP + FP) to true positive (TP) predictions. 

 Precision = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 
Recall: 

 Recall, sometimes referred to as sensitivity or true positive rate (TPR), evaluates the ability of the classifier 

to find all the positive samples. 
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 It can be defined as the ratio of real positive samples(TP + false negatives (FN)) to true positive (TP) 

expectations. 

 Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
   

 

F-score: 

 The F-score is the mean of precision and recall, giving a single score that balances precision and recall. 

 F-score = 2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

Accuracy: 

 Accuracy evaluates the true results (both true positives and true negatives) among the whole number of cases 

examined. 

 It is the ratio of correct predictions to the whole number of predictions. 

 Accuracy = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 +𝐹𝑃 + 𝐹𝑁
 

 

Terms: 

 TP (True Positive): Accurately predicted positive instances. 

 TN (True Negative): Accurately predicted negative instances. 

 FP (False Positive): Erroneously predicted positive instances (predicted positive but negative). 

 FN (False Negative): Erroneously predicted negative instances (predicted negative but positive) 
 

Result 

The results of our model on the UCF-50 dataset will be briefly discussed in this section, along with a comparison with the 

results of other models that used the same dataset. The performance of 3DCNN, ConvLSTM, and Proposed 3DCNN + 

ConvLSTM on the UCF-50 dataset presented variations in testing, training, and validation accuracy. 

 

Table 2. The Performance Of The Suggested Model Testing, Training, And Validation Accuracy 

Model Testing Accuracy Training Accuracy Validation Accuracy 

3DCNN 85.63% 80% 75% 

ConvLSTM 90.55% 95% 84% 

Proposed 3DCNN + ConvLSTM 98.11% 99% 94% 

 

Table 2  shows the proposed model’s performance in testing, training, and validation accuracy. The 3DCNN, 

ConvLSTM, and the Proposed 3DCNN + ConvLSTM have presented different levels of accuracy across training, testing, 

and validation datasets. The 3DCNN performed a testing accuracy of 85.63%, indicating its ability to generalize well to 

unseen data. However, its training accuracy is barely lower at 80%, suggesting some degree of underfitting. The validation 
accuracy, even low at 75%, pointed out that the model may generalize poorly to new data outside the testing set. This 

difference between training, testing, and validation accuracies presented that the model may perform less well on samples 

it has yet to see because it has yet to comprehend all the data patterns during training. In contrast, the ConvLSTM model 

reached a higher testing accuracy of 90.55%, outperforming the 3DCNN. Its training accuracy increased to 95%, suggesting 

a better fit to the training data. However, the validation accuracy was lower than the testing accuracy at 84%, indicating 

some overfitting.  

 

 
Fig 6. Performance Of The Proposed Model. 

 

Overfitting appears when a model learns to perform well on the training data but fails to generalize to new data. The 

Proposed 3DCNN + ConvLSTM model surpassed both individual models, performing an outstanding testing accuracy of 
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98.11%. Its training accuracy is the highest at 99%, demonstrating a perfect fit to the training data. The validation accuracy 

of 94% is also extensively high, indicating that the model generalizes well to unseen data. This combined model integrates 

the strengths of both 3DCNN and ConvLSTM architectures, effectively capturing spatial and temporal features in the data. 

While all models demonstrated promising results, the Proposed 3DCNN + ConvLSTM model showed the best accuracy 

across all metrics. However, the differences between training, testing, and validation accuracies in each model underscored 
the importance of careful evaluation to generalize unseen data and mitigate issues such as overfitting or underfitting. The 

three models, 3DCNN, ConvLSTM, and the proposed 3DCNN+ConvLSTM, favorably compared precision, recall, and F-

score performance metrics.  

Fig 6 graphically represents the performance of evaluation metrics of the models. Starting with 3DCNN, it reached a 

precision of 85.55%, a recall of 86.13%, and an F-score of 85.21%. These metrics indicated its proficiency in correctly 

identifying relevant instances while keeping a balanced trade-off between precision and recall. On the other hand, 

ConvLSTM exhibited more increased precision at 88.25%, barely lower recall at 87.52%, and an admirable F-score of 

88.11%, which suggested ConvLSTM’sability classify positive instances more accurately, even though it had a slightly 

lower recall rate than 3DCNN. The proposed model, 3DCNN+ConvLSTM, showcased remarkable performance across all 

metrics, with a precision of 98.80%, recall of 98.55%, and an outstanding F-score of 98.70%.  

The proposed approach capitalized on the strengths of 3DCNN and ConvLSTM, generating better use of temporal and 

spatial information to obtain higher classification accuracy. The proposed model is superior to 3DCNN and ConvLSTM, 
even if each performs well in certain respects. Its substantially higher precision, recall, and F-score suggested a synergistic 

advancement over individual models. Combining convolutional and recurrent neural network architectures, the proposed 

model harnesses spatial and temporal dependencies more exhaustively, significantly enhancing performance. Therefore, 

the proposed 3DCNN+ConvLSTM model is the most suitable choice due to its exceptional overall accuracy and balanced 

performance across precision and recall. Several hyperparameters are essential in determining how the model behaves and 

performs. First, by choosing ’cate precision at 88.25%, barely lower recall at 87.52%, and an admirable F-score of 88.11%, 

which suggested ConvLSTM’s ability to classify positive instances more accurately, even though it had a slightly lower 

recall rate than 3DCNN. The proposed model, 3DCNN+ConvLSTM, showcased remarkable performance across all 

metrics, with a precision of 98.80%, recall of 98.55%, and an outstanding F-score of 98.70%. This proposed approach 

capitalized on the strengths of 3DCNN and ConvLSTM, generating better use of temporal and spatial information to obtain 

higher classification accuracy.  
Table 3. Hyperparameters  of the Model 

Hyperparameter Value 

Optimizer Adamax 

Loss of function ’categorical cross-entropy’ 

Rate of learning 0.001 

Patience 15 

Restore best weights True 

Epoch 50 

 

The proposed model is superior to 3DCNN and ConvLSTM, even if each performs well in certain respects. Its 

substantially higher precision, recall, and F-score suggested a synergistic advancement over individual models. Combining 

convolutional and recurrent neural network architectures, the proposed model harnesses spatial and temporal dependencies 

more exhaustively, significantly enhancing performance. Therefore, the proposed 3DCNN+ConvLSTM model is the most 

suitable choice due to its exceptional overall accuracy and balanced performance across precision and recall. Several 

hyperparameters are essential in determining how the model behaves and performs. First, by choosing ’cate-

gorical_crossentropy’ as the loss function, the model strives to minimize the discrepancy between the actual class labels 

and predicted probabilities for different activity classes. The optimizer ’Adamax’ is used in gradient descent optimization.  

It controls the step size in updating the model’s parameters during training with a learning rate of 0.001. This learning 

rate is a vital factor that influences the training process’s stability and rate of convergence. The amoun t of total passes 
through the dataset during training is specified by the number of epochs set to 50. Individually epoch defines one forward 

pass and one backward pass of all the training examples.  

The dataset is divided into batches, as demonstrated by the batch size of 4, and the model’s parameters are upgraded 

employing the average gradient estimated across these batches. For validation, 10% of the training data is reserved when 

the validation split is 0.1. This may prevent overfitting by enabling the model to observe its performance on untested data 

during training. We assessed the model using several metrics once trained, including accuracy, f-score, precision, and 

recall. Table 3 depicts the Hyperparameters of the model. Fig 7 shows every epoch’s testing accuracy and loss. Apart from 

the conventional evaluation metrics like accuracy, F-score, precision,  and recall, we also used Cohen’s Kappa and 

Matthews Correlation Coefficient (MCC) to evaluate the performance of our model. Cohen’s Kappa measures the degree 

of agreement between predicted and observed classifications by considering the possibility that agreement could have 

happened by accident alone. MCC, on the other hand, accounts for both true and false positives as well as negatives when 

calculating the correlation between predicted and observed classifications. By adding these extra metrics, the model’s 
predictive power is comprehensively assessed, expanding our comprehension of its effectiveness beyond traditional 



 

ISSN: 2788–7669   Journal of Machine and Computing 4(3)(2024) 

768 
 

metrics. Table 4 shows the kappa and MCC values. With an MCC of 82.65% and a  Kappa score of 82.87%, the DCNN 

model performs admirably. These metrics show that there is a good degree of agreement between the model’s forecasts 

and the actual dataset observations. However, it performs marginally worse in MCC and Kappa compared to the other 

evaluated models. The ConvLSTM model performs better than the DCNN model, as shown by its higher MCC of 88.54% 

and Kappa score of 88.03%. This model captures temporal and spatial dependencies in the data by utilizingLSTM and 
convolutional layers. More excellent agreement with the ground truth labels and a more robust predictive capability is 

indicated by the higher values of MCC and Kappa. The suggested hybrid model performs significantly better than the 

DCNN and ConvLSTM models, combining 3DCNN with ConvLSTM layers. With an MCC of 97.51% and a Kappa score 

of 97.96%, it exhibits remarkable agreement and predictive accuracy with the dataset’s true labels. This notable 

performance gain indicates that the hybrid architecture’s integration of spatial and temporal information greatly improves 

the model’s capacity to represent intricate patterns and dynamics in the data. Overall, the comparative analysis 

demonstrates the efficacy of the suggested 3DCNN + ConvL-STM model in our study, outperforming the individual DCNN 

and ConvLSTM models in terms of both Kappa and MCC. Our suggested model effectively met every assessment criterion 

after thoroughly examining the research findings. 

 

 
Fig 7. Visualization of Testing Accuracy and Loss for Each Epoch. 

 

Table 4. Kappa and MCC Analysis 

Model Kappa MCC 

3DCNN 82.87% 82.65% 

ConvLSTM 88.03% 88.54% 

Proposed 3DCNN +ConvLSTM 97.96% 97.51% 

 

First, we examined how well it could generalize data. We found that the proposed model had a well-fitted profile with 
no cases of overfitting or underfitting, suggesting that it was robust when dealing with unknown data. Our proposed model 

demonstrated outstanding results after examining the true positive, true negative, false positive, and false negative rates. 

The evaluation was carried out using precision, recall, and F-score metrics, all of which showed the exceptional 

effectiveness of the model in precisely identifying instances in various classes. The suggested model also showed a 

respectable degree of agreement in this instance, confirming its dependability and accuracy in identifying the underlying 

patterns in the data. The results of these analyses are summarized in Fig 8, where the pie chart captures the overall 

achievement of our research projects. 

 

 
Fig 8. Graphical Representation Of The Model Evaluation Metrics. 
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Discussion 

Our study thoroughly assesses the suggested paradigm on several fronts. Our results show a remarkable ability to recognize 

objects and activities in real time from video data. Table 5 compares different model performances and summarizes the  

 

Table 5. Comparing Existing Models That Applied To The UCF-50 Dataset With Our Proposed Model 

Reference Model Accuracy 

Shi et al. [34] CNN + Transform 83.41% 

Ramya et al. [35] Distance transform + Entropy features 80% 

Vaghela et al. [36] I3D model with VGG19 98.06% 

Aldahoul et al. [37] EfficientNetB7-LSTM 80% 

Proposed Model 3DCNN + ConvLSTM 98.11% 

 
research achievements in the field. The comparison of our model with other existing work that trained on the same 

dataset is shown in Table 5. When we compared the models on the UCF-50 dataset, the suggested model—which combined 

the architectures of 3DCNN and ConvLSTM—achieved a remarkable accuracy rate of 98.11%. With an accuracy of 

98.06%, the top reference model [36] that uses an I3D model in conjunction with VGG19 architecture is closely matched 

by our model. The accuracy of 83.41%, 80%, and 80% correspondingly was attained by using CNN with transformations 

[34], distance transforms with entropy features [35], and the EfficientNetB7- LSTM architecture [37], which is less 

accurate than our model. These outcomes highlight our suggested model’s outstanding performance and competitiveness 

in object and activity detection in video datasets, establishing it as a notable competitor among cutting-edge techniques. In 

our analysis of the UCF-50 dataset, which has 50 different classes, we found that earlier research used a more detailed 

approach, with researchers focusing on particular courses for their findings. Similarly, we found that various classes had 

different performance outcomes from our model evaluation. We compared our class-wise results to those of Kumar et al. 
[38], who took into account all 50 classes in their research to give a thorough comparison. Table 6 provides a concise 

summary of this comprehensive class-wise comparison, illuminating the subtle differences in performance across various 

activity categories and facilitating a better understanding of the model’s efficacy over the whole range of activities. Vital 

accuracy  

 

Table 6. Our Suggested Model’s Accuracy Was Compared Class-Wise To The Work Of Kumar Et Al. [38] 

Class Proposed Model Kumar et al. [38] 

 

Baseball Pitch 96% 98% 

Breaststroke 90% 86% 

Golf Swing 97% 95% 

Hula Hoop 80% 86% 

Kayaking 92% 96% 

Playing Piano 96% 95% 

Pull Ups 87% 88% 

Rowing 91% 86% 

Soccer Juggling 97% 95% 

Trampoline Jumping 93% 95% 

Basketball shooting 89% 86% 

Clean and Jerk 94% 88% 

Playing Guitar 98% 95% 

Playing Violin 89% 86% 

Javelin Trow 90% 88% 

Lunges 96% 95% 

Playing Tabla 88% 86% 

Punch 93% 98% 

Salsa Spins 83% 88% 

Swing 98% 95% 

 

is demonstrated by our suggested model in various tasks, with remarkable success rates of 96% for baseball pitching, 

97% for golf swinging, and 96% for piano playing. These findings frequently match or even exceed the accuracy reported 

by Kumar et al. For example, our model’s 96% accuracy for Baseball Pitch is only slightly less accurate than Kumar et 

al.’s 98%. Our model beats the benchmark set by Kumar et al. in certain instances. For example, our model obtains greater 
accuracies (97% and 98%, respectively) in golf swing and guitar playing than the 95% reported by Kumar et al. This 

indicates that correctly identifying these actions from video data is an area in which our model shines. Nonetheless, there 

are several situations in which the accuracy of our model is marginally less than that stated by Kumar et al. For instance, 
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our model achieves 90% and 87% accuracy in tasks like pull-ups and breaststrokes, respectively, although Kumar et al. 

reported somewhat higher values of 86% and 88%. 

 

V. CONCLUSION 

Human activity recognition has several applications, including video surveillance, healthcare, and human-computer 
interaction, which have been the focus of the present research. Recognizing human activities through video data presents 

a challenge wherein temporal features hold marked importance. mCNNs are widely employed for image classification; 

however, adapting CNNs to Human Activity Recognition (HAR) presents challenges because of the temporal dynamics 

involved. Our contribution lies in delivering a novel approach that merges ConvLSTM and 3DCNN models, explicitly 

tailored for improving human activity recognition by employing the UCF-50 dataset. After training and testing, our model 

performed exceptionally well in every class on the UCF-50 dataset. Notably, our presented architecture, combining 

3DCNN with ConvLSTM, surpassed standalone ConvLSTM and 3DCNN models, highlighting the strength of DL 

methodologies in human activity recognition. Our outcomes underscore the efficacy of the merged 3DCNN + ConvLSTM 

in accurately classifying video data featuring different human activities. The importance of our study expands beyond 

academic realms, as the insights gleaned pave the way for improved OD systems in diverse applications, mainly in human 

care, and our research advances more robust and trustworthy solutions in this domain in OD within human activities. 

Moreover, our study provides a basis for future direction and motivation for evaluations on the UCF50 dataset and is 
expanded upon with the UCF101 dataset, therefore increasing the range and applicability of these cutting-edge models. 
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