
 
ISSN: 2788–7669                               Journal of Machine and Computing 4(3)(2024) 

  

693  

Predicting Factory Equipment Lifespan Through 

Manufacturing Data Analysis Using AI 
 

1 Jae-Hak Lee, 2 Young-Han Jeong   and 3Jung Kyu Park 
1,2 Department of Aeronautical & Mechanical Engineering, Changshin University, Korea. 

 3 Department of Computer Engineering, Changshin University, Korea. 
1jhleepaul@cs.ac.kr, 2moteru01@hanmail.net, 3jkpark@cs.ac.kr 

 

Correspondence should be addressed to Jung Kyu Park : jkpark@cs.ac.kr 

 

Article Info 

Journal of Machine and Computing (http://anapub.co.ke/journals/jmc/jmc.html) 

Doi: https://doi.org/10.53759/7669/jmc202404066 

Received 21 November 2023; Revised from 25 December 2023; Accepted 10 June 2024 

Available online 05 July 2024.  

©2024 The Authors. Published by AnaPub Publications.  

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

 

Abstract – Recently, research on applying artificial intelligence (AI) to various industries, especially manufacturing, is 

being actively conducted. In the field of smart factory, the purpose is to improve productivity based on data generated in 

the process of producing or processing products. The tool breakage during metal product processing causes fatal 

difficulties of predicting tool life. Moreover, if tool life is not predicted, defects may occur product reliability 

deteriorate, which may adversely affect product performance or economic aspects. In this paper, data related to 
machining is collected from CNC equipment in real time, and through machine learning and deep learning, which 

factors affect the wear of cutting tools are identified and the lifespan of cutting tools is predicted. An AI-based solution 

was applied to the system, productivity improved due to an increase in tool life. 
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I. INTRODUCTION 

Recently, research on the application of artificial intelligence has been actively conducted in various industries, 

especially manufacturing [1-4]. Among them, the smart factory field aims to improve productivity based on data 

generated during the production or processing of products [5-7]. Defects caused by tool breakage that occur during 

processing metal products are one of the most fatal difficulties. However, it is difficult to predict the tool life that causes 

problems. In order to ensure smooth progress of the CNC process, we pursue stabilization of product quality and 
customer satisfaction through improvement of process quality distribution based on optimization of facility 

maintenance management, but there are limitations to existing predictive maintenance methods. To solve this problem, 

it is necessary to introduce an AI solution that can set optimal working conditions for equipment and predict problems 

in advance [8-10]. In addition, the biggest problem is the occurrence of defects due to tool breakage that occurs 

unexpectedly during the production process. However, there is difficulty in predicting tool life, which causes such 

problems.  

     Failure to predict tool life will lead to a decrease in customer reliability if defects occur in processing equipment. 

Additionally, it is urgent to prepare preparatory measures in advance as negative impacts may occur on the management 

or sales side. Therefore, it is necessary to collect data such as real-time usage time, feed rate, load rate, and tool life 

information and use AI techniques to establish a foundation for extending and predicting the life of tools [11-13]. In 

addition, it is necessary to determine whether dimensional tolerances of processed products occur due to temperature 
and humidity. After that, continuous monitoring is required to connect the temperature management device. 

Additionally, it is also necessary to determine the expected time for cutting tool replacement, such as the occurrence of 

vibration due to differences in the amount of cut delivered to the processed product depending on the wear amount of 

the cutting tool bite of the processing equipment. The improvement requirements resulting from this are as follows. 

First, in order to reduce defect rates and improve productivity, we utilize currently collected manufacturing data from 

equipment to develop a solution that can extend the life of tools and predict tool replacement. Second, as a problem-

solving obstacle, data related to machining is collected in real time from CNC equipment, but the factors that affect the 

life of the tool are revealed. Therefore, through this study, we will conduct verification of the AI algorithm by learning 

manufacturing condition data such as feed rate, load rate (SPINDLE SPEED, SPINDLE LOAD), and tool life 

information, by detecting changes in these variables and checking how they affect tool life. 
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II. REALATED WORKS 

Convolutional neural networks have come a long way since LeNet. In particular, based on ImageNet's ILSVRC, an 

image processing competition for image classification, image segmentation, and object detection, a new convolutional 

neural network architecture won the competition every year, and the winning model became the standard convolutional 

neural network model for image classification. 
 

AlexNet 

AlexNet[14] is an early CNN model in the deep learning era. It is the winning model of the 2012 image classification 

competition called ILSVRC. The start of deep learning in earnest can be seen as AlexNet in 2012. It consists of a total 

of 5 convolutional layers and 3 fully connected layers, and was composed of 2 parallel structures due to limitations in 

memory use at the time. Unlike before, AlexNet used ReLU as the activation function rather than sigmoid or tanh, and 

used Local Response Normalization (LRN) to normalize the feature map. Additionally, a dropout layer is included to 

avoid overfitting. Fig 1 shows the structure of AlexNet. 

 

 
 

Fig 1. Analysis Using a Microscope. 

VGG 

VGGNet is a convolutional neural network model developed by the Visual Geometry Group laboratory at Oxford 

University and is the winning model of ILSVRC 2014 [15]. AlexNet can be said to be the next generation convolutional 

neural network model, and as the name of the paper suggests, it is a deep learning architecture composed of more 

convolutional layers. Depending on the type, it is classified into VGG11, VGG13, VGG16, and VGG19, and the 

number in the model name indicates the number of layers that can be learned in the model. 
Table 1 shows several VGG architectures presented in the VGG paper. A represents a convolutional neural network 

with 11 learnable layers, B with 13, C and D with 16, and E with 19 learnable layers. Here, learnable means a 

convolutional layer and a fully connected layer with weights to be learned by backpropagation, excluding the pooling 

layer and softmax. The LRN layer of A-LRN refers to the Local Response Normalization layer, and this layer performs 

normalization to prevent gradient loss that occurs when the structure of the neural network becomes deeper. In VGG, 

by presenting the experimental results of A and A-LRN, it was shown that the Local Response Normalization layer is 

meaningless in improving performance. C and D are composed of the same number of learnable layers of 16, but there 

is a difference in the filter size of the convolution layer for 1x1 and 3x3 applications. 

 

Table 1. VGG Models 

ConvNet Configuration 

Type A A-LRN B C D E 

Number 

of 

Layers 

11 

weight 

layers 

11 

weight 

layers 

13 

weight 

layers 

16 

weight 

layers 

16 

weight 

layers 

19 

weight 

layers 

 

ResNet 

Normally, the error rate that occurs when humans classify images is considered to be 5%, but ResNet showed an error 

rate of less than 3.6%, becoming the first learning model to surpass humans. Unlike existing structures, ResNet has 

connections that skip the convolution layer. This connection is a residual connection, and the input from the previous 

layer is combined with the result of passing the convolution layer and sent to the next layer. Fig 2 shows the modules 

for two residual concatenations. The first module is a general residual concatenation, and the second module adds a 1x1 

convolution to reduce the number of parameters to learn like in GoogLeNet. 
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Fig 2. Deeper Bottleneck Architectures. 

 

III. MANUFACTURING DATA ANALYSIS 

The method of collecting CNC machining data was to connect the CNC equipment to the Converter program and 

transmit it to the database in the cloud, collecting data at 100ms intervals. And the data collection period was from 

November 2, 2022 to December 1, 2022. Learning data was collected, and PoC data was collected for two weeks from 

December 2. The input variables were composed of X, Y, Z axis, SPINDLE LOAD, SPINDLE SPEED, FEED RATE, 

and tool count, and the output variable was a data set composed of tool wear rate. At this time, the tool wear rate was 

photographed through a microscope as shown in Fig 3, and in collaboration with field workers, the tool wear size was 

measured through the microscope every 333, 666, 1000, 1050, and 1100 times. For each tool counting, the tool was 

taken out of the CNC equipment and tool wear was measured. 

 

 
 

Fig 3. Analysis Using a Microscope. 

 

At this time, in addition to microscopic imaging, the tool wear rate value was completed using the graph in Fig 4 to 

complete the tool wear data. 

 

 
 

Fig 4. Wear And Replacement Standards According to The Number of Times of Tool Use 

 

Before analyzing the collected CNC machining data, data cleaning and processing were performed. Fig 5 shows that 

there were missing values due to network connectivity at the beginning of data collection. All variables with missing 
values and missing values at the beginning of the connection were removed. 
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(a) Before Missing Value Removal. 

 

 
 

(b) After Missing Value Removal. 

 
Fig 5. Before And After Removing Missing Values. 

 

And since it is natural that tool consumption increases as work time increases, it was judged that a time-based 

approach could cause overfitting, and unnecessary variables were removed. For example, unnecessary variables such as 

program number, equipment model name, operation mode, tool life value, and sequence number were removed. After 

removing unnecessary variables, due to the nature of manufacturing data, the time when product defects occur due to 

tool damage or wear becomes severe is shorter than the time when normal products are produced, so the problem of 

data imbalance was solved through the SMOTE method in Fig 6. 

 

 
 

Fig 6. Before SMOTE Application (Left), After Application (Right). 
 

Lastly, to infer tool wear, the backward elimination method among variable selection methods was applied to infer 

tool wear. The reason why the backward elimination method was chosen was because it has a fast-processing speed. 

The results of the backward elimination method are as follows Table 2. 
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Table 2. Backward Elimination Results 

 

 
If all variables are selected 

After removing X, Y, Z 

axis 

Selected Tool count, 

SPINDLE LOAD 

accuracy 95.88 98.5 98.75 

precision 52.94 74.47 83.5 

recall 51.43 100 91.01 

F1-Score 52.17 85.37 87.09 

 

IV. MODEL DESIGN 

The model design and verification process were divided into two parts: model design and model verification. First of 

all, model design involves designing a model using learning data and applying optimal parameters accordingly. Model 

verification infers the degree of tool wear in PoC data through the built model. At this time, the product is determined 

to be defective or non-defective depending on the inferred degree of tool wear, and the model is verified until the 

development of a system that sounds an alarm if a defect occurs. The process of model design and model verification is 

shown in Fig 7. 

 

 
 

Fig 7. Model Development and Verification Process. 

 
The models to be used for learning are LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit), which 

have good performance for time series data because CNC data is time series data [16-18]. The LSTM algorithm is a 

type of short- and long-term memory that complements the shortcomings of existing RNNs. And GRU is a model that 

improves the structure of the existing LSTM to be simpler. In the case of the existing LSTM, there were three gates: 

forget gate, input gate, and output gate, but in Fig 8, GRU uses only two gates, reset gate and update gate. In addition, 

the cell state and hidden state are combined to express one hidden state, making it simpler than the existing LSTM. 
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Fig 8. Model Development and Verification Process. 

 

When the degree of tool wear was not properly collected, AutoEncoder, an unsupervised learning model, was 

selected. The input and output appear to have the same structure, and AutoEncoder was ultimately adopted because the 

encoder restores the input data well and guarantees minimum performance. The last machine learning selected was 

LightGBM in Fig 9. LightGBM is a Gradient Boosting Model, which is a tree-based learning algorithm. Like GBDT, it 

is a machine learning method that has good performance in binary classification because it is a method of repeatedly 

training the difference between correct and incorrect answers like a loss function. 

 

 
 

Fig 9. Light GBM Architecture. 

 

V. RESULT AND DISCUSSION 

Using four LightGBM models, we selected the model with the best performance among Accuracy above 90% and F1-

Score above 85%. After designing the model, Bayesian Optimization was performed to find the optimal parameter 

combination, and the model was verified using PoC data. The preprocessed data was divided into learning, validation, 

and testing data. At this time, the ratio of the divided data was divided into the training data set and the test data at a 

ratio of 80:20, and the split training data was split at a 20% ratio and divided into the verification data set. A model was 

first designed using the divided training data, and then hyperparameter optimization was performed using the validation 

data set. After hyperparameter optimization, training was performed on test data. Afterwards, it was verified by field 
application for two weeks. As a result, the results were obtained as shown in Table 3 below. Fig 10 displays the results 

of four algorithm experiments. 

 

Table 3. Results of Performance Evaluation 

 

Model name Accuracy F1-Score 

LSTM 96 68.75 

GRU 95 64.71 

Autoencoder 98.83 86.17 

LightGBM 98.75 87.09 
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(a) Light GBM ROC-CURVE. 

 

 
 

(b) Autoencoder ROC-CURVE. 

 

 
 

(c) LSTM ROC-CURVE. 

 

 
(c) GRU ROC-CURVE. 

 
Fig 10. Four Algorithm Experiment Results. 

 

As a result of the experiment, LightGBM showed the best performance. Afterwards, Bayesian Optimization was 

performed to optimize the parameters of LightGBM, as shown in Table 4. 
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Table 4. Bayesian Optimization Result 

 

Parameter name Value 

bagging_fraction 0.896 

feature_fraction 0.838 

max_depth 21.517 

min_child_weight 21.614 

min_split_gain 0.034 

num_leaves 88.068 

 

The optimized LightGBM was installed in the field and verified for two weeks. The results are shown in Table 5. 

Through this, we were able to measure the performance of LightGBM. The measurement method is Accuracy and F1-

Score. 

 
Table 5. Confusion Matrix of Two Weeks of Field Installation Data 

 

Confusion Matrix 

Actual 

Positive Negative 
SUM 

 

Predicted 

 

Positive 

 
5672 50 5722 

Negative 

 
25 253 278 

Sum 5697 303 6000 

 
Table 6 shows that the tool was replaced a total of 4 times over 2 weeks. The average number of existing tool uses 

(replacement times) was 1,000 times (tool replacement when the CNC equipment setting value reached 1,000 times), 

and after the introduction of optimized LightGBM, the average number of times was 1,139, an increase of about 14% 

compared to before the introduction of LightGBM. 

 

Table 6. Basis For Calculating the Increase in The Number of Replacements 

 

division before 

After 

applied 

round 1 

After 

applied 

round2 

After 

applied 

round3 

After 

applied 

round4 

After 

applied 

Average 

Tool 

replacement 

time 

1000 times 
1141 

times 

1137 

times 

1137 

times 

1139 

times 

about 1139 

times 

 

 

VI. CONCLUSION 

Although tool consumption has increased after the introduction of optimized Light GBM, we plan to identify 

productivity issues when applying the same conditions to various production products through future research projects. 

Fig. Accordingly, 19 intends to provide guidance with the goal of reducing tool replacement costs by applying the 
LightGBM model optimized for multiple CNC equipment in various product groups in the future. Additionally, we plan 

to secure various feature data such as additional vibration sensors on CNC equipment to advance model performance 

and continue to collect data with the goal of increasing the current tool usage time by more than 5% to continuously 

improve model performance and inference. 
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