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Abstract – In this paper, we propose optimal modulation coding scheme (MCS) selection based on Gated Recurrent Unit 

(GRU) for one-to-one communication between tactical vehicles. The communication between tactical vehicles assumes 

orthogonal frequency division multiplexing (OFDM) and performs bidirectional communication with time division 

duplexing (TDD) manner. Since the TDD system uses the same frequency for transmitting and receiving, the 

bidirectional communication channels are the same. Based on the Signal-to-Noise Ratio (SNR) measuring from the 

received signal, the MCS at the future transmission time is predicted, utilizing a Gated Recurrent Unit (GRU), which is a 

type of Recurrent Neural Network (RNN). Existing methods for predicting the MCS from the received SNR include the 

mean value method and the recent value method, and the method based on the convolutional neural network (CNN). 

Based on the computer simulation results, the proposed GRU-based RNN technique shows a lower outage probability of 

communication than all conventional methods while provides the highest throughput. 

 

Keywords – GRU, SNR, MCS Selection, Deep learning, Tactical Communication. 
 

I. INTRODUCTION 

The mobile wireless communication is constantly evolving, with new 5G NR, 6G mobile communication and terrestrial 

tactical communication [1]. In the midst of these ongoing developments, the choice of Modulation Coding Scheme 

(MCS) has always been an important for the reliability and throughput of the communication. The transmitter should 

select the most suitable MCS for the channel environments. Selection of MCS decides the efficiency of the frequency 

resource usage and the reliability of communication. Military communications between tactical vehicles are particularly 

sensitive to the issue of choosing an MCS. In military communications, where orthogonal frequency division 

multiplexing (OFDM) and time-division duplexing (TDD) are employed, the MCS is usually selected from the past 

received channel responses. TDD is a method that divides the reception and transmission by time, and the receiving 

channel and the transmitting channel are the same because the two channels share the same frequency [2,3]. Therefore, 
the transmission MCS is commonly selected by observing past received channels [4]. This study adjusts the modulation 

scheme through a Channel Quality Indicator (CQI) feedback system, reflecting current channel quality. It focuses on 

appropriately adjusting the data transmission rate depending on whether channel conditions are good or bad, thereby 

enhancing the overall performance and reliability of the communication system. Research continues in current mobile 

wireless communications to achieve high transmission rates [5] and minimize the bit error rate [6,7]. As evidenced by 

previous studies, it is widely acknowledged that the most crucial aspect of MCS selection is understanding the current 

quality of the channel. The most commonly used information to assess the current channel state is the Signal-to-Noise 

Ratio (SNR) of the received signal. In the past, MCS was selected by methods such as exponential effective Signal-to-

interference-plus-noise ratio (SINR) mapping or averaging the SNR [8, 9]. Those methods are currently used in Internet 

of Things (IoT) communications [10]. In military communications, MCS is also selected by observing only the SNR of 

the most recently received signal. Recent advances in artificial intelligence have led to research that attempts to use 

artificial intelligence to select the MCS [11]. The research in [11] used a convolutional neural network (CNN) to predict 
the optimal MCS for the future transmission. Simulations demonstrated that the artificial intelligence (AI) model was 

more accurate than traditional rule-based methods. 

In this paper, we propose use of Recurrent Neural Network (RNN) for MCS selection by exploiting the fact that the 

SNR information of the received signal is time series data. It is well known that RNN models are advantageous for 
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making predictions with timely correlated data [12,13]. The proposed method is to predict the SNR at the time of 

transmission through an RNN regression model and select the MCS based on the predicted SNR. The RNN we use is a 

Gated Recurrent Unit (GRU), which is a type of Long Short-Term Memory (LSTM) designed to solve the problem of 

long-term dependence [14]. In a TDD environment, the fast operation of GRUs compared to LSTMs is more suitable 

because the switching between transmitting and receiving is fast. Previous studies have shown that the performance of 
GRUs is not significantly degraded compared with LSTMs [15].  The performance evaluation of the proposed GRU-

based RNN model is conducted through computer simulations considering both the movement and reorientation of 

tactical communication vehicles. To evaluate the performance of the proposed model, we adopt the CNN method for 

predicting future SNR at the transmission time, as described in [11]. The CNN model is adjusted to fit the data of this 

study and retrained. Additionally, comparisons with existing algorithmic methods are performed. The algorithmic 

methods used include the average value method and the recent value method. The average value method selects MCS 

based on the average SNR received over a certain period. The number of received SNR values used to compute the 

average is determined through experimentation. The recent value method reflects the SNR of the most recently received 

signal as the predicted SNR at the transmission time. Considering potential signal loss in real-world scenarios, the recent 

value method selects the most recent successful received SNR. All methods, including the average value method, 

conventional CNN, and the proposed GRU-based RNN method, account for potential signal loss. Before selecting MCS 

using each method, the data undergo preprocessing, including interpolation, to account for potential signal loss. 
Performance evaluation compares the existing and proposed methods in terms of SNR prediction accuracy, Outage 

Probability, and Throughput. To focus on the performance comparison based on MCS selection, this study assumes a 

one-to-one communication scenario using only one antenna. 

The structure of this paper is as follows: Chapter 2 describes the conventional method for selecting MCS. Chapter 3.1 

presents the overall system model based on the proposed RNN artificial intelligence. Chapter 3.2 describes the model 

structures of the conventional CNN and the proposed GRU-based RNN. In Chapter 4.1, the experimental environment of 

this study is outlined. Chapter 4.2 conducts a performance comparison of the proposed RNN based on the simulation 

results, and finally, Chapter 5 concludes the paper. 

 

II. CONVENTIONAL METHODS  

Algorithmic Methods 
There are two methods for selecting the MCS using algorithms. 

 

Average Value Method 

 
Fig 1. Average Value Method. 

 

The Average value method predicts the SNR at the transmission time by calculating the average of the received 

signals for each antenna to select the MCS. In Fig 1, p represents the past received SNR values. Let M be the number of 

antennas and N be the number of received SNR values. The average SNR value for antenna m is denoted as 𝐴𝑚 . 

Mathematically, it can be expressed as follows: 

 

 𝐴𝑚 =  
1

𝑁
∑ 𝑝𝑚,𝑖  (1 ≤ 𝑚 ≤ 𝑀)𝑁

𝑖=1   (1) 

 

The calculated value of 𝐴𝑚 is used to predict the SNR value of the respective antenna at the time of transmission, and 

the MCS is selected accordingly.  
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Recent Value Method 

 
Fig 2. Recent Value Method. 

 

The Recent Value method predicts the SNR at the transmission time by using the most recent received signal value 

for each antenna to select the MCS. This method assumes that, given the SNR information is time-series data, the most 

recent received signal's SNR will be the most similar to the SNR at the time of transmission. Among algorithmic methods, 

it has a low complexity and relatively high accuracy. Fig 2 shows recent value method. 

 

Artificial Intelligence Methods 

 
Fig 3. Convolutional Neural Network Method. 

 

Fig 3 illustrates the method of MCS selection using CNN. This diagram is based on the approach introduced in a 

previous study [11], where q represents the predicted value from the artificial intelligence, i.e., the output of the model. In 

that study, experiments were conducted with N values ranging from 10 to 100 to determine the optimal N. Similarly, this 

paper will derive the optimal N value to compare it with the proposed optimal existing CNN method. However, 

considering that the received SNR information is time-series data, the proposed RNN method is more suitable than the 

CNN, which excels in image processing. 

 

III. PROPOSED METHODS  

System Model 
The MCS selection system model based on the received signal SNR proposed in this study is as follows. 

 

 
Fig 4. MCS Selection System Block Diagram. 

 

Fig 4 presents a block diagram illustrating the process of selecting the MCS from the reception to the transmission of 

a signal, with the detailed process as follows. The signal received by the antenna first undergoes an SNR estimation 

stage. SNR is estimated at regular intervals of OFDM symbols, and a total of N data points are sequentially arranged 
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according to time steps. Therefore, the data containing SNR information forms an M * N matrix, where M represents the 

number of antennas. Through experimentation, the optimal value of N is determined and used as input for the artificial 

intelligence. The method of selecting MCS based on the average SNR of the received signals also seeks to find the 

optimal value of N through experimentation for averaging. In the method that uses the SNR of the most recently received 

signal, the value of N does not influence the outcome. 
The second step is to preprocess the data. In the real world, there are situations where signals are not received. In this 

case, the SNR of the unreceived timestep is filled in by interpolation using the neighboring received SNRs. The linear & 

edge zero interpolation method is used to interpolate, and the specific method is as follows. Unreceived timesteps 

between two received SNR values are linearly interpolated to fill in the SNR values. Timesteps that are on the left or 

right edge of the data matrix and do not fall between the received SNR values are interpolated to zero. If the most recent 

SNR is 0 dB when using the recent value method, it will traverse the previously received SNRs and use the most recent 

non-0 dB SNR. The data matrix, after the interpolation process, takes the shape as shown in Fig 5. In this paper, it is 

assumed that the number of antennas (M) is one. 

 

 
Fig 5. Interpolated Input Data Matrix. 

  

Thirdly, as depicted in Fig 5, the interpolated SNR data are fed into a GRU-based artificial intelligence. The GRU 
model, trained as a regression model, predicts the SNR at the time of transmission. Subsequently, MCS is selected based 

on the predicted SNR by referencing an MCS selection chart, and transmission is initiated. The following Table 1 

illustrates the criteria for MCS selection. 

 

Table 1. MCS Selection Table 

Level Modulation & CTC code rate Throughput (Mbps) Threshold SNR (dB) 

0 Out of Range 

1 QPSK, 1/3 1.6612 1.4 

2 QPSK, 1/2 2.4918 3.9 

3 QPSK, 2/3 3.3226 7.1 

4 QPSK, 3/4 3.7379 8.0 

5 QPSK, 6/7 4.2718 10.3 

6 QPSK, 8/9 4.4300 11.3 

7 16QAM, 1/2 4.9838 12.6 

8 8PSK, 3/4 5.6068 15.5 

9 16QAM, 2/3 6.6452 17.3 

10 16QAM, 3/4 7.4758 19.5 

11 64QAM, 2/3 9.9678 21.2 

12 64QAM, 3/4 11.2136 26.7 

13 64QAM, 6/7 12.8156 28.3 

14 64QAM, 8/9 13.2904 30.6 

 

Model Structure 

The structure of the conventional CNN model and the proposed GRU-based RNN model are as follows. 
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Conventional CNN Model 

 
Fig 6. Conventional CNN Structure. 

 

The CNN model structure depicted in Fig 6 is optimized for this study's data, referencing prior research [11]. It 

comprises a total of six convolutional layers and a fully connected layer, with each layer consisting of convolution, batch 

normalization, followed by an activation function in sequence. This regression model takes a 1 × 𝑁 received signal SNR 

as input and outputs the predicted SNR at the transmission point. The filter sizes for each layer are 128, 64, 32, 16, 8, 4, 

resulting in a reduction of the output channel count after each layer. 

 

Proposed GRU Based RNN Model 

 
Fig 7. Proposed GRU Based RNN Model Structure. 

 

In this study, we utilize GRU, a type of RNN, to select the transmit MCS because the data is time series data. Fig 7 

shows the structure of GRU. The GRU algorithm is an RNN that is a modification of the Long Short-Term Memory 

(LSTM), which was conceived as a solution to the short-term memory problem of RNNs. Despite its simplicity, it is fast 

and has similar performance to LSTMs because it has fewer gates and parameters to train than LSTMs, so we use the 

GRU model in this study. The GRU is more suitable than the LSTM for this study because of its low complexity and 
short computation time due to the small number of parameters in the TDD communication system that quickly switches 

from receiving to transmitting. The proposed model is a many-to-one type regression model in which one received signal 

SNR is input in each cycle when training the model, and one value is output as the final output when all 𝑁 data are 

cycled. The proposed RNN is organized into four GRU layers of 64, 32, 16, and 8 units, and the activation function uses 

hyperbolic tangent (Tanh). The following Fig 8 shows the structure of the proposed RNN. 

 

 
Fig 8. Proposed GRU based RNN Structure. 
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IV. SIMULATION AND RESULTS 

Simulation Environments 

For the computer simulations, we use MATLAB to generate data, leverage TensorFlow 2.0 to train and validate the GRU 

model and evaluate its performance. 

 
Table 2. Simulation Parameters 

Communication Parameters 
Values 

MCS Selection 

Number of Antenna, 𝑀 1 

Bandwidth 2 𝑀𝐻𝑧 

Carrier Frequency, 𝑓𝑐 512 𝑀𝐻𝑧 

OFDM System FFT Size 512 

Sampling Period, 𝑁𝑠 6 𝑂𝐹𝐷𝑀 𝑆𝑦𝑚𝑏𝑜𝑙 

Number of Received SNR, 𝑁 𝑁 ∈ {10,30,50,70,100} 

System SNR, 𝑆𝑁𝑅𝑠 𝑆𝑁𝑅𝑠 ∈ ⌊0,30⌋𝑑𝐵 

Speed, 𝑣 𝑣 ∈ ⌊0,100⌋km/h 

 SNR Reception Failure Probability, 𝑝   𝑝 ∈ ⌊0.1,1⌋ 

Rician Factor, 𝑘 10 𝑑𝐵 

LoS Probability 0.125 

Hyperparameters 
Values 

CNN RNN 

Optimizer 𝐴𝑑𝑎𝐺𝑟𝑎𝑑 𝐴𝑑𝑎𝑚 
Learning Rate 0.01 0.001 
Batch Size 512 1024 
Number of Epochs 500 100 
Loss Function 𝑀𝑆𝐸 

 
Table 2 shows the communication signal parameters of the simulation and the hyperparameters of the conventional 

CNN and the proposed GRU-based RNN. The number of antennas 𝑀 used for receiving and transmitting is one. The 

bandwidth is 2 𝑀𝐻𝑧, which is a broadband environment according to the military OFDM system, and the carrier 

frequency is assumed to be 512 𝑀𝐻𝑧. The Fast Fourier Transform (FFT) size is 512, and the interval for sampling the 

received SNR is 6 OFDM symbols. The total number of timesteps of the received SNR to be used for selecting the MCS 

is experimented with 5 different numbers: 10, 30, 50, 70, and 100, and the best length for each method is selected. For 

each training sample, the average SNR of the generated signal is randomly selected from 0 to 30 𝑑𝐵, and the traveling 

speed is randomly selected from a minimum of 0
𝑘𝑚

ℎ
 to a maximum of 100

𝑘𝑚

ℎ
. For each sample, the probability of signal 

reception at each timestep (the probability of the presence of the received SNR) is randomly selected from 10 to 100%. 
The channel model is randomly selected between Line of Sight (LoS) and Non-LoS, utilizing the Rayleigh (ITU 

Vehicular A) and Lycian channel models. The k-index of the Lycian channel is 10 𝑑𝐵. There is a 12.5% probability that 

a training sample is selected as a line-of-sight environment from the line-of-sight and non-LoS environments. For the 

conventional CNN model, the optimizer is AdaGrad, the learning rate is 0.01, the batch size is 512, and the epoch is 

500, while the proposed RNN model has the optimizer Adam, the learning rate is 0.001, the batch size is 1024, and the 

epoch is 100. Both AIs use Mean Square Error (MSE) as the loss function. The training data is 200,000 and the 

validation data is 20,000. The MSE formula is shown in Equation 2 below. 

 

 1/𝑛 ∑ (𝑦𝑖 − 𝑡𝑖)
2𝑛

𝑖=1   (2) 

 

Simulation Results 

To compare the performance of the proposed RNN with the existing methods, the average value method, the recent value 

method, the conventional CNN method, and the proposed RNN, we generate 20,000 test data each at 10 km/h intervals 

from 0 km/h to 100 km/h. For the length N of the received SNR to be used for prediction, CNN and RNN perform best 

when N=100, while for the average value, N=50 performs best. Compare the performance based on the optimal value of 

N for each method. The performance comparison metrics consist of three main indicators: SNR prediction Mean 

Absolute Error (MAE), the probability of outage resulting in communication interruption, and throughput. Performance 

variations of each method are observed across different speeds according to each performance comparison metric. 
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Fig 9. MAE for Speed. 

 

Fig 9 shows the MAE of the SNR at the time of transmission estimated based on the received SNR. All methods show 

that the MAE tends to get worse as the speed increases. At speeds of 0 𝑘𝑚/ℎ, the average value method is the best. 

However, after 10 𝑘𝑚/ℎ, the average value method degrades rapidly and is the worst performing of all the methods. 

Compared to the conventional CNN, the recent values method has better MAE performance in the speed range below 

20 𝑘𝑚/ℎ, but the conventional CNN outperforms it in the range above 30 𝑘𝑚/ℎ. The proposed RNN has the best 

performance in all speed bins above 10 𝑘𝑚/ℎ except 0 km/h. For all speed bins, the average value shows an average 

MAE of 2.461 𝑑𝐵 , while the recent value is 1.582 𝑑𝐵 , which is 0.879 𝑑𝐵  better than the average value. For the 

conventional CNN, it is 1.428 𝑑𝐵, which is 0.154 𝑑𝐵 better than the average value, and the proposed RNN is 1.279 𝑑𝐵, 

which is 0.149 𝑑𝐵 better than the conventional CNN [16]. We can see that the proposed GRU-based RNN predicts the 

SNR with the smallest error.  

 

 
Fig 10. Outage Probability for Speed. 

 

Fig 10 compares the probability of outage occurring with varying speeds when selecting MCS based on the estimated 

SNR. The outage probability graph exhibits a similar trend to the MAE graph for different speeds shown in Fig 10. This 

is because higher levels of MCS selection, based on predicted SNR with larger MAE, lead to a higher probability of 

communication interruption. The average value method shows the lowest probability of communication interruption at 0 

km/h, but it exhibits the highest probability at speeds above 10 km/h. On the other hand, the recent value method 
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demonstrates lower outage probability than the conventional CNN approach at speeds below 20 km/h, but it increases 

thereafter. It is evident that using AI methods for speeds above 30 km/h results in lower outage probability compared to 

conventional algorithmic approaches. The proposed RNN shows a slightly higher outage probability of 1.5% to 3% 

compared to the existing average value or recent value methods at 0 km/h. However, in all speed ranges except for 0 

km/h, the proposed RNN exhibits the lowest outage probability. At a speed of 10 km/h, the proposed RNN shows a 
15.555% lower outage probability than the average value method and a 0.4% lower outage probability than the recent 

value method. The proposed RNN demonstrates an average outage probability of 15.404%, which is 7.617% better than 

the average value method. This indicates that the proposed RNN ensures the highest communication stability. 

 

 
Fig 11. Throughput for Speed. 

 

Fig 11 illustrates the throughput based on the estimated SNR when selecting MCS according to speed. When outage 

occurs, the throughput is calculated as 0 bps. Overall, it is observed that as the speed increases, the achievable throughput 

decrease for all methods. This phenomenon occurs because as the speed increases, the channel conditions deteriorate due 

to factors such as Doppler effects, leading to a decrease in the highest level of MCS that can be selected without 

encountering outage. At 0 km/h, the average value method exhibits the highest performance, followed by the recent value 

method, the proposed RNN, and the conventional CNN method in descending order of transmission speed. However, in 
the speed range of 10 km/h to 20 km/h, the average value method shows the worst performance, with the proposed RNN, 

the recent value method, and the conventional CNN method exhibiting superior performance. In the speed range above 

30 km/h, both artificial intelligence methods outperform the recent value and average value methods, with the proposed 

RNN demonstrating more than 50 kbps better performance than CNN. As evidenced by the MAE graph in Fig 9, 

performing accurate SNR predictions enables higher throughput. When SNR prediction exceeds the actual SNR, it leads 

to the selection of a higher level of MCS than what is feasible, resulting in communication outage. Since communication 

outage renders transmission impossible, it results in significant losses in terms of transmission speed. The proposed RNN 

demonstrates higher throughput than all other methods in all mobile situations, except for stationary situations at 0 km/h, 

where Doppler effects are present. 

 

V. CONCLUSION 
In this paper, we propose a system to select the optimal MCS using GRU-based RNN for one-to-one tactical vehicle-to-

vehicle communication. The proposed method uses the SNR of the received signal as an input to the artificial intelligence 

model to predict the SNR at the time of transmission and select the MCS. Unlike previous studies that utilize CNNs, 

which have shown the best performance, we utilize GRUs, a type of RNN, to utilize time series data. The proposed RNN 

has an average SNR prediction MAE of 0.149 𝑑𝐵 better than the existing CNN. Based on this, we selected MCS, and the 

probability of communication loss is 1.818% lower on average than that of conventional CNN, which shows better 

performance, and the transmission rate is 56.8 𝑘𝑏𝑝𝑠 faster on average. The proposed GRU-based RNN demonstrated 

superior performance compared to both conventional AI methods and algorithmic approaches in mobile scenarios. 

Through this study, it is expected that higher communication stability and higher transmission speed can be 
guaranteed in tactical OFDM environments, which will provide a more favorable communication system for tactical 

communication. Especially in tactical communication environments, where extreme communication scenarios with 

intermittent reception must be considered, ensuring uninterrupted communication is crucial. Therefore, this study is 
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significant. As a future research plan, we intend to develop a system model that utilizes multiple antennas for reception 

and selects the optimal antenna for transmission simultaneously with the optimal MCS selection. 
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