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Abstract – Today, the demand for Renewable Energy (RE) sources has increased a lot; out of all Renewable Energy Sources 
(RES), Solar Energy (SE) has emerged as a better solution due to its sustainability and abundance. However, energy sources 
from the sun directly depend on the efficiency of the photovoltaic (PV) systems employed, whose efficiency depends on the 
variability of solar irradiance and temperature. So harvesting the maximum output from PV panels requires optimized 
Maximum Power Point Tracking (MPPT) systems. The traditional MPPT systems that involved Perturb and Observe (P&O) 
and Incremental Conductance (IncCond) are the most widely used models. However, those models have limited efficiency due 
to rapidly changing environmental conditions and their tendency to oscillate around the Maximum PowerPoint (MPP). This 
paper proposes a Hybrid Heuristic Model (HHM) called the Hybrid Grey Wolf Optimizer (HGWO) Algorithm, which employs 
the Genetic Algorithm (GA) model for optimizing the Grey Wolf Optimizer (GWO) algorithm for effectively utilizing MPPT 
in PV systems. The simulation decreases fluctuation, boosting how the system responds to shifts in the surrounding atmosphere. 
The framework evolved through several experiments, and its ability to perform was assessed concerning the results of different 
models for the factors that were considered seriously throughout several solar radiation and temperature scenarios. During all 
of the tests, the recommended HGWO model scored more effectively than the other models. This succeeded by accurately 
following the MPP and boosting the power supply. 
 
Keywords – Renewable Energy Sources, Solar Energy, Machine Learning, Photovoltaic System, Maximum Power Point 
Tracking, Hybrid Grey Wolf Optimizer, Accuracy. 
 

I. INTRODUCTION 
The application of renewable energy sources (RES) has become ever more essential in order to achieve the objective of finding 
ecologically sound options and fulfilling the demand for energy on a global scale. One of the RESs that is readily accessible, 
solar energy (SE), is now recognized as the most popular energy source since it is additionally safe and accessible [1]. RES 
collection depends primarily on photovoltaic, or PV, panels, which are designed to collect SE and produce power. A panacea 
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that can be more predictable and secure to alleviate the issue of dependence on petroleum and natural gas can be found in 
PV systems, which have the ability to transfer SE into electrical energy. There is a correlation between the volume of SE that 
is extracted and the degree of effectiveness of PV cells when it comes to harvesting electrical power [2]. 

The energy production of PV systems, in the opposite conjunction, has a fundamental link to the constant flow of direct 
sunlight. Energy from sunlight and variations in heat are two of the key elements of SE that have a major effect on the level of 
electrical energy that produces electricity [3]. Due to the fact that fluctuations of such factors result in a loss in the performance 
of PV panels, which in turn outcomes in the panels operating at less than their highest possible Maximum Power Point (MPP), 
that reliance is causing problems with successfully exploiting SE. 

For the objective of enhancing the operational effectiveness of PV systems, techniques that are commonly referred to as 
Maximum Power Point Tracking (MPPT) were designed [4]. It is vital to perform this method in order to put forward an 
approach for addressing the issue at hand. MPPTs are concepts that have the power to rapidly change the settings of PV panels' 
function and the electrical power supply. It is essential to execute the above process in order to guarantee that the panels provide 
efficiency that is nearly identical to the MPP as is feasible in practice, subject to any changes that might happen in outside 
factors [5].  

The MPPT systems have successfully boosted the energy output of PV systems by using this rapid control feature. Because 
of this, the MPPT model is a vital element for making the most of SE [6]. The conventional MPPT approaches include the 
Perturb and Observe (P&O) and Incremental Conductance (IncCond) techniques, which were the most commonly employed 
methods for conducting PV optimization. However, both models suffer from severe drawbacks; as an outcome, they cannot 
adapt their actions following fast-changing circumstances [7]. Because of this, hypothetical circumstances are the primary 
factors contributing to losses. A few instances of these scenarios include (i) oscillation in MPP, (ii) delayed response, and iii) 
problems in tracking amid partial shade conditions. Given these drawbacks, there is an immediate need for more advanced 
MPPT methods that can provide improved reliability, performance, security, and the capacity to cope with rapidly shifting 
features such as sunlight and temperature. 

A framework that addresses the computational challenge of MPPT in PV systems in fluctuating solar radiation and weather 
conditions is recommended in this paper. The idea for this study depends on the circumstances mentioned previously. The 
studies led to the development a novel Hybrid Heuristic Model (HHM) that acquired the name Hybrid Grey Wolf Optimizer 
(HGWO). This framework emerged using Grey Wolf Optimizer (GWO) principles. The GWO evolved with the social system 
and predation methods of grey wolves functioning as its main point of reference. The HGWO based on GWO is optimized 
using Genetic Algorithm (GA) operations that enhance the solution diversity and prevent premature convergence. The proposed 
model’s effectiveness in handling varied Solar Irradiance (SI) and temperature and ensuring high energy productivity was 
examined using a series of experiments and analysed using metrics such as efficiency, convergence speed, comparative 
performance, sensitivity, and computational complexity. The results have shown that the HGWO model outperformed both the 
P&O and IncCond traditional models. 

The paper is structured as follows: the literature review is presented in Section 2, Section 3 presents the background, Section 
4 presents the methodology, Section 5 presents the results, and Section 6 concludes the work. 

 
II. LITERATURE REVIEW 

[8] had been involved in investigating the sensitivity corresponding to MPP related to environmental factors like temperature 
and irradiance. Their investigation was attributed to their proposal of a novel method that utilized a Machine Learning (ML) 
model in order to predict the optimum reference voltage factor related to a PV panel under all weather conditions. They have 
employed the Proportional-Integral-Derivative controller and a DC/DC boost converter for the simulation and analysis of the 
proposed work. Through the experiment, the work demonstrates the robustness of their model with a Support Vector Machine 
(SVM) against other models in mixed disturbances.  

[9] Their work described the implementation of linear and nonlinear regression-type ML algorithms to operate PV systems 
at MPP. They demonstrated the effectiveness of different ML models, out of which they showcased the efficiency of regression 
algorithms, which had better adaptability to the duty cycle of a boost converter than other models, such as beta MPPT and 
Artificial Neural Network (ANN) approaches and had performed better even in different environment conditions.  

In another work by [10], they presented a Decision-Tree (DT) based ML algorithm for MPPT. They attempted this work to 
exhibit the DTs method's ability to deal with the non-linear data that are generated by dynamic weather conditions. Through 
multiple experiments through simulation, they have shown that their approach had improved efficiency by around 93.93% in 
steady-state conditions. They defended their model through these experiments and demonstrated that it has a significant 
advantage over existing MPPT methodologies. 

[11] had proposed a model that uses Slime Mould Optimization (SMO) and an improved Salp Swarm Optimization 
Algorithm (ISSA) to address the power loss due to irregular irradiance and partial shading. LSA, which refers to local search 
algorithms, is an approach which assists the SMO-MPPT technique, which is another unique method, to decrease variations. 
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When contrasted with additional conventional approaches such as P&O and PSO, this method showed superior results in both 
steady-state and transient scenarios throughout many different environmental variables. 

The key goal of their study was to build an architecture that could be applied to tackle the issues that have been brought 
about by scenarios that include partial shading [12]. In order to discover a fix to this problem, they developed an approach they 
decided was called Modified Particle-Swarm Optimization (MPSO). Based on the outcomes obtained from their studies and 
evaluations, their MPSO system was able to produce an important boost in energy usage while continuing to operate at the 
MPP level on a global level. Employing the mathematical model that they established, they were able to illustrate the boost in 
overall the use of energy. The algorithm they developed revealed excellent outcomes concerning usefulness as well as accuracy 
when contrasted with traditional methods and Neural Network (NN) methods [13-15]. This was confirmed by the results of the 
evaluations that were performed. 

 
III. BACKGROUND 

Methods of Maximum Power Point Tracking 
P&O 
The P&O method is one of the simplest and most commonly used MPPT algorithms. It involves periodically perturbing 
(adjusting) the voltage ( 𝑉𝑉𝑝𝑝𝑝𝑝� of the PV module and observing the effect on power output �𝑃𝑃𝑝𝑝𝑝𝑝 = 𝑉𝑉𝑝𝑝𝑝𝑝 × 𝐼𝐼𝑝𝑝𝑝𝑝�. The algorithm 
decides the direction of the next perturbation based on the change in power (Δ𝑃𝑃) resulting from the last perturbation (Δ𝑉𝑉). 
 
IncCond 
IncCond calculates the derivative of power concerning voltage (𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) and compares it to the rapid conductance (−𝐼𝐼/𝑉𝑉) to 
find the MPP. The voltage is adjusted until this derivative equal zero, indicating the MPP. 
 
Constant Voltage (CV) 
The CV method assumes a fixed relationship between the open-circuit voltage ( 𝑉𝑉𝑜𝑜𝑜𝑜) and the MPP voltage, setting the operating 
voltage �𝑉𝑉𝑜𝑜𝑜𝑜� at a predetermined fraction (𝑘𝑘) of 𝑉𝑉𝑜𝑜𝑜𝑜 . 
 
Fuzzy Logic Control (FLC) 
FLC uses a set of control rules based on Fuzzy Logic (FL) to adjust the operating point without requiring a precise mathematical 
model, making it adaptable to changing conditions. 
 
Hybrid Algorithms 
Hybrid algorithms combine the strengths of two or more MPPT methods to improve efficiency and accuracy. For example, a 
system might use P&O for general tracking and switch to IncCond for finer adjustment as it nears the MPP [16-20]. 
Table 1 presents details about the MPPT techniques. 
 

Table 1. MPPT Techniques 
Method Description Advantages Limitations 

P&O 
Adjusts voltage and observes 
changes in power to find the 

MPP. 

Simple and easy to 
implement. 

It can oscillate around MPP and is less 
effective under rapid changes. 

IncCond 

Determines MPP by equating 
the conductance to the 

derivative of power 
concerning voltage. 

More accurate for 
changing conditions. 

It is more complex and can oscillate around 
MPP. 

CV 
Sets operating voltage at a 

fixed fraction of open-circuit 
voltage. 

Simple and effective 
for stable conditions. It can be inaccurate if conditions vary. 

FLC Utilizes FL rules to adjust the 
operating point. 

Performs well under 
variable conditions 

and is robust to 
changes. 

It requires expert knowledge to design and is 
computationally intensive. 

Hybrid 
Algorithms 

Integrates multiple MPPT 
methods for better 

performance. 

Improves efficiency 
and accuracy by 

combining methods. 
It is more complex and can be costlier. 
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PV Array Modeling 
Accurate modelling of the PV array is needed for the practical application of MPPT algorithms. A typical model for a PV cell 
includes a current source with a parallel diode to capture the nonlinear I-V characteristics, incorporating series and parallel 
resistances (Rs and Rp ) for internal resistive losses and leakage current, respectively. 

The current output (I) of a PV cell can be described as EQU (1) and EQU (4). 
 

 𝐼𝐼 = 𝐼𝐼𝑝𝑝ℎ − 𝐼𝐼0 �Exp �𝑉𝑉+𝐼𝐼⋅𝑅𝑅𝑠𝑠
𝑛𝑛⋅𝑉𝑉𝑡𝑡ℎ

� − 1� − 𝑉𝑉+𝐼𝐼⋅𝑅𝑅𝑠𝑠
𝑅𝑅𝑝𝑝

  (1) 

 𝐼𝐼𝑝𝑝ℎ = 𝐺𝐺 ⋅ 𝐴𝐴 ⋅ 𝜂𝜂𝑞𝑞𝑞𝑞  (2) 
 

 𝐼𝐼0 = 𝐼𝐼0, ref �
𝑇𝑇
𝑇𝑇ref 

�
3

exp �−𝐸𝐸𝑔𝑔
𝑘𝑘
�1
𝑇𝑇
− 1

𝑇𝑇ref 
��  (3) 

 
 𝑉𝑉𝑡𝑡ℎ = 𝑘𝑘⋅𝑇𝑇

𝑞𝑞
  (4) 

 
where, ′𝑉𝑉′ is the cell output voltage, 𝑅𝑅𝑠𝑠 and 𝑅𝑅𝑝𝑝 are the series and parallel resistances, ′𝑛𝑛′ is the diode ideality factor, ′𝐺𝐺′ is 

the SI (W/m²), 𝐴𝐴 is the area of the PV cell (m2 ), 𝜂𝜂𝑞𝑞𝑞𝑞 is the quantum efficiency of the cell, 𝐼𝐼0, ref  is the reverse saturation current 
at a reference temperature, 𝑇𝑇 and 𝑇𝑇ref  are the actual and reference temperatures (Kelvin), 𝐸𝐸𝑔𝑔 is the bandgap energy of the 
semiconductor material, ′𝑘𝑘′ is Boltzmann's constant (1.38 × 10−23 J/𝐾𝐾), ′𝑞𝑞′ is the charge of an electron (1.6 × 10−19C). 

The relationship between the PV voltage (V) and a PV panel's output DC power (P) is illustrated to demonstrate the 
importance of control systems for tracking the MPP amid varying environmental conditions. These relationships show that SI 
(G) and cell temperature (T) vary, and the MPP also shifts correspondingly. The following chart in Fig 1 shows the power 
variation from a panel compared against varying ‘G’ and ‘T’. 

 

 
Fig 1. Power Variation of PV Panel. 

 
Problem Definition 
The primary objective of this model is defined by the following objective function, which aims to maximize the power output 
of the PV system by optimizing the voltage and current at the PV module to align with the MPP, EQU (5). 
 
 Max𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑉𝑉𝑃𝑃𝑃𝑃 × 𝐼𝐼𝑃𝑃𝑃𝑃  (5) 

 
Subject to the constraints: 

• 0 ≤ 𝑉𝑉𝑃𝑃𝑃𝑃 ≤ 𝑉𝑉𝑂𝑂𝑂𝑂 , where 𝑉𝑉𝑂𝑂𝑂𝑂  is the open-circuit voltage. 
• 0 ≤ 𝐼𝐼𝑃𝑃𝑃𝑃 ≤ 𝐼𝐼𝑆𝑆𝑆𝑆 , where 𝐼𝐼𝑆𝑆𝑆𝑆  is the short-circuit current. 
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The Hybrid GWO-MPPT algorithm employs the GWO's social hierarchy and predation strategies to search for and converge 
upon the 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀  and 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀  that maximize 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀. The algorithm iteratively adjusts 𝑉𝑉𝑃𝑃𝑃𝑃 and 𝐼𝐼𝑃𝑃𝑃𝑃, evaluating the objective function 
𝑃𝑃𝑃𝑃𝑃𝑃  under varying conditions of 𝐺𝐺 and 𝑇𝑇 to ensure that the operating point is always near or at the MPP. The notations used in 
the objective function are described in the following Table 2. 

 
Table 2. Notations Used in This Work 

Notation Description 
𝑷𝑷𝑷𝑷𝑷𝑷 Power output from the PV module 
𝑽𝑽𝑷𝑷𝑷𝑷 The voltage across the PV module 
𝑰𝑰𝑷𝑷𝑷𝑷 Currently, through the PV module 
𝑮𝑮 SI (𝑊𝑊/m2) 
𝑻𝑻 Temperature ( ∘C) 
𝑽𝑽𝑴𝑴𝑴𝑴𝑴𝑴 The voltage at the MPP 
𝑰𝑰𝑴𝑴𝑴𝑴𝑴𝑴 Current at the MPP 
𝑷𝑷𝑴𝑴𝑴𝑴𝑴𝑴 MPP 
𝚫𝚫𝑽𝑽 Perturbation in voltage 
𝚫𝚫𝑰𝑰 Perturbation in current 
𝑽𝑽𝑶𝑶𝑶𝑶 Open-circuit voltage 
𝑰𝑰𝑺𝑺𝑺𝑺 Short-circuit current 

 
IV. METHODOLOGY 

Introduction to GWO 
The GWO algorithm mimics the social hierarchy and hunting behaviour of grey wolves in nature. Grey wolves are animals 
known to live in packs, typically consisting of about 5 to 12 members. These packs are structured into four hierarchy levels: 
alpha, beta, delta, and omega wolves; each has a distinct role in the pack's decision-making and hunting strategy. The alpha 
wolves lead the pack, making movement, hunting, and resting decisions. The beta wolves act as the second in command, 
generally assisting the alpha in decision-making processes. The delta wolves are subordinate to the alpha and beta wolves, and 
the omega wolves are considered to have the lowest ranking among all other members of the pack. 

The Alpha �𝐺⃗𝐺𝛼𝛼�, beta �𝐺⃗𝐺𝛽𝛽�, and delta �𝐺⃗𝐺𝛿𝛿� Wolves represent the best, second-best, and third-best solutions, respectively, 
while the omega �𝐺⃗𝐺𝜔𝜔 ) Wolves are considered for exploring alternative solutions. The positions are updated according to the 
following equations, representing the iterative process of prey encirclement and attack strategy, EQU (6) and EQU (7). 

 
 𝐺⃗𝐺(𝑡𝑡 + 1) = 𝐺⃗𝐺𝑝𝑝(𝑡𝑡) − 𝐴𝐴 ⋅ 𝐷𝐷��⃗   (6) 

 
 𝐷𝐷��⃗ = �𝐶𝐶 ⋅ 𝐺⃗𝐺𝑝𝑝(𝑡𝑡) − 𝐺⃗𝐺(𝑡𝑡)�  (7) 

 
Here, 't' denotes the current iteration, while 𝐴𝐴 and 𝐶𝐶 are coefficient vectors determining the intensity and direction of the 

wolves' movement towards the prey, represented by 𝐺⃗𝐺𝑝𝑝. The position of a wolf is denoted by 𝐺⃗𝐺. The coefficients 𝐴𝐴 and 𝐶𝐶 are 
calculated as follows: EQU (8) and EQU (9). 

 
 𝐴𝐴 = 2𝑎⃗𝑎 ⋅ 𝑟𝑟1 − 𝑎⃗𝑎  (8) 

 
 𝐶𝐶 = 2 ⋅ 𝑟𝑟2  (9) 

 
The parameter 𝑎⃗𝑎 decreases linearly from 2 to 0 throughout the iterations that balance between exploration (searching for 

prey) and exploitation (homing in on the prey), with 𝑟𝑟1 and 𝑟𝑟2 as random vectors in the range [0,1]. The value of 𝑎⃗𝑎 is updated 
using the EQU (10): 

 
 𝑎⃗𝑎 = 2 − 𝑡𝑡 ⋅ 2

𝑀𝑀𝑡𝑡
  (10) 

 
where 𝑀𝑀𝑡𝑡 is the maximum number of iterations for the optimizer.  
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Fig 2. GWO Algorithm’s Position Update. 

 
The position update process, as shown in Fig 2, involved the calculation of the distance. �𝐷𝐷��⃗ 𝛼𝛼 ,𝐷𝐷��⃗ 𝛽𝛽 ,𝐷𝐷��⃗ 𝛿𝛿� between the prey and 

each of the three leading wolves (alpha, beta, and delta). These distances are defined by the EQU (11): 
 

 
𝐷𝐷��⃗ 𝛼𝛼 = �𝐶𝐶1 ⋅ 𝐺⃗𝐺𝛼𝛼 − 𝐺⃗𝐺�
𝐷𝐷��⃗ 𝛽𝛽 = �𝐶𝐶2 ⋅ 𝐺⃗𝐺𝛽𝛽 − 𝐺⃗𝐺�
𝐷𝐷��⃗ 𝛿𝛿 = �𝐶𝐶3 ⋅ 𝐺⃗𝐺𝛿𝛿 − 𝐺⃗𝐺�

  (11) 

 
where 𝐶𝐶1,𝐶𝐶2, and 𝐶𝐶3 are coefficient vectors. The next step involves updating the positions of the wolves based on the 

distances calculated from the alpha, beta, and delta wolves, using the following EQU (12): 
 

 
𝐺⃗𝐺1  = 𝐺⃗𝐺𝛼𝛼 − 𝐴𝐴1 ⋅ 𝐷𝐷��⃗ 𝛼𝛼
𝐺⃗𝐺2  = 𝐺⃗𝐺𝛽𝛽 − 𝐴𝐴2 ⋅ 𝐷𝐷��⃗ 𝛽𝛽
𝐺⃗𝐺3  = 𝐺⃗𝐺𝛿𝛿 − 𝐴𝐴3 ⋅ 𝐷𝐷��⃗ 𝛿𝛿

  (12) 

 
The final position of the wolf pack (𝐺⃗𝐺(𝑡𝑡 + 1)) at the next iteration is then determined by averaging the positions derived 

from the alpha, beta, and delta wolves, EQU (13). 
 

 𝐺⃗𝐺(𝑡𝑡 + 1) = 𝐺⃗𝐺1+𝐺⃗𝐺2+𝐺⃗𝐺3
3

  (13) 
 
The Hybrid GWO 
The traditional GWO faces challenges such as premature convergence and limited exploration when applied to the dynamic 
MPPT problem. The HGWO addresses these challenges by integrating GA’s crossover and mutation operations into the GWO 
framework. 
 
Initial Population 
The HGWO process starts with a randomly generated population of search agents (wolves) representing potential solutions 
within the PV system's parameter space. Each agent's position is particularly denoted as 𝑉𝑉𝑖𝑖(𝑥𝑥) which reflect the settings of 
voltage (𝑉𝑉𝑃𝑃𝑃𝑃) and current (𝐼𝐼𝑃𝑃𝑃𝑃) In order to maximize the power output (𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑉𝑉𝑃𝑃𝑃𝑃 × 𝐼𝐼𝑃𝑃𝑃𝑃) of the PV system. The initial 
positions are determined by the physical limits of the open-circuit voltage (𝑉𝑉𝑂𝑂𝑂𝑂) and short-circuit current (𝐼𝐼𝑆𝑆𝑆𝑆) : 
 
Voltage Initialization (𝑽𝑽𝑷𝑷𝑷𝑷)  
The initial voltage for each agent is randomly selected and lies in the range from 0 to 𝑉𝑉𝑂𝑂𝑂𝑂 . The expression for initializing the 
voltage for the ′𝑖𝑖′ agent is given by EQU (14). 
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 𝑉𝑉𝑃𝑃𝑃𝑃,𝑖𝑖 = 𝑉𝑉min + rand () × (𝑉𝑉𝑂𝑂𝑂𝑂 − 𝑉𝑉min)  (14) 

 
where 𝑉𝑉min is the minimum voltage (close to 0), rand () is a random number between 0 and 1, and 𝑉𝑉𝑂𝑂𝑂𝑂  is the open-circuit 

voltage. 
 

Current Initialization (𝑰𝑰𝑷𝑷𝑷𝑷) 
The initial current for each agent is randomly determined within the range from 0 to 𝐼𝐼𝑆𝑆𝑆𝑆  and the expression for initializing the 
current for the ′𝑖𝑖′ agent is denoted by EQU (15). 

 
 𝐼𝐼𝑃𝑃𝑃𝑃,𝑖𝑖 = 𝐼𝐼min + rand () × (𝐼𝐼𝑆𝑆𝑆𝑆 − 𝐼𝐼min )  (15) 

 
where 𝐼𝐼min is the minimum current, rand () is a random number between 0 and 1, and 𝐼𝐼𝑆𝑆𝑆𝑆  is the short-circuit current.  
 

Fitness Function Definition 
The Fitness Function (𝐹𝐹𝐹𝐹𝐹𝐹) aims to minimize the deviation between the actual power output of the PV system and the maximum 
power output possible under the current environmental conditions. This is represented as EQU (16). 
 
 Fit (𝑉𝑉𝑃𝑃𝑃𝑃 , 𝐼𝐼𝑃𝑃𝑃𝑃) = 1

1+|𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎−𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀|
  (16) 

 
where, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  represents the actual power output,  𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀  is the maximum power output; the objective is to maximize this 

𝐹𝐹𝐹𝐹𝐹𝐹 by finding the 𝑉𝑉𝑃𝑃𝑃𝑃 and 𝐼𝐼𝑃𝑃𝑃𝑃 values that minimize the absolute deviation|𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀|. Since the 𝐹𝐹𝐹𝐹𝐹𝐹 is the inverse of this 
deviation, maximizing the 𝐹𝐹𝐹𝐹𝐹𝐹 corresponds to minimizing the deviation, effectively aligning the PV system's operating point 
with the MPP. 

The HGWO uses this 𝐹𝐹𝐹𝐹𝐹𝐹 to guide the search for optimal 𝑉𝑉𝑃𝑃𝑃𝑃 and 𝐼𝐼𝑃𝑃𝑃𝑃  settings. During the optimization process, the wolves 
(search agents) explore the solution space of 𝑉𝑉𝑃𝑃𝑃𝑃 and 𝐼𝐼𝑃𝑃𝑃𝑃  values, guided by the 𝐹𝐹𝐹𝐹𝐹𝐹 towards configurations that produce power 
outputs closer to 𝑃𝑃𝑀𝑀𝑀𝑀𝑀𝑀 . Through iterations involving crossover and mutation aimed at enhancing exploration and exploitation 
of the solution space, HGWO aims to identify the set of 𝑉𝑉𝑃𝑃𝑃𝑃 and 𝐼𝐼𝑃𝑃𝑃𝑃 that maximizes Fit (𝑉𝑉𝑃𝑃𝑃𝑃 , 𝐼𝐼𝑃𝑃𝑃𝑃), thereby ensuring the PV 
system operates as close to the MPP as possible given the current environmental conditions. 

 
Crossover 
 In the crossover stage, two selected solutions, a parent solution (𝑃𝑃𝑠𝑠) and a neighbouring solution ( 𝑁𝑁𝑠𝑠 ), are merged to produce 
one or more offspring solutions. The offspring inherit characteristics from both parent solutions, enriching the solution space 
with new variants. This process is governed by the crossover operation, mathematically represented as EQU (17). 
 
 𝑂𝑂𝑖𝑖 = 𝜆𝜆 ⋅ 𝑃𝑃𝑠𝑠 + (1 − 𝜆𝜆) ⋅ 𝑁𝑁𝑠𝑠  (17) 

 
where,  

• 𝑂𝑂𝑖𝑖  is the offspring solution produced from the crossover operation. 
• 𝑃𝑃𝑠𝑠 = �𝑉𝑉𝑃𝑃𝑃𝑃

𝑃𝑃𝑠𝑠 , 𝐼𝐼𝑃𝑃𝑃𝑃
𝑃𝑃𝑠𝑠 � and 𝑁𝑁𝑠𝑠 = �𝑉𝑉𝑃𝑃𝑃𝑃

𝑁𝑁𝑠𝑠 , 𝐼𝐼𝑃𝑃𝑃𝑃
𝑁𝑁𝑠𝑠� The parent and neighbouring solutions are a vector of voltage and current 

settings. 
• 𝜆𝜆 is a random crossover factor within the range [0,1] that determines the degree to which the offspring inherits 

characteristics from each parent. 
 

Mutation:  
Mutation in the HGWO is applied to individual solutions (wolves) to introduce random changes in their 𝑉𝑉𝑃𝑃𝑃𝑃 and 𝐼𝐼𝑃𝑃𝑃𝑃  settings. 
The mutation operation can be mathematically represented as follows for a given solution 𝑆𝑆𝑖𝑖, EQU (18). 
 
 𝑆𝑆𝑖𝑖′ = 𝑆𝑆𝑖𝑖 + 𝜇𝜇 ⋅ (𝑆𝑆rand − 𝑆𝑆𝑖𝑖)  (18) 

 
where: 

• 𝑆𝑆𝑖𝑖′ is the mutated solution. 
• 𝑆𝑆𝑖𝑖 = �𝑉𝑉𝑃𝑃𝑃𝑃

𝑆𝑆𝑖𝑖 , 𝐼𝐼𝑃𝑃𝑃𝑃
𝑆𝑆𝑖𝑖 � is the original solution before mutation. 
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• 𝜇𝜇 is the mutation rate, a randomly chosen factor within the range [0,1] that determines the extent of mutation applied 
to the solution. 

• 𝑆𝑆rand = �𝑉𝑉𝑃𝑃𝑃𝑃
𝑆𝑆rand , 𝐼𝐼𝑃𝑃𝑃𝑃

𝑆𝑆rand � is a randomly selected solution from the population that serves as the reference for presenting 
variation. This selection ensures that the mutation introduces a directed randomness, potentially guiding the solution 
towards unexplored areas of the solution space. 

The choice of 𝑆𝑆rand  is critical, as it influences the direction and magnitude of the mutation. The goal is to use 𝑆𝑆rand  to push 
𝑆𝑆𝑖𝑖 towards potentially more optimal 𝑉𝑉𝑃𝑃𝑃𝑃 and 𝐼𝐼𝑃𝑃𝑃𝑃  settings that have not yet been considered by 𝑆𝑆𝑖𝑖, thereby expanding the 
exploration of the solution space. 

 
Exploitation Phase 
In the exploitation phase, the positions of the wolves within the packet are adjusted to converge towards the best solutions 
represented by the alpha, beta, and delta wolves. These changes are guided by the following expressions, which explicitly 
calculate the contribution of each leading wolf, EQU (19) and EQU (20). 
 
 𝑉𝑉𝑃𝑃𝑃𝑃new = 1

3
�𝑉𝑉𝑃𝑃𝑃𝑃𝛼𝛼 + 𝑉𝑉𝑃𝑃𝑃𝑃

𝛽𝛽 + 𝑉𝑉𝑃𝑃𝑃𝑃𝛿𝛿 � + 𝐴𝐴 ⋅ �𝑉𝑉𝑃𝑃𝑃𝑃
target − 𝑉𝑉𝑃𝑃𝑃𝑃current � (19) 

 
 𝐼𝐼𝑃𝑃𝑃𝑃new = 1

3
�𝐼𝐼𝑃𝑃𝑃𝑃𝛼𝛼 + 𝐼𝐼𝑃𝑃𝑃𝑃

𝛽𝛽 + 𝐼𝐼𝑃𝑃𝑃𝑃𝛿𝛿 � + 𝐴𝐴 ⋅ �𝐼𝐼𝑃𝑃𝑃𝑃
target − 𝐼𝐼𝑃𝑃𝑃𝑃current �  (20) 

 
where: 

• 𝑉𝑉𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐼𝐼𝑃𝑃𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 are the updated voltage and current settings for a given wolf aimed at moving closer to the MPP. 
• 𝑉𝑉𝑃𝑃𝑃𝑃𝛼𝛼 ,𝑉𝑉𝑃𝑃𝑃𝑃

𝛽𝛽 , and 𝑉𝑉𝑃𝑃𝑃𝑃𝛿𝛿  (similarly for 𝐼𝐼𝑃𝑃𝑃𝑃  ) represent the voltage (current) settings of the alpha, beta, and delta wolves, 
respectively. These settings are considered the best current estimates for achieving the MPP. 

• 𝑉𝑉𝑃𝑃𝑃𝑃
target  and 𝐼𝐼𝑃𝑃𝑃𝑃

target  refer to the hypothetical, optimal settings towards which the pack should converge based on 
environmental conditions ( 𝐺𝐺 and 𝑇𝑇 ) and the characteristics of the PV system. 

• 𝑉𝑉𝑃𝑃𝑃𝑃current  and 𝐼𝐼𝑃𝑃𝑃𝑃current  are the current settings of the wolf being updated. 
• 𝐴𝐴 is a coefficient modulates the adjustment based on the distance to the target settings, potentially incorporating 

random elements to maintain exploration capabilities. 
Additionally, the impact of the top wolves can be mathematically represented by incorporating weighted averages where 

the weights could reflect the relative performance or fitness of the alpha, beta, and delta solutions, EQU (21) and EQU (22). 
 

 𝑉𝑉𝑃𝑃𝑃𝑃new = 𝑤𝑤𝛼𝛼 ⋅ 𝑉𝑉𝑃𝑃𝑃𝑃𝛼𝛼 + 𝑤𝑤𝛽𝛽 ⋅ 𝑉𝑉𝑃𝑃𝑃𝑃
𝛽𝛽 + 𝑤𝑤𝛿𝛿 ⋅ 𝑉𝑉𝑃𝑃𝑃𝑃𝛿𝛿   (21) 

 
 𝐼𝐼𝑃𝑃𝑃𝑃new = 𝑤𝑤𝛼𝛼 ⋅ 𝐼𝐼𝑃𝑃𝑃𝑃𝛼𝛼 + 𝑤𝑤𝛽𝛽 ⋅ 𝐼𝐼𝑃𝑃𝑃𝑃

𝛽𝛽 + 𝑤𝑤𝛿𝛿 ⋅ 𝐼𝐼𝑃𝑃𝑃𝑃𝛿𝛿   (22) 
 

where, 𝑤𝑤𝛼𝛼 ,𝑤𝑤𝛽𝛽, and 𝑤𝑤𝛿𝛿  are weights assigned based on the fitness or rank of each top wolf, with higher weights given to 
solutions closer to the MPP. This ensures that the packet's direction is prejudiced more by the wolves with the best solutions. 
The entire process is presented in the algorithm 1. 

 
Algorithm 1 for HGWO for MPPT Input 

• 𝐺𝐺 : SI 
• 𝑇𝑇 : Temperature 
• 𝑉𝑉𝑂𝑂𝑂𝑂  : Open-circuit voltage 
• 𝐼𝐼𝑆𝑆𝑆𝑆  : Short-circuit current 

Output: Optimal 𝑉𝑉𝑃𝑃𝑃𝑃 and 𝐼𝐼𝑃𝑃𝑃𝑃  settings to maximize 𝑃𝑃𝑃𝑃𝑃𝑃  
Procedure: 

• Initialize: Generate an initial population of 𝑁𝑁 wolves (search agents), where each wolf ′𝑖𝑖′ has a position 𝑊𝑊𝑖𝑖 =
�𝑉𝑉𝑃𝑃𝑃𝑃,𝑖𝑖 , 𝐼𝐼𝑃𝑃𝑃𝑃,𝑖𝑖� initialized within the ranges [0,𝑉𝑉𝑂𝑂𝑂𝑂] for voltage and [0, 𝐼𝐼𝑆𝑆𝑆𝑆] for current. 

• Evaluate Fitness: For Each wolf 𝑖𝑖, calculate the fitness 𝐹𝐹𝐹𝐹𝑡𝑡𝑖𝑖�𝑉𝑉𝑃𝑃𝑃𝑃,𝑖𝑖 , 𝐼𝐼𝑃𝑃𝑃𝑃,𝑖𝑖� based on the deviation from the theoretical 
maximum power point (MPP), considering current 𝐺𝐺 and 𝑇𝑇. 

3 Iterate Until Convergence: 
• For Each iteration 𝑡𝑡 : 

a. Crossover: 
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• Select pairs of parent wolves (𝑃𝑃𝑠𝑠 and 𝑁𝑁𝑠𝑠) based on fitness. 
• Perform crossover to generate offspring 𝑂𝑂𝑖𝑖 , where 𝑂𝑂𝑖𝑖 = 𝜆𝜆 ⋅ 𝑃𝑃𝑠𝑠 + (1 − 𝜆𝜆) ⋅ 𝑁𝑁𝑠𝑠, and 𝜆𝜆 is a random factor [0,1]. 

b. Mutation:  For each wolf 𝑆𝑆𝑖𝑖, apply mutation to introduce random variations: 𝑆𝑆𝑖𝑖′ = 𝑆𝑆𝑖𝑖 + 𝜇𝜇 ⋅ (𝑆𝑆rand − 𝑆𝑆𝑖𝑖 ), where 𝜇𝜇 is the 
mutation rate [0,1], and 𝑆𝑆rand  is a randomly chosen solution from the population. 
c. Evaluate Fitness: Recalculate the fitness of all wolves, including the newly generated offspring, based on their 𝑉𝑉𝑃𝑃𝑃𝑃 and 
𝐼𝐼𝑃𝑃𝑃𝑃  settings. 
d. Update Positions (Exploitation): Adjust the positions of all wolves towards the best solutions (𝛼𝛼,𝛽𝛽, 𝛿𝛿) based on their 
fitness, using weighted averages to guide the packet closer to the MPP. 
e. Select Alpha, Beta, and Delta: Identify the top three wolves with the highest fitness to serve as 𝛼𝛼, 𝛽𝛽, and 𝛿𝛿 for the next 
iteration. 

• Termination: The algorithm terminates when a predefined number of iterations are completed or when the change 
in fitness between iterations falls below a threshold, indicating convergence. 

5 Output: Return the voltage (𝑉𝑉𝑃𝑃𝑃𝑃) and current (𝐼𝐼𝑃𝑃𝑃𝑃) Settings of the alpha wolf (𝛼𝛼) as the optimal solution for the 
MPPT problem under the given 𝐺𝐺 and 𝑇𝑇. 

 
V. EXPERIMENTAL ANALYSIS 

To demonstrate the enhancements brought about by implementing AI-based methods for MPPT, we utilized a grid-connected 
PV model tailored to our experimental setup. The foundation for this model was adapted from a modified version of the 250 
kW grid-connected PV array model in MATLAB. The configuration consisted of 8 parallel strings, each including 48 series-
connected panels of the type LG 400. The comprehensive system integrates a PV array with a boost converter, an inverter, and 
a connection to the grid. The heart of our experiment lies in the control system designed for MPPT purposes, which finely tunes 
the duty cycle to modulate the PV voltage, guiding it towards the optimal operating point for maximized efficiency. The 
proposed model was compared against P&O and IndCond, and the findings are discussed below: 
 

 
Fig 3. Power Output Vs SI 

 
The chart in Fig 3 showcases the relationship between Power Output and SI (G) for different MPPT methods. As the SI 

level increases, it is observed that all three MPPT methods have demonstrated an increase in power output. The HGWO method 
has shown that it consistently delivers a higher power output across the entire range of SI than the traditional P&O and IncCond 
methods. The results prove that the HGWO paradigm can more effectively optimise the power generated by PV systems. PV 
systems are particularly successful when the level of solar radiation fluctuates within the surroundings. This is because of the 
hybrid composition of the approach, which combines components from the GWO enhanced with features from the genetic 
algorithms for more effective search and extraction. The improved efficiency of the recommended approach can be identified 
as the ability of the model to evolve more, which is caused by the hybrid of the natural world of the framework. Following the 
research results, the P&O method has a lower volume of energy, while the IncCond technique performs higher than the P&O 
technique but remains less successful than the HGWO technique. 
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Fig 4. Power Output VS Temperature. 

 

 
Fig 5. Computation Cost Vs Complexity Vs Iterations to MPP. 

 
Fig 4 shows the power output vs temperature (T) relationship performance of the HGWO compared to the P&O and 

IncCond methods. The HGWO method has shown a higher peak power output and slower decline when the temperature 
increases. The proposed HGWO, through the results, have shown better performance for different ranges of temperatures. The 
graph also shows the outperformance of the proposed model against the P&O and IncCond for varied temperature conditions. 
Fig 5 compares computational cost and complexity for the HGWO, P&O, and IncCond MPPT methods. It compares the 
iterations needed for the model to achieve the MPP; from the results, the proposed model shows a clear picture of its efficiency 
by taking a smaller count of iterations to reach MPP, which is the main objective of the work. However, it had increased 
computational cost and complexity compared to the traditional models. This is acceptable due to the nature of the algorithm. 
The P&O model has the lowest computational cost and complexity but poor performance for MPP. At the same time, the ACO 
model is next to the HGOA model. 

 
VI. CONCLUSION AND FUTURE WORK 

This study is involved in the process of exploring the possibilities for optimization of Maximum Power Point Tracking (MPPT) 
in photovoltaic (PV) systems. This work has introduced the innovative Hybrid Grey Wolf Optimizer (HGWO) model as a 
potential solution to the objective of enhancing the adaptability and efficiency of Solar Energy (SE) harnessing. In simulations, 
the HGWO model demonstrated better performance by employing a model that dynamically track the Maximum Power Point 
(MPP). When compared to traditional MPPT methods such as Perturb and Observe (P&O) and Incremental Conductance 
(IncCond), the proposed model performed better even in varied conditions. The comparative analysis has also revealed that the 
proposed HGWO method outperformed the conventional MPPT techniques that had shown convergence much faster to the 
MPP by minimizing the oscillations and effectively adapting to rapid environmental changes.  

This work presented a novel MPPT optimization model for PV systems that had to provide new avenues for future research 
to explore its integration with other Renewable Energy (RE) methods.  
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