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Abstract – Sustainable Manufacturing Practices (SMP), particularly in the selection of materials, have become essential 
due to environmental issues caused by the expansion of industry. Compared to conventional polymers, biodegradable 
Polymer Materials (BPM) are growing more commonly as an approach to reducing trash pollution. Suitable materials can 
be challenging due to numerous considerations, like ecological impact, expenditure, and material properties. When 
addressing sophisticated trade-offs, standard approaches drop. To compete with such challenges, employing Genetic 
Algorithms (GA) may be more successful, as they have their foundation in the basic concepts of biological development 
and the natural selection process. With a focus on BPM, this study provides a GA model for optimal packaging substance 
selection. Out of the four algorithms for computation used for practical testing—PSO, ACO, and SA—the GA model is 
the most effective. The findings demonstrate that GA can be used to enhance SMP and performs well in enormous search 
spaces that contain numerous different combinations of materials. 
 
Keywords – Sustainable Manufacturing Practices, Machine Learning, Environmental Pollution, Biodegradable Polymer 
Materials, Genetic Algorithms, PSO, ACO, Simulated Annealing. 
 

I. INTRODUCTION 
Sustainable Manufacturing Practices (SMP) have been gradually and systematically finding progress throughout all aspects 
of the manufacturing industry in the past few decades, signifying an important change in the contemporary industrial sector. 
Preventing the real-life environmental consequences associated with products produced with energy sources from 
petroleum and other petroleum products and satisfying the constantly evolving needs of users and government officials 
were the primary drivers of this advancement [1]. The SMP idea, which relies on the concept of reducing negative 
environmental effects at all levels of manufacturing while simultaneously improving resources and conservation of energy, 
has long been connected with the transformation of the cycle of operation. The selection and use of materials from nature 
is a significant manufacturing industry step by step which demands thoughtful consideration in order to accomplish a 
sufficient level of environmentally conscious development [2]. This is because this decision directly influences the 
economic, social, and environmental aspects of accountability for the environment. Additional engaging than typical 
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polymers that are used Biodegradable Polymer Materials (BPM) provides an innovative solution to waste reduction by 
degrading apart into innocuous byproducts. This pressing requirement motivated the development of BPM. 

Following the recognition that BPM has a chance to provide several benefits, the task of identifying the accurate BPM 
is plagued with vital challenges. These difficulties originate from various material features, environmental values, and 
financial considerations that must be addressed [3]. The mathematical models that are presently in use for choosing 
materials are all reliant on either linear or static model-based systems for decision-making due to the specifics of the task 
at face. A framework of this helpful, on the contrary, fails to consider multiple trade-offs and variability of substance 
performance over time [4]. In addition, such models cannot efficiently explore the extensive search spaces mainly defined 
by the combinations of material variables. This leads to poor selection decisions, which can cause the model to fail to 
satisfy the criteria that are required for achieving Environmental Sustainability (ES). 

Genetic algorithms, or GA, are now acceptable for maintaining ES and identifying suitable BPM [5]. In following the 
concepts of biological selection and the evolution of genes, the GA framework can model the steps of evolution by applying 
methods such as selection, crossover, and mutation, which are performed on a sample of candidate solutions [6]. Through 
this iterative process, the GA model in their process effectively involves the exploration of diverse combinations of material 
properties. The selection of materials through GA ensures a dynamic adaptation of finding optimal or near-optimal 
solutions that satisfy the environmental impact, performance, and cost factors. By employing the computational intelligence 
of GAs, manufacturing industries can efficiently make material selection decisions that align with sustainability principles. 

Built on the above motivation, the proposed work in this paper involves the application of GA to optimize the selection 
of BPM in Sustainable Manufacturing (SM). The GA method involves simulating the process involved in natural evolution 
to identify optimal solutions that balance factors like environmental benefits, material performance, and cost. This optimal 
balancing process is achieved by evolving a population of candidate solutions, which is measured using an adaptive fitness 
function that includes the scores of environmental impact, mechanical properties, and economic viability. The proposed 
work’s applicability is experimented with using a case study involving a packaging industry in migrating to manufacturing 
packages using eco-friendly materials, and the models performed up to the expectation, thereby demonstrating the 
algorithm's capability to navigate complex optimization landscapes. The experimental analysis involved comparing the 
GA with other optimization methods like PSO, ACO, and GA, which had shown the GA's effectiveness in reducing 
environmental impact and enhancing computational efficiency, thereby underlining its utility in advancing SM practices. 

The paper is structured as follows: Section 2 presents the literature review, Section 3 presents the background for the 
work, Section 4 presents the methodology, Section 5 presents the evaluation of the work and Section 6 concludes the work. 

 
II. LITERATURE REVIEW 

The literature on the optimization of material selection, mainly related to the field of SM and design, has shown a significant 
interest in integrating computational intelligence and Machine Learning (ML) methodologies to handle the complexities 
associated with the corresponding material science.  

[7] had proposed a model for material selection by introducing a novel Latent-Variable (LV) approach that was built 
within the Bayesian Optimization (BO) framework. They attempt to emphasize the BO’s capability in material selection 
through the process of mapping qualitative design variables to numerical latent variables in Gaussian Process (GP) models.  
They applied their model in the environment, like optimizing the light absorption of quasi-random solar cells and the 
combinatorial search for optimal Hybrid Organic-Inorganic Perovskite (HOIP) designs. Through flexible parameterization 
and superior modelling accuracy, they provided an effective model for material selection that considered numerous 
qualitative factors of materials design.  

[8] attempted to employ GA and ML-based predictive models to design polymers with extreme property measures. 
They combined different ML models together with the GA model and attempted to predict better material combinations. 
The idea behind their work was to examine the GA's potential in evolving polymer designs through the process of natural 
operations like crossover, mutation, and selection. Through experiments, they have generated chemically unique polymers 
with high thermal and electrical performance metrics.  

[9-10] have both reviewed the role of ML in material selection in their respective work to demonstrate ML’s potential 
to revolutionize against the traditional trial-and-error methodologies. These studies have been conducted through surveys 
and have highlighted the advantages of ML models' ability to enhance property prediction, material discovery, and the 
inverse design process. This enhanced processability adds an edge to the ML model's efficiency in advancing the material 
selection process.  

[11] had mainly discussed the comprehensive perspective that is needed for more optimal materials design. This article 
mentioned the challenges and opportunities available for ML tools in the field of material science.  

[12] had introduced a Material Generation Algorithm (MGA) model that was built with inspiration that arrived from 
material chemistry and chemical reactions. The MGA is a novel attempt to optimize engineering problems. Through various 
experiments, their work benchmarked the proposed MGA model against other Metaheuristic Algorithms (MA) [13-18]. 
Through various optimization problems, they demonstrated the proposed MGA's performance.  
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III. BACKGROUND 
Introduction to Genetic Algorithm (GA) 
GA are a subset of evolutionary algorithms inspired by the process of natural selection and concepts derived from 
Darwinian genetics. These algorithms are used to find optimized solutions to search and optimization problems through a 
process miming biological evolution. The following are the basic foundations of GA: 
 
Population (P) 
A set of candidate solutions to the problem. Each candidate solution is often referred to as a "Chromosome". 
Mathematically, If 𝑃𝑃 is a population, Then 𝑃𝑃 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛} where 𝐶𝐶𝑖𝑖 represents the 𝑖𝑖th  chromosome. 
 
Chromosome (C) 
A representation of a candidate solution. Chromosomes are typically expressed as strings of binary values, but they can 
also be represented by other structures depending on the problem domain. A chromosome 𝐶𝐶𝑖𝑖 could be represented as 𝐶𝐶𝑖𝑖 = 
(𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑚𝑚), where 𝑔𝑔𝑗𝑗 represents the 𝑗𝑗th  gene in the chromosome. 
 
Gene (g) 
A part of a chromosome that determines a particular characteristic or parameter in the candidate solution. Genes are the 
basic units of data in GA. 
 
Search Space 
The search space, ′𝑆𝑆′, encompasses all potential solutions to the problem. Each solution is encoded as a chromosome, ′𝐶𝐶′, 
consisting of genes, 𝑔𝑔𝑖𝑖, where each gene represents a solution parameter. For a given problem, the search space is defined 
by 𝑆𝑆 = {𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛}, where each 𝐶𝐶𝑖𝑖 = (𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑚𝑚) represents a potential solution within the space. 
 
Fitness Function 
The fitness function, 𝑓𝑓(𝐶𝐶), quantitatively evaluates the suitability of a chromosome 𝐶𝐶 as a solution to the problem. The 
function assigns a fitness score to each chromosome, influencing its likelihood of being selected for reproduction. The 
objective of a GA is to optimize this function, either by maximization or minimization, depending on the problem context. 

GA manage a population of (n) individuals, each represented as a chromosome or solution, along with their 
corresponding fitness scores. Individuals with higher fitness scores are prioritized for reproduction over their counterparts. 
Those selected for mating combine their genetic material to produce offspring, potentially leading to superior solutions. 
Given the constant size of the population, space must be made for these new members. Consequently, some individuals are 
phased out and replaced by newcomers, facilitating the emergence of a new generation once the reproductive potential of 
the existing population is fully utilized. It is anticipated that, with each passing generation, more optimal solutions will 
emerge as less fit individuals are phased out. 

With every new generation, there is, on average, an increase in "Better Genes" compared to the individuals from 
preceding generations, resulting in progressively improved "Partial Solutions." This iterative process continues until the 
offspring show negligible differences from those produced in prior cycles, indicating that the population has stabilized. At 
this point, the algorithm is considered to have converged, offering solutions for the given problem. Once the initial 
generation is created, the algorithm evolves the generation using the following operators:  

 
Selection 
A process by which chromosomes are chosen from the population for breeding based on their fitness. The selection process 
ensures that more fit chromosomes are more likely to be selected for reproduction. 
 
Crossover 
A genetic operator used to combine the genetic data of two parents to generate new offspring. It is a method of 
recombination. For example, given two chromosomes 𝐶𝐶𝑎𝑎 = (𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑚𝑚) and 𝐶𝐶𝑏𝑏 = (𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑚𝑚), a single-point 
crossover might produce an offspring 𝐶𝐶𝑜𝑜 = (𝑎𝑎1, 𝑎𝑎2, … ,𝑎𝑎𝑘𝑘 , 𝑏𝑏𝑘𝑘+1, … , 𝑏𝑏𝑚𝑚). 
 
Mutation 
A genetic operator used to maintain genetic diversity within the population by randomly altering one or more genes in a 
chromosome. For a chromosome 𝐶𝐶𝑖𝑖 = (𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑚𝑚), a mutation might change 𝑔𝑔𝑗𝑗 to 𝑔𝑔𝑗𝑗′ . 
 
The Process of GA Is Illustrated As follows 
Initialization 
Generate an initial population 𝑃𝑃0 of 𝑛𝑛 chromosomes randomly. 
 
Evaluation 
Compute the fitness 𝑓𝑓(𝐶𝐶𝑖𝑖) for each chromosome 𝐶𝐶𝑖𝑖 in the population. 
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Selection 
Select pairs of chromosomes from the current population to breed a new generation. Selection is often performed so that 
chromosomes with higher fitness are more likely to be selected. 
 
Crossover and Mutation 
Apply crossover and mutation operators to the selected chromosomes to produce offspring, which forms the next generation 
of solutions. 
 
Replacement 
Replace the current population with the new generation of chromosomes and return to step 2 unless a termination condition 
has been reached (e.g., a sufficient fitness level or a maximum number of generations). 
 
Sustainable Manufacturing 
Sustainable manufacturing is a concept developed to achieve a minimal negative, energy environmentally friendly, 
economically viable, and socially acceptable. One of the critical attributes in developing SM is the process of proper 
material selection based on its attributes and functionalities. The materials decide the product’s lifecycle, energy 
consumption (EC) in manufacturing, recycling ability, and the quality and efficiency of the produced product. This is why 
the focus was increased on material selection that could satisfy all the necessary criteria. 
 
BPM 
Within the diverse field of sustainable material science, the advent of BPM has emerged as a most sought-after material 
that could meet all the essential attributes of a material suited for SM. These materials are of such a kind that they offer the 
needed solution to the existing and most persistent problem of pollution, which is plastic waste. The BPMs are designed 
using technology that breaks down into natural substances like water, carbon dioxide, and biomass under specific 
conditions. By integrating those BPM into SM processes, the companies that are now handling plastic can employ BPM 
so that they can significantly reduce the environmental footprint of their products. The following Fig 1 illustrates various 
applications for the usage of BPM. 
 

 
Fig 1. Applications of BPM. 

 
Criteria for Selecting BPM 
The selection of BPM is determined based on the following factors:  
Environmental Impact (EI) 
The environmental impact of BPMs is assessed throughout their product lifecycle, starting right from the process of raw 
material extraction and SM to end-of-life degradation. Factors like energy and resources consumed during production, the 
emissions generated, and the degradation time and conditions are also considered to measure the EI. 
 
Performance Characteristics (PC) 
The PC of BPMs determine their respective selection and application for specific domains. These characteristics include 
(i) mechanical strength, (ii) durability, flexibility, and (iii) resistance to heat and moisture.  
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Economic Viability (EV) 
The decision-making process of one specific type of BPM is additionally determined by the cost for SM using that specific 
type. Because it decreases the total expense, the particularly feasible substance for business purposes must be selected for 
manufacturing. The EV also takes into consideration the cost of the raw materials, the cost of manufacturing processes, 
and any other expenses related to satisfying required regulations or environmentally friendly criteria. 
 
Problem Definition 
It must be accomplished to address the efficiency issue associated with selecting the most effective set of BPM for 
contextual SM approaches.  

• Let 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} represent the set of BPM, where each 𝑥𝑥𝑖𝑖 is a polymer characterized by a unique 
combination of features. 

• Each polymer 𝑥𝑥𝑖𝑖 is related to a set of features 𝐴𝐴 = {𝑎𝑎1, 𝑎𝑎2, … , 𝑎𝑎𝑚𝑚}, such as degradation rate, mechanical strength, 
and cost, which define its appropriateness for sustainable work. 

This purpose is subject to optimization and is expressed as follows: EQU (1). 
 
 𝐹𝐹(𝑋𝑋) = 𝑤𝑤1 ⋅ 𝐸𝐸(𝑋𝑋) + 𝑤𝑤2 ⋅ 𝑃𝑃(𝑋𝑋) −𝑤𝑤3 ⋅ Cost (𝑋𝑋) (1) 
where: 

• 𝐹𝐹(𝑋𝑋) is the objective function, 
• 𝐸𝐸(𝑋𝑋) quantifies the environmental impact of the polymer selection ′𝑋𝑋′, aiming for minimization, 
• 𝑃𝑃(𝑋𝑋) represents the performance score, which we seek to maximize, 
• Cost (𝑋𝑋) is the economic cost associated with the polymer selection, which should be minimized, 
• 𝑤𝑤1,𝑤𝑤2, and 𝑤𝑤3 weights reflect the relative position of ecological impact, performance, and cost. 

The challenge is to find the set of polymers ′𝑋𝑋∗′ that optimizes (𝑋𝑋), EQU (2). 
 
 𝑋𝑋∗ = Arg Min

𝑋𝑋
 𝐹𝐹(𝑋𝑋) (2) 

 
to minimize costs and environmental impact. 
 
Search Space Definition 
The search space ′𝑆𝑆′ is defined by the set of all possible combinations of polymers and their attributes that could potentially 
form a solution, EQU (3). 
 
 𝑆𝑆 = 𝑋𝑋1 × 𝑋𝑋2 × … × 𝑋𝑋𝑛𝑛 (3) 
 

where 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 represent the ranges of possible values for each attribute across all considered polymers. The 
dimensionality of the search space is determined by the number of attributes ′𝑚𝑚′ considered for each polymer, making ′𝑆𝑆′ 
a multi-dimensional space that the GA navigates to find ′𝑋𝑋∗′. 
 

IV. METHODOLOGY 
Encoding BPM Selections into Chromosomes for GA Optimization 
The encoding strategy involves the process of integrating the binary and real-valued representations to the features of BPMs 
effectively: 
 
Chromosome (𝐶𝐶𝑖𝑖)  
Each chromosome in GA corresponds to a potential polymer selection, which is represented as an array of genes 𝐶𝐶𝑖𝑖 =
[𝑔𝑔1,𝑔𝑔2, … ,𝑔𝑔𝑚𝑚], where 𝑚𝑚 is the total number of genes. Each gene encodes an attribute of the polymer; that way, the entire 
chromosome represents all the relevant properties that are needed for assessment. 
 
Gene Representation 
Binary Encoding for Discrete Attributes 
Binary encoding is employed for discrete attributes in BPM, such as the polymer type. Each gene 𝑔𝑔𝑗𝑗 within this category 
is a binary digit ( 0 or 1 ), where each bit position represents a different polymer type or characteristic. 
 
Real-Valued Encoding for Continuous Attributes 
Continuous attributes, including the degradation rate and mechanical properties like tensile strength and elasticity, are 
encoded as real numbers. The attribute selection for the GA optimization involves the following: 
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Type of Polymer ( 𝑇𝑇 ) 
The type of biodegradable polymer is encoded using binary digits (𝑏𝑏). Each bit in a segment of the chromosome, 𝑇𝑇 =
[𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑘𝑘], represents a different type of biodegradable polymer. Here, 𝑘𝑘 is the number of polymer types considered. 
 
Degradation Rate (𝐷𝐷) 
The degradation rate reflecting how quickly a polymer degrades under environmental conditions. This attribute is encoded 
as a real-valued gene, 𝐷𝐷, within the chromosome. 
 
Mechanical Properties (𝑀𝑀) 
Key mechanical properties, including tensile strength (𝑀𝑀𝑡𝑡𝑡𝑡) and elasticity (𝑀𝑀𝑒𝑒), are encoded as real numbers. These 
properties are crucial for assessing the material's performance and are represented as 𝑀𝑀 = [𝑀𝑀𝑡𝑡𝑡𝑡,𝑀𝑀𝑒𝑒] within the 
chromosome. 
 
Economic Cost (C) 
The economic viability of using a particular polymer type is encoded as a real-valued gene, 𝐶𝐶, reflecting the cost associated 
with production, processing, and other related expenses. 

In applying this encoding scheme within the GA model, each chromosome 𝐶𝐶𝑖𝑖 represents a potential solution, i.e., a 
specific selection of biodegradable polymers, and is structured as follows: EQU (4). 
 
 𝐶𝐶𝑖𝑖 = [𝑇𝑇,𝐷𝐷,𝑀𝑀,𝐶𝐶] (4) 
 
where: 

• 𝐶𝐶𝑖𝑖 is the 𝑖𝑖th  chromosome, 
• 𝑇𝑇 encodes the type(s) of biodegradable polymer included, 
• 𝐷𝐷 represents the degradation rate, 
• 𝑀𝑀 encodes mechanical properties and 
• 𝐶𝐶 denotes the economic cost. 

 
Fitness Function Implementation 
The fitness function, 𝐹𝐹(𝐶𝐶𝑖𝑖), for each chromosome 𝐶𝐶𝑖𝑖 in the population directly reflects the optimization goals of minimizing 
environmental impact and cost while maximizing material performance. The function is formulated as follows, integrating 
the previously defined attributes and their notations, EQU (5). 
 
 𝐹𝐹(𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐸𝐸(𝐶𝐶𝑖𝑖) + 𝑤𝑤2 ⋅ 𝑃𝑃(𝐶𝐶𝑖𝑖) −𝑤𝑤3 ⋅ Cost (𝐶𝐶𝑖𝑖) (5) 
 
where: 

• 𝐹𝐹(𝐶𝐶𝑖𝑖) is the fitness score of chromosomes 𝐶𝐶𝑖𝑖, 
• 𝐸𝐸(𝐶𝐶𝑖𝑖) quantifies the environmental impact of the polymer selection encoded by 𝐶𝐶𝑖𝑖, 
• 𝑃𝑃(𝐶𝐶𝑖𝑖) represents the performance score, incorporating mechanical properties and degradation rate, 
• Cost (𝐶𝐶𝑖𝑖) denotes the economic cost associated with the selection, 𝑤𝑤1,𝑤𝑤2, and 𝑤𝑤3 are the weights reflecting the 

relative importance of each criterion. 
 
Environmental Impact �𝐸𝐸(𝐶𝐶𝑖𝑖)� 
The Environmental Impact 𝐸𝐸(𝐶𝐶𝑖𝑖) of a polymer, selection can be quantified by considering factors such as the degradation 
rate and the energy required for production. An EQU (6) to represent this component might look like the following: 
 
 𝐸𝐸(𝐶𝐶𝑖𝑖) = 𝛼𝛼 ⋅ 𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶𝑖𝑖) + 𝛽𝛽 ⋅ 𝐸𝐸𝐸𝐸𝐸𝐸(𝐶𝐶𝑖𝑖) (6) 
 
where: 

• 𝐷𝐷𝐷𝐷𝐷𝐷(𝐶𝐶𝑖𝑖) is the degradation rate of the polymer selection, with higher rates generally preferred to ensure rapid 
decomposition. 

• 𝐸𝐸𝐸𝐸𝐸𝐸(𝐶𝐶𝑖𝑖) represents the energy required for producing the selected polymers, with lower energy consumption 
preferable. 

• 𝛼𝛼 and 𝛽𝛽 are weighting factors that reflect the relative importance of degradation rate and energy consumption in 
the overall environmental impact assessment. 

 
Performance Score �𝑃𝑃(𝐶𝐶𝑖𝑖)� 
The Performance Score 𝑃𝑃(𝐶𝐶𝑖𝑖) evaluates the suitability of the polymer selection in meeting mechanical and functional 
specifications. This can be expressed as a weighted sum of relevant performance attributes, EQU (7). 
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 𝑃𝑃(𝐶𝐶𝑖𝑖) = 𝛾𝛾 ⋅ 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐶𝐶𝑖𝑖) + 𝛿𝛿 ⋅ 𝐸𝐸LAS (𝐶𝐶𝑖𝑖) (7) 
where: 

• 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝐶𝐶𝑖𝑖) Measures the tensile strength of the polymer selection, indicative of its mechanical robustness. 
• 𝐸𝐸LAS (𝐶𝐶𝑖𝑖) Assesses the elasticity of the polymer selection, reflecting its flexibility and durability under stress. 
• 𝛾𝛾 and 𝛿𝛿 are weights assigned to the tensile strength and elasticity, respectively, indicating their importance in 

the overall performance evaluation. 
 
Economic Cost �𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝐶𝐶𝑖𝑖)� 
The Economic Cost Cost (𝐶𝐶𝑖𝑖) Associated with a polymer selection, raw material costs, production, and processing expenses 
are covered. This can be modelled as EQU (8). 
 
 Cost (𝐶𝐶𝑖𝑖) = 𝜃𝜃 ⋅ 𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝑖𝑖) + 𝜆𝜆 ⋅ PROC (𝐶𝐶𝑖𝑖) (8) 
where: 

• 𝑀𝑀𝑀𝑀𝑀𝑀(𝐶𝐶𝑖𝑖) represents the cost of raw materials for the polymer selection. 
• PROC (𝐶𝐶𝑖𝑖) Includes the costs associated with processing and producing the selected polymers. 
• 𝜃𝜃 and 𝜆𝜆 are weighting factors that balance the impact of raw material costs and processing expenses on the total 

economic cost. 
 
Customizing Genetic Operators 
These operators must be tailored to effectively navigate the unique landscape of material properties and sustainability 
criteria. This customization enhances the GA's ability to identify optimal polymer combinations by ensuring that genetic 
diversity is maintained and that the search space is thoroughly explored. 
 
Selection Operators 
The selection operator's role is to choose individuals from the population for reproduction, prioritizing those with higher 
fitness scores to ensure the propagation of advantageous traits. For the BPM selection problem: 
 
Tournament Selection is employed due to its balance between preserving genetic diversity and ensuring the advancement 
of fit individuals. In this method, a set number of individuals are randomly selected from the population to participate in a 
"tournament," the individual with the highest fitness within this group is chosen for reproduction. This process is repeated 
until the desired number of individuals is selected for the next generation. 

Given a tournament size of 𝑘𝑘, the selection process for one individual can be expressed as follows: 
• Randomly select 𝑘𝑘 individuals from the population. 
• Compare the fitness scores, 𝐹𝐹(𝐶𝐶𝑖𝑖), of the selected individuals. 
• The individual with the highest fitness score wins the tournament and is selected. 

The mathematical expression for selecting one individual through Tournament Selection can be represented as EQU 
(9). 
 
 Select (𝐶𝐶𝑖𝑖) = max{𝐹𝐹(𝐶𝐶𝑖𝑖1),𝐹𝐹(𝐶𝐶𝑖𝑖2), … ,𝐹𝐹(𝐶𝐶𝑖𝑖𝑖𝑖)} (9) 
 

where 𝐶𝐶𝑖𝑖1,𝐶𝐶𝑖𝑖2, … ,𝐶𝐶𝑖𝑖𝑖𝑖 are the chromosomes of the individuals participating in the tournament, and 𝐹𝐹(𝐶𝐶𝑖𝑖) is the fitness 
function evaluating each individual's suitability. 
 
Customizing Crossover Operators 
Crossover, or recombination, combines the genetic data of two parents to generate offspring, encouraging the exploration 
of new regions in the search space. To explore new combinations of polymer properties effectively, a Uniform Crossover 
strategy is implemented for the recombination of parental chromosomes: 
 
Uniform Crossover Strategy 
For two parent chromosomes 𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑞𝑞, each gene 𝑔𝑔𝑗𝑗 in the offspring chromosome 𝐶𝐶𝑜𝑜 is chosen randomly from the 
corresponding genes in 𝐶𝐶𝑝𝑝 and 𝐶𝐶𝑞𝑞 with equal probability. This approach ensures equitable contribution from both parents 
across the entire gene set, suitable for the mixed nature of binary and real-valued encoded attributes, EQU (10). 
 

 𝐶𝐶𝑜𝑜[𝑗𝑗] = �
𝐶𝐶𝑝𝑝[𝑗𝑗]  With Probability 0.5
𝐶𝐶𝑞𝑞[𝑗𝑗]  With Probability 0.5 (10) 
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Customizing Mutation Operators 
Mutation introduces random alterations in the chromosome, aiding in exploring the search space and preventing the GA 
from becoming trapped in local optima. Considering the composite encoding of chromosomes, a Hybrid Mutation strategy 
is adopted, differentiating between binary and real-valued genes: 
 
Bit-Flip Mutation for Binary Genes 
For binary-encoded segments representing discrete polymer types or characteristics, the bit-flip mutation is applied. If 𝑔𝑔𝑗𝑗 
is a binary gene, its state is flipped with a mutation probability 𝑝𝑝𝑚𝑚, EQU (11). 
 

 𝑝𝑝𝑚𝑚 = �
1 − 𝑔𝑔𝑗𝑗  If rand () < 𝑝𝑝𝑚𝑚
𝑔𝑔𝑗𝑗  Otherwise  (11) 

 
Random Mutation for Real-Valued Genes 
For real-valued genes encoding continuous attributes like degradation rate or mechanical properties, a random mutation is 
performed by adding a small, randomly selected delta, ′Δ’ within predefined limits, ensuring the exploration of nearby 
solution space, EQU (12). 
 
 𝑔𝑔𝑗𝑗′ = 𝑔𝑔𝑗𝑗 + Δ,  (12) 
 

where Δ is a random value within the attribute's range 
The proposed algorithm using GA for the BMP selection is presented below: 

 
Algorithm: GA for Optimized Selection of BPM 
Inputs: 

• 𝑁𝑁 : Number of individuals in the population. 
• 𝐺𝐺max : Maximum number of generations. 
• 𝑝𝑝𝑐𝑐 : Probability of crossover. 
• 𝑝𝑝𝑚𝑚 : Probability of mutation. 
• 𝑘𝑘 : Tournament size for selection. 
• {𝑇𝑇,𝐷𝐷,𝑀𝑀,𝐶𝐶}: Set of BPM attributes  
• Weights 𝑤𝑤1,𝑤𝑤2,𝑤𝑤3: weights for environmental impact, performance, and cost in the fitness function.  

 
Process: 

1 Initialize Population: Generate an initial population of 𝑁𝑁 individuals randomly. Each individual represents a set 
of BPM attributes encoded as chromosomes. 

2 Evaluate Fitness: For Each individual in the population, calculate their fitness based on the EQU (13): 
 
 𝐹𝐹(𝐶𝐶𝑖𝑖) = 𝑤𝑤1 ⋅ 𝐸𝐸(𝐶𝐶𝑖𝑖) + 𝑤𝑤2 ⋅ 𝑃𝑃(𝐶𝐶𝑖𝑖) −𝑤𝑤3 ⋅ Cost (𝐶𝐶𝑖𝑖) (13) 
 

where 𝐸𝐸,𝑃𝑃, and Cost are the environmental impact, performance score, and economic cost of the BPM, respectively. 
3 For Each generation in 1 to 𝐺𝐺max Do: 

• Selection: 
• For 𝑖𝑖 from 1 to 𝑁𝑁 Do: 

• Conduct 𝑘𝑘-tournament selection to choose parents. 
 

• Crossover: 
• For Each pair of parents Do: 

• If random () < 𝑝𝑝𝑐𝑐 Then, a uniform crossover will be performed to produce offspring. 
 

• Mutation: 
• For Each offspring, Do: 

• For Each gene in offspring, Do: 
• If random () < 𝑝𝑝𝑚𝑚 Then: 

• If the gene is binary (e.g., Type): 
• Apply bit-flip mutation. 

• Else If the gene is real-valued (e.g., Degradation Rate, Mechanical Properties, Cost): 
• Apply random perturbation within range. 
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• Evaluate the Fitness of New Offspring: Calculate the fitness of each new offspring using the fitness 
function. 

• Replacement: Integrate offspring into the population, replacing the least fit individuals. 
• Check Stopping Criterion: Exit the loop if a predefined stopping criterion is met. 

4 Identify Optimal Selection: At the end of 𝐺𝐺max generations, identify the individual with the best fitness score as 
the optimal set of biodegradable polymers, 𝑋𝑋∗. 

5 Output: Return the optimal set 𝑋𝑋∗ and its fitness score, detailing the selected biodegradable polymers' attributes 
and their alignment with sustainability, performance, and cost objectives. 

 
V. EXPERIMENT ANALYSIS 

A packaging manufacturing company located in Shenzhen, China, is seeking to transition to eco-friendly materials to 
reduce environmental impact without compromising product quality or significantly increasing costs. The company aims 
to utilize BPM for its new range of packaging materials. This case study aims to apply the GA to select the optimal 
combination of BPM that balances environmental friendliness, material performance, and cost-effectiveness. 
 
Data Collection and Preparation 
The data collection process involves details about different polymers that are sourced from academic literature, industrial 
input and product catalogues. Each polymer is characterized by a set of attributes (Table 1): type (T), degradation rate (D), 
mechanical properties (M), and cost (C). 
 
Type (T) 
This attribute relates to the chemical composition of BPM, which includes PLA (Polylactic Acid), PHA 
(Polyhydroxyalkanoates), PBAT (Polybutylene Adipate Terephthalate), and others.  
 
Degradation Rate (D) 
Measures the rate of how quickly a polymer can degrade into environmentally benign substances. 
 
Mechanical Properties (M) 
This includes tensile strength, elasticity, and durability under various conditions. 
 
Cost (C) 
Representing the economic viability of each polymer option, it includes the raw material expenses, processing and 
manufacturing costs.  
 

Table 1. Polymer Attributes 

Polymer Type (T) Origin Degradation 
Rate (D) Mechanical Properties (M) Cost (C) 

PLA (Polylactic Acid) Synthetic 
6-12 months 
(Industrial 

Composting) 

Tensile Strength: 45-60 
MPa, Elasticity: Moderate Medium 

PHA (Polyhydroxyalkanoates) Natural 9-18 months 
(Soil Burial) 

Tensile Strength: 35-45 
MPa, Elasticity: High High 

PBAT  
(Polybutylene Adipate 

Terephthalate) 
Synthetic 3-6 months (Soil) Tensile Strength: 25-35 

MPa, Elasticity: Very High 
Medium-

High 

PBS  
(Polybutylene Succinate) Synthetic 

6-9 months 
(Industrial 

Composting) 

Tensile Strength: 40-50 
MPa, Elasticity: Moderate Medium 

 
Preparation 
To prepare the data for the GA, the following steps were undertaken: 
 
Normalization 
Attributes were normalized to ensure comparability and to balance their influence in the optimization process. For instance, 
mechanical properties and degradation rates were scaled to a typical range, facilitating a uniform assessment of material 
performance and environmental impact. 
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Encoding 
Each polymer's attributes were encoded into a format suitable for GA processing. The type attribute was encoded using 
binary digits to represent the presence or absence of specific polymer categories. Continuous attributes, such as degradation 
rate and mechanical properties, were encoded as real numbers within their respective ranges. 
 
Data Cleaning 
The incomplete and inconsistent entries are addressed by the data cleaning processes. 
 
Preliminary Screening 
An initial screening was conducted to exclude polymers that did not meet basic environmental or performance thresholds, 
such as those with prolonged degradation rates and inadequate mechanical strength for packaging applications. 
The following Table 2 presents the description of the collected dataset. The GA model was trained using parameters as 
shown in Table 3. 
 

Table 2. Dataset Description 
Attribute Description Data Type Value Range or Categories 

Polymer Type (T) Categorical PLA, PHA, PBAT, PBS 
Origin Categorical Natural, Synthetic, Hybrid 

Degradation Rate (D) Continuous e.g., 3-18 months 
Tensile Strength (Part of M) Continuous e.g., 25-60 MPa 

Elasticity (Part of M) Qualitative Low, Moderate, High, Very High 
Cost (C) Continuous e.g., $0.5 - $5 per kilogram 

 
Table 3. Hyperparameters for GA 

Parameter Example Value 
Population Size (𝐍𝐍) 100 

Number of Generations (𝑮𝑮𝒎𝒎𝒎𝒎𝒎𝒎) 50 
Crossover Probability (𝑷𝑷𝒄𝒄) 0.8 
Mutation Probability (𝑷𝑷𝒎𝒎 ) 0.1 

Tournament Size (𝐤𝐤) 5 
 

 
Fig 2. Mean Fitness score. 

 
The graph in Fig 2 shows the mean fitness score of compared models over multiple runs. The GA proposed in this work 

starts at a score of 85 and reaches 97.5 at run 100. Both the start and end scores of the GA model are higher than those of 
other models, such as PSO, ACO, and SA. The overall performance at each run is consistent with each experiment run 
compared to the other models. The subsequent analysis is the environmental impact assessment of each model against 
multiple runs, as shown in Fig 3. The analysis shows that the models performing lesser impact scores are considered more 
than the others. From the results, it can be seen that the GA model has a lower impact score than the other models. The GA 
achieves lower scores of 25. The SA shows a slightly higher impact score of 27. In contrast, the ACO scored the highest 
at 30. The GA had the lowest score of all models, suggesting its adaptability in such environments. 
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Fig 3. Environment Impact Assessment. 

 
Fig 4. Fitness Improvement Assessment. 

 
Fig 4 shows the fitness improvement of different optimization algorithms over successive generations. The GA 

displayed substantial fitness improvement for each generation, starting around 1 and progressing to 4.5 by the 20th 
generation. The model displayed better convergence as the generations progressed. Following the GA, the SA model also 
shows better convergence than the other models, such as PSO+ACO. Considering all the models, the GA model showed 
better convergence than the other models. 
 

 
Fig 5. Execution Time (ET) vs Memory Usage (MU). 

 
Most of the examined models' ET and MU are displayed in Fig 5. When evaluating the performance of the two 

approaches, the GA approach consistently emerges as the best for MU and ET. The SA model was second in ET and first 
in MU, contrasting with the GA, which is intriguing. When contrasted with all the additional models, the ACO exhibits the 
highest ET, and the PSO uses the most considerable memory. Based on these results, the GA is superior to all other versatile 
approaches in the context of material selection. 
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VI. CONCLUSION AND FUTURE WORK 

The research investigation found that Genetic Algorithms (GA) have enormous potential for optimizing material selection, 
focusing on environmentally conscious production. In order to deal with the challenges of environmentally friendly 
polymer selection, this work recommends including the GA technique. Factors for material selection comprised the effects 
on the environment, how they perform, and cost, among others. The application used a case study on a product 
manufacturer's switch to using biodegradable polymer materials for sustainable manufacturing. The research study 
examined the framework of others, like PSO, ACO, and GA, and found that the GA model is more appropriate for 
application in the materials field for effective substance decision-making, considering a selection of evaluation parameters.  

Further, this research suggests GA and other algorithmic approaches can be used in several contexts that are sustainable 
industries. 
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