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Abstract – Inevitably, researchers in the field of medicine must deal with the issue of missing data. Imputation is frequently 

employed as a solution to this issue. Unfortunately, the perfect would overfit the experiential data distribution due to the 

uncertainty introduced by imputation, which would have a negative effect on the replica's generalisation presentation. It is 

unclear how machine learning (ML) approaches are applied in medical research despite claims that they can work around 

lacking data. We hope to learn if and how machine learning prediction model research discuss how they deal with missing 

data. Information contained in EHRs is evaluated to ensure it is accurate and comprehensive. The missing information is 

imputed from the recognised EHR record. The Predictive Modelling approach is used for this, and the Naive Bayesian 

(NB) model is then used to assess the results in terms of performance metrics related to imputation. An adaptive 

optimisation technique, called the Adaptive Dolphin Atom Search Optimisation (Adaptive DASO) procedure, is used to 
teach the NB. The created Adaptive DASO method syndicates the DASO procedure with the adaptive idea. Dolphin 

Echolocation (DE) and Atom Search Optimisation (ASO) come together to form DASO. This indicator of performance 

metrics verifies imputation's fullness. 

 

Keywords – Missing Data, Electronic Health Records, Naïve Bayesian, Adaptive Dolphin Atom Search Optimization, 

Machine Learning.  

I. INTRODUCTION 

Any study that involves or uses clinical data, such as studies of clinical prediction models, must give careful consideration 

to how missing data will be handled and reported.[1] Diagnostic and prognostic models in clinical prediction employ many 

input factors (i.e., covariates, predictors) to determine the absolute likelihood of an outcome's existence or occurrence. 

Most diagnostic and prognostic prediction models in the medical literature use regression modelling methodologies for 

derivation or validation. Additional work must be done in advance of developing a model when missing data are present 
in either the development or validation sample [2]. Individuals missing data on any of the predictor or outcome variables 

are (automatically) removed from the study in the most popular method, known as complete case analysis (CCA) [3]. In 

general, this approach is inefficient and can result in substantial bias in estimations of the estimated model parameters (for 

example, regression coefficients), negatively impacting the model's predictive accuracy. However, it is (only) valid under 

extremely strict circumstances. The loss of many useful observations can result, for instance, from discarding incomplete 

examples. 

Multiple imputations based on additional (seen) patient variables are advised as a result, and multivariable imputation 

models are commonly used [4]. By using multiple imputation, prediction model coefficients may be computed 

independently for several, finalised versions of the incomplete datasets. Although multiple probabilities in new patients 

[5]. Because of this, multiple imputation methods may be used for putting theory into practise and using prediction models 

in real-world electronic healthcare software [6]. Another strategy takes into account missing information while building, 
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validating, or using a prediction model. Incorporating missing indicator variables, using pattern mixture models, tree-based 

ensembles, or any number of other machine learning (ML) techniques that avoid missing data imputation are all viable 

options for this strategy (Box 1) [7]. 
Existing prediction model reporting guidelines (TRIPOD), in line with the growing body of corroborating literature, 

advise reporting at the very least on whether or not missing data was a problem in the development and validation sets for 

the prediction model, how severe the problem was, and what steps were taken to account for it in the analysis [8]. To far, 

it appears that only a minority of applied prediction studies are following these reporting standards. Many evaluations have 

indicated that missing data is often improperly handled or neglected [9], even in studies of prediction models that use more 

conventional (regression-based) methodologies. It is becoming less clear if and how missing data is handled during model 

construction and validation as ML approaches for predictive modelling emerge that may sidestep the necessity for 

imputation (for example, random forests with surrogate splits). However, it is unclear how frequently or effectively 

researchers that use these ML approaches apply appropriate alternative tactics [10]. 

In order to foretell concrete strength, several ML models have been built recently. In 1998, it was shown that a machine 

learning (ML) model based on an Network could accurately estimate the compressive strength of High-Performance 

concrete. The ANN model was found to outperform a regression-based model in terms of prediction [11]. Many different 
types of ML models, have been presented in the time since. Recent research [12, 13] have shown that expanding the dataset 

only reduces the volatility of the projected value once the model has mapped the link between the inputs and the output. 

This is despite the fact that training machine learning models needs enormous quantities of data. This research aims to 

examine how well prediction models of NB- sets, validation, and (if done) implementation of prediction models. Adaptive 

DASO optimises the weight of the NB to raise the precision of the classification.  

The remaining sections of the paper are as shadows: Following a brief overview of the background literature in Section 

2, a explanation of the optional perfect in Section 3, a discussion of the experimental analysis in Section 4, and a summary 

and conclusion in Section 5. 

 

II. RELATED WORKS 

In order to improve performance and generalisation, especially in data-poor scenarios, Hu et al. [14] introduce a novel 
negative regularisation improved R-Drop approach. When negative regularisation is applied to the R-Drop algorithm's 

output distributions, the distributions are forced to be inconsistent with one another. To ensure that our model has enough 

data to work with, we devise a strategy. The negative samples are obtained by taking the maximum value from the in-batch 

sample and subtracting the maximum value from the mini-batch sample. We use the resulting max-minus negative 

regularised dropout method to medical forecast datasets with both empty and complete instances to show its efficiency.  

Getzen et al. [15] introduce an innovative method for simulating real-world scenarios with missing data in EHR and 

assessing the effect of such scenarios on predictive models. To do this, they provide a new tier of classification for 

electronic health record (EHR) data. We use a medical knowledge network to keep track of associations between medical 

events so that we can create a more plausible framework for missing data. The completion of our realistic missing data 

architecture is made possible by this. Individuals with lower likelihood of having access to or seeking ICU healthcare were 

shown to be more negatively impacted by missing data on illness prediction models. In addition, we discovered that the 
knowledge graph strategy outperforms the elimination of chance occurrences as a means of adding missing data that is 

representative of the actual world into illness prediction models. 

Batra et al. [16] propose an ensemble imputation perfect that learns to use a mix of simple mean imputation, approaches, 

and then uses them in a way that chooses the best imputation strategy based on attribute correlations on missing value 

features. In healthcare data where missing values are prevalent, we provide a unique Ensemble Strategy for Missing Value 

to enable unbiased and reliable predictive statistical modelling. The results were compiled using the eXtreme gradient 

boosting regressor, the random forest regressor, and the support vector regressor. The suggested method outperforms both 

conventional missing value imputation techniques and the strategy of simply deleting records with missing values, as 

demonstrated by experiments and simulations done on real-world healthcare data with various feature-wise missing 

incidences. 

In order to choose the best subset of incomplete features that can improve the learning procedure and maximise the 

forecast power of the perfect after it has been handled correctly, Awawdeh et al. [17] suggest using evolutionary the 
imputation for each feature on the performance of the prediction model. The drive of this study is to address the limitations 

of imputation by developing a new method for dealing with missing data, all while selecting features to improve the 

representation's learning presentation. The effectiveness of the suggested method was evaluated using a 10-folds cross 

validation test using ten standard datasets. Common imputation methods used to analyse the results were mean, median, 

multiple imputation, expectation maximisation, and K- neighbours. The suggested method outperformed the competition 

in every significant regard, including accuracy. In addition, when compared to three existing evolutionary based imputation 

strategies, the proposed methodology improved accuracy in 75% of the datasets. 

Using a symmetric uncertainty-based L2 regularised regression ensemble and deep learning clustering, Nagarajan et al. 

[18] provide a novel tactic to lost data imputation in biological datasets. Genomic and non-genomic biological datasets 

with variable degrees of missing data are used in experiments to model different missingness distributions. We compare 

our approach to seven classic imputation approaches and two more recent ones. The experimental results show that the 
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projected technique outdoes the other methods we evaluated in terms of computational competence since it preserves the 

dataset's structure. Therefore, if our proposed method for imputation of lost data works. 

To combine the benefits of FIML estimation and self-attention neural networks, [19] develop a new technique they 
term Full Information Maximum Likelihood (FIML) Optimised Self-attention (FOSA). First, we use FIML to estimate 

missing values, and then we use the self-attention technique to improve our estimates. Experimental results from both 

synthetic and real-world datasets consistently show that FOSA outperforms standard FIML approaches in a number of 

important ways. Even though the Structural Equation Model (SEM) may be mis-specified, leading to subpar FIML 

estimates, the self-attention component of FOSA's robust architecture effectively corrects and optimises the imputation 

outputs. Our results demonstrate the robustness and generalizability of FOSA in data imputation by proving its capacity to 

consistently provide high-quality predictions in the face of up to 40% random missingness. 

For missing at random (MAR) type missing data in IoMT, Iris Punitha et al. [20] present a unique Two Tier Missing 

Data Imputation (TT-MDI) strategy based on an improved linear interpolation method. The cStick IoMT dataset from the 

Repository was used to evaluate the proposed TT-MDI technique for imputation of MAR missing data. The first level 

attempts to determine the imputation threshold by using the distances among the class centroids and the associated data 

instances. The second layer uses the determined cutoff to fill in any blanks in the data. The experimental results show that 
when using the TT-MDI approach has better accuracy. 

 

III.  PROPOSED METHOD 

In this section, we first present the imputation procedure. 

 

Imputation For Missing Data 

Loss to follow-up, inadequate replies to surveys and questionnaires, and data entry mistakes are all common causes of 

missing data in medical research. Incorrect treatment of missing data can compromise model generalisation performance 

by leading to inaccurate estimates. Researchers must carefully choose a strategy for dealing with missing data in command 

to reduce the possibility of bias and increase the reliability of their results. 

Imputation is a common procedure for dealing with instances of missing data. Some characteristics in medical research 
have continuous values, such as time spent in therapy or patient age. Boolean values are used to express numerous different 

characteristics, like sex and dizziness. Imputation is thus carried out differently depending on whether the value is 

continuous or boolean. 

In this research, we experimented with the regular imputation method for the continuous missing data and attempted 

the mode imputation, and Naive Bayes imputation methods for the boolean missing data. Based on the accuracy of their 

forecasts, we made use of the mode imputation method in our final design. Imputation strategies for missing data in 

healthcare data are described here, along with their use in the experiments. Assuming a time series with several variables 

𝑋 =  {𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑡}
⊺ ∈  𝑅𝑡×𝑑 as a sequence of features. The ith observation 𝑥i consists of 𝑑 features {𝑥𝑖

1, … , 𝑥𝑖
𝑗
, … , 𝑥𝑖

𝑑} 

observed features, we introduce a mask matrix of 𝑡 × 𝑑 dimensions, i.e., 𝑀 ∈ 𝑅t×d, whose element 𝑚𝑖
𝑗
 characterizes 

whether the consistent feature 𝑥𝑖
𝑗
 is experiential or not, i.e., 𝑚𝑡

𝑗
= 1 if 𝑥𝑖

𝑗
 is observed; otherwise, 𝑚𝑖

𝑗
= 0. 

The imputation of a lost feature is distinct as 𝛿(𝑥𝑖
𝑗) → 𝑥𝑖

𝑗
∈ 𝑅, where 𝑥𝑖

𝑗
 is a missing feature 𝑚𝑖

𝑗
= 0, and 𝑥𝑖

𝑗
 is a 

characteristic that has been imputed using a specific approach. Here we have a multivariate period series X, its matrix M, 

and the resulting imputed series X′, which includes both the original characteristics of X and the features projected using 

the accusation procedure. 

𝑋 = (

𝑥1
1 − 𝑥1

3 −

𝑥2
1 𝑥2

2 − 𝑥2
4

𝑥3
1 − 𝑥3

3 𝑥4
4

) , 𝑀 = (
1 0 1 0
1 1 0 1
1 0 1 1

) ,𝑋′ = (

𝑥1
1 𝑥1

2 𝑥1
3 𝑥1

4

𝑥2
1 𝑥2

2 𝑥2
3 𝑥2

4

𝑥3
1 𝑥3

2 𝑥3
3 𝑥3

4

)                    (1) 

Excluding observations (via methods like pairwise and listwise deletion) that have a missing feature is the easiest way 

to deal with missing features in an incomplete time series. However, these methods may reduce data quality and provide 

inaccurate estimations. This is why mean replacement and other strategies that require evenly features with a given value 

are increasingly popular. All the missing parts 𝑥𝑖
𝑗
 where 𝑚𝑖

𝑗
= 0, the zero replacement applies zero as the credited feature, 

i.e., 𝑥𝑖
𝑗
= 0. Likewise, the replaces xij with the mean 𝑥̅ =

∑ 𝑥𝑎
𝑏

𝑛
, where n is the sum of non-missing topographies in X, and 

𝑥𝑎
𝑏 is feature with 𝑚𝑖

𝑗
= 1 therefore, 𝑥𝑖

𝑗
= 𝑥̅. 

 

Datasets description 

The trials we conducted made use of three different medical prediction databases. The UCI machine learning repository 
(ASUNCION, 2007) was mined for the open-source Pima Indian Diabetes (PID) and Wisconsin Breast Cancer (WBC) 

datasets. Our final dataset was produced using information from the TCM Syndrome Biological Technology Platform, a 

part of the Chinese National Science and Knowledge Chief Project. Table 1 displays summary statistics for all three data 

sets [14]. The WBC and PID databases are both full, however ours is missing 275 values. In some cases, particularly those 

involving traditional Chinese medicine treatment, a clear diagnosis may not be possible until further features are collected 
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throughout the diagnostic process. Therefore, we have omitted from our dataset any records that have more than three 

missing values so that we may do statistical analysis. 

 
Table 1. The Comparison of the Three Datasets. 

Statistics PID Dataset WBC Our Dataset 

Sum of instances 768 dataset 1920 

Sum of categories 2 683 7 

Sum of features 8 2 24 

Sum of missing values 0 9 275 

Sum of training instances 537 0 1,344 

Sum of testing instances 231 478 576 

 

Our data collection is comprised of information regarding T2DM syndrome therapies using traditional Chinese 

medicine. The seven categories into which diabetic symptoms fall. The patient's age and treatment plan are continuous 
features in our dataset, whereas the remaining characteristics are boolean. Incomplete information is only present in the 

boolean features. Our data also shows that the majority of patients are male, with the majority of patients falling between 

the ages of 40 and 80 over the span of 5-20 years. The most prominent manifestations of this illness are a lack of saliva 

production, increased thirst, and paresthesias and tingling in the feet and legs. In particular, missing data for continuous 

values are not present in the dataset we have collected. 

The WBC dataset contains 683 data points, each of which describes one of nine extracted picture attributes. Features 

can have values between 1 to 10, where 1 represents a normal or benign case and 10 represents the most aberrant instance 

possible given the diagnosis. Each of the 768 data points in the Pima Indian Diabetes (PID) dataset has eight different 

medical characteristics. Two-hundred-seventy-eight of these represent diabetic patients, whereas five-hundred represent 

those who are not diabetic. 

 
Naive Bayesian Equation: 

A Naive Bayes algorithm recognises the occurrence of an event based on the probability of a second event. Bayesian 

techniques of classification, which Naive Bayes classifiers emphasise, describe the link between numerical value 

conditional probabilities using an algorithm. The Bayesian classification is of interest because it can be represented as (L—

feature) P(L—feature), where L is the label and P is the set of observed features. 

The Bayesian theorem puts this in terms of quantifiable terms that are easier to calculate. 

 

𝑃(𝐿 ⁄ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) = 𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ⁄ 𝐿)𝑃(𝐿)𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)𝑃(𝐿 ⁄ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒) = 𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ⁄ 𝐿)𝑃(𝐿)𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒)         (2) 

To choose between L1L1 and L2L2, one approach involves calculating the ratio of the posterior probabilities for the two 

labels.; 

𝑃(𝐿1 ⁄ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒)𝑃(𝐿2 ⁄ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒)  =  𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ⁄ 𝐿1) 𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ⁄ 𝐿2)                  (3) 

𝑃(𝐿1)𝑃(𝐿2)𝑃(𝐿1 ⁄ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒)𝑃(𝐿2 ⁄ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒)  =  𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ⁄ 𝐿1)                  (4) 

𝑃(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ⁄ 𝐿2)  =  𝑃(𝐿1)𝑃(𝐿2)                              (5) 

One type of model fits this description; it is termed a generative model since it describes an imaginary random process 

that generates data. Determining this generative model for each tag is a crucial part of training for a Bayesian classifier. 

Simplifying the structure of this model can make the generalised form of such a learning phase more manageable, but it is 

still a difficult undertaking. A approximate estimate of the generating model for each class was evaluated, and the Bayesian 

classification was proceeded after a very naive assumption was made about the generative model for each label. Various 

naïve Bayes classifiers make several simplistic assumptions about the data. 

 
Mathematically, the theorem of Bayes may be expressed as 

 

𝑃(𝐴 ⁄ 𝐵)  =  (𝑃(𝐵 ⁄ 𝐴) 𝑃(𝐴))  ⁄ 𝑃(𝐵)                                       (6) 

the two occurrences A and B. 

Using a dataset of 1000 patient records as an example, the probability of a certain event can be estimated using the rule R2 

as follows: If the main term and sub term2 are known to replace sub term1, then the replacement is performed precisely 

due to the uniqueness of the structure. 

.Let us deliberate the case (𝑚𝑎𝑖𝑛𝑡𝑒𝑟𝑚 = ”𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒” 𝐴𝑁𝐷 𝑠𝑢𝑏𝑡𝑒𝑟𝑚2 = ”𝑠𝑎𝑙𝑖𝑣𝑎𝑟𝑦”) − >  𝑠𝑢𝑏 −  𝑡𝑒𝑟𝑚1 =
? ? ? ? ? ? ) 

𝐴𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑟𝑢𝑙𝑒 𝑅2, 
𝑆𝑢𝑏𝑇𝑒𝑟𝑚1 = ”𝑆𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛” 𝑖𝑓 𝑚𝑎𝑖𝑛𝑡𝑒𝑟𝑚 = ”𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒” 𝑎𝑛𝑑 𝑠𝑢𝑏 −  𝑡𝑒𝑟𝑚2 = ”𝑆𝑎𝑙𝑖𝑣𝑒𝑟𝑦” 
𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑡ℎ𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑖𝑠 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑎𝑠; 
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𝑃 (
𝑆𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛

𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒
) =

(𝑃(
𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒

𝑆𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛
)∗𝑃(𝑆𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛))

𝑃(𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒)
                                                             (7) 

𝑃(𝑆𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛) = 32/1000 

𝑃(𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒) = 32/1000 

𝑃(𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒⁄𝑆𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛) = 32/32 

𝑃(𝑆𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛⁄𝐷𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒) = ((32⁄32) ∗ (32⁄1000)) / (32/1000) = 1 

 

It's also possible to have complete knowledge of the primary word while being unaware of any of the associated sub 

terms. Furthermore, it is usually preferable to avoid scenarios when the sub term has more than one alternative for filling, 

as this does not result in the greatest imputation accuracy. 

Here's an example in which we have only the main term known and are lacking terms 1 and 2. 

. 

(MainTerm=”disorder” AND SubTerm1=???? ) − > SubTerm2=???? 

 
Subterm1's value must be determined first, then Subterm2's value may be determined from Subterm1. When disorder 

is the primary term, panic disorder and major depressive disorder are both possible for subterm1. Accuracy for both values 

must be calculated using RBC and Naive Bayesian approach in order to perform the right imputation.. 

i) 𝑅6 ∶  (𝑀𝑎𝑖𝑛𝑇𝑒𝑟𝑚 = ”𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟” ) − >  𝑆𝑢𝑏𝑇𝑒𝑟𝑚1 = ”𝑑𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛” 
By means of Rule Based Classifier: 

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑅6) = 96/1000 = 0.096 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑅6) = 32/96 = 0.33 

By means of Naive Bayesian Equation: 

𝑃 (
𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟
) = (

𝑃(
𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟

𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛
)∗𝑃(𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)

𝑃(𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
)                                                    (8) 

𝑃(𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟 ⁄ 𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)  =  ((32 ⁄ 32 )  ∗  (32 ⁄ 1000)) / (96/1000)  =  32/96 =  0.33 

ii) R7 : (𝑀𝑎𝑖𝑛𝑇𝑒𝑟𝑚 = ”𝑑𝑖𝑠𝑜𝑟𝑑𝑒𝑟”) − >  𝑆𝑢𝑏𝑇𝑒𝑟𝑚1 = ”𝑝𝑎𝑛𝑖𝑐” 
𝑈𝑠𝑖𝑛𝑔 𝑅𝑢𝑙𝑒 𝐵𝑎𝑠𝑒𝑑 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟: 
Using Naive Bayesian Equation: 

𝑃 (
𝑃𝑎𝑛𝑖𝑐

𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟
) = (

𝑃(
𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟

𝑃𝑎𝑛𝑖𝑐
)∗𝑃(𝑃𝑎𝑛𝑖𝑐)

𝑃(𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛)
)                                                            (9) 

𝑃 (𝐷𝑖𝑠𝑜𝑟𝑑𝑒𝑟
𝐷𝑒𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛⁄ ) =

((32
32⁄ ) ∗  (64

1000⁄ ))

(96/1000)  =  64/96
=  0.67 

  
It is preferable to delete these entries from the dataset rather than impute an erroneous number, given the accuracy level 

is not 100% in any scenario. 

 

Hyper-parameter tuning of Naïve Bayes 

The created Adaptive DASO is used to train the NB classifier. The Adaptive DASO was established by fusing the ideas 

presented in DE [21] and [22] ASO with the Adaptive notion. Every atom in DASO interacts with every other atom during 

the startup phase, and then it uses its repulsion qualities to drive away any premature or overconcentrated atoms. Finally, 

all atoms exhibit attractive behaviour towards one another, guaranteeing full use of the optimisations that have been 

produced. Coding the Answer: For NIDS with a fitness metric, the proposed optimisation is used to estimate the best 
solution with a lower error rate. The developed Adaptive RNN involves the following phases during implementation: 

 

Population beginning 

Let ν is sum of atoms and the site of dth atom is portrayed as, 

𝐼𝑑 = [𝐼𝑑
1 ,… , 𝐼𝑑

𝑎]; 𝑑 = [1,… . , 𝑙]                                                    (10) 

where 𝐼𝑑
𝑎 denotes the ath site constituent of dth atom 

 

Fitness function 

The best result is chosen based on its fitness function, which is assessed by calculating the dissimilarity between the 

anticipated and classifier outputs., 

𝜎𝑑 =
1

𝜇
∑ 𝑅𝑠

(𝑖,𝑗)
− 𝜀𝑠

𝜇
𝑠=1                                                           (11) 

where, 𝜎𝑑 designates the fitness rate of dth atom, 𝑅𝑠
(𝑖,𝑗)

 portrays the classifier yield and 𝜀𝑠 specifies the foretold output. 

 

Compute the mass  

The mass of the dth atom after f iterations is approximated using the fitness function and is given as, 
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𝑀𝑑(𝑓) =
𝑒𝑑(𝑓)

∑ 𝑒𝑓(𝑓)𝑑=1
                                                            (12) 

where, 𝑀𝑑(𝑓) designates the mass, and the term 𝑒𝑑(𝑓) is uttered as, 

𝑒𝑑(𝑓) =
𝜎𝑑−𝜎𝑏𝑒𝑠𝑡

𝑒𝜎𝑤𝑜𝑟𝑠𝑡−𝜎𝑏𝑒𝑠𝑡
                                                         (13) 

𝜎𝑏𝑒𝑠𝑡 and 𝜎𝑤𝑜𝑟𝑠𝑡 defines a maximum and minimum value, and its expression looks like, 

𝜎𝑏𝑒𝑠𝑡 = 𝜎𝑑𝑑=1,…,𝑙
𝑚𝑖𝑛                                                                  (14) 

𝜎𝑤𝑜𝑟𝑠𝑡 = 𝜎𝑑𝑑=1,…,𝑙
𝑚𝑖𝑛                                                              (15) 

Evaluate N Neighbor 

The fitness value of interactions between atoms is used to pick the N neighbours, which improves the initial iteration's 

exploration. N is represented by the following expression, 

𝑁(𝑓) = 𝑙 − (𝑙 − 2)√
𝑓

𝑑
                                                        (16) 

Compute the Total force and Constraint force 

The total force is defined as the sum of the forces exerted on the dth atoms by their nearest neighbours, and this statement 

is assessed as, 

𝑄𝑑
𝑎(𝑓) = ∑ 𝑟𝑎𝑛𝑑𝑠𝑄𝑑𝑠

𝑎 (𝑓)𝑠∈𝑁𝑏𝑒𝑠𝑡
                                                      (17) 

 

where, 𝑄𝑑
𝑎(𝑓) denotes the strength, and the term specifies a random value between 0 and 1, with 0 indicating no force 

and 1 indicating maximum force. All particles in the population space act optimally, and the pressure exerted by the dth 

atom's constraints may be written as, 

𝜆𝑑
𝑎(𝑓) = 𝐻(𝑓)(𝐼𝑏𝑒𝑠𝑡

𝑎 (𝑓) − 𝐼𝑑
𝑎(𝑓))                                                 (18) 

where, H(f) designates multiplier. 

 

Approximation the acceleration 

The dth atom hastening at fth phase is intended as, 

𝐴𝑑
𝑎(𝑓) =

𝑄𝑑
𝑎(𝑓)

𝑀𝑑
𝑎(𝑓)

+
𝜆𝑑
𝑎(𝑓)

𝑀𝑑
𝑎(𝑓)

 (19) 

where, 𝑄𝑑
𝑎(𝑓) total force, 𝜆𝑑

𝑎(𝑓) constraint force, 𝑀𝑑
𝑎(𝑓) indicates the mass and 𝐴𝑑

𝑎(𝑓) designates hastening of dth atom 

at fth period. 

 

Renew the velocity 

The velocity of dth atom at f + 1 repetition is articulated as, 

𝑉𝑑
𝑎(𝑓 + 1) = 𝑟𝑎𝑛𝑑𝑑

𝑎𝑉𝑑
𝑎(𝑓) + 𝐴𝑑

𝑎(𝑓)                                                      (20) 

 

Where, 𝑟𝑎𝑛𝑑𝑑
𝑎 indicates the random number, and 𝐴𝑑

𝑎(𝑓)  specifies the acceleration 

 

Inform the atom location 

As a result, the final DASO method update equation is as follows:. 

𝐼𝑑(𝑓 + 1) =
𝜔2𝑑𝑀𝑑(𝑓)

𝜔2𝑑𝑀𝑑(𝑓)−𝑧𝑒
−20𝑓

𝑎

[
 
 
 
 
 
 
 𝐼𝑑(𝑓) + 𝑟𝑎𝑛𝑑𝑑𝑉𝑑(𝑓) − 𝜓 (2 −

𝑓−1

𝑎
)

3

𝑒
−20𝑓

𝑎 ∑
𝑟𝑎𝑛𝑑𝑠[2×𝑐𝑑𝑠(𝑓)13−(𝑐𝑑𝑠)

7]

𝑀𝑑(𝑓)𝑠∈𝑁𝑏𝑒𝑠𝑡

(𝐼𝑠(𝑓)−𝑇𝑑(𝑓))

‖𝐼𝑑(𝑓),𝐼𝑠(𝑓)‖2
− 𝑍𝑒

−20𝑓

𝑎

𝐼𝑑(𝑓)+𝑊𝑑(𝑓)+𝜔1𝑑𝐽𝑑−𝜔1𝑑𝐼𝑑(𝑓)

𝜔2𝑑𝑀𝑑(𝑓) ]
 
 
 
 
 
 
 

                                            (21) 

where, 𝑀𝑑(𝑓) stipulates the mass of dth atom, 𝑉𝑑(𝑓) is the velocity, Z specifies the multiplier weight , ψ stipulates the 

depth weight, α demonstrations the extreme repetition, 𝑊d signifies the dimension, 𝐽d depicts the personal greatest solution, 

𝜔1𝑑 and 𝜔2𝑑 are the accidental sum that lies among 0 to 1, correspondingly. 

Here, Adaptive concept is presented in ψ from above equation for better presentation of sentiment classification. The 

appearance ψ is given by, 

𝜓 = 𝜓𝑚𝑎𝑥 −
𝑓(𝜓𝑚𝑎𝑥−𝜓𝑚𝑖𝑛)

𝑎
                                              (22) 

where, α suggests the depth Adaptive, 𝜓𝑚𝑎𝑥 and 𝜓𝑚𝑖𝑛 depicts the maximum and minimum rate of ψ and α indicates 

the maximum repetition.  

 
Re-compute the fitness: 

The goal function, shown in Equation 11, is used to make predictions about the fitness worth, and the solution with the 

highest fitness is best. 
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Termination 

The process described above is iterated over and over again until the termination conditions are met. The merging of ASO 

and DE with the adaptive notion yields a more optimum outcome and less computing time. 
 

IV. RESULTS AND DISCUSSION 

This section details the investigational evaluation of the projected perfect on three different data sets. The hardware setup 

for the experiments included a MATLAB 2018a workstation, a Windows 11 desktop, and an Intel(R) Core(TM) i5-12500H 

mainframe running at 3.1 GHz and 16 GB of RAM. We also used the k-fold cross-validation test in our analysis. Our 

performance measurements are computed using Equations (23-24) whereas training and prediction times were the primary 

focus of execution speed measures. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                         (23) 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
=

2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                             (24) 

Analysis Of Dropout Rate 

Table 2 presents the analysis of dropout rate for three datasets. 

Table 2. Experimental Analysis on Three Datasets 

Dropout Rate WBC PID Collected dataset 

0.1 96.47 93.49 90.28 

0.2 97.81 97.22 93.23 

0.3 98.54 97.62 91.01 

0.4 96.71 97.81 89.38 

0.5 97.62 96.71 92.97 

 

In the above Table 2 characterise that the experimental analysis on three datasets. In the investigation we used different 
dropout rate to determine the performance. In the analysis of 0.1 dropout rate, the WBC as 96.47 and then PID as 93.49 

and also the collected dataset as 90.28 correspondingly. Then the 0.2 dropout rate, the WBC as 97.81 and then PID as 97.22 

and also the collected dataset as 93.23 correspondingly. Then the 0.3 dropout rate, the WBC as 98.54 and then PID as 97.62 

and also the collected dataset as 91.01 correspondingly. Then the 0.4 dropout rate, the WBC as 96.71 and then PID as 97.81 

and also the collected dataset as 89.38 correspondingly. Then the 0.5 dropout rate, the WBC as 97.62 and then PID as 96.71 

and also the collected dataset as 92.97 correspondingly. Fig 1 shows Graphical Representation of proposed model 

 

 
Fig 1. Graphical Representation of Proposed Model 

 

Analysis of Proposed model on missing ratio 

Based on the missing ratio, the below Table 3 presents the validation analysis on three datasets. 

 

Table 3. Experimental Analysis on proposed Model on three datasets 

Missing Ratio 

WBC PID Collected data 

Accuracy (%) F1-score (%) Accuracy (%) 
F1-score 

(%) 

Accuracy 

(%) 

F1-score 

(%) 

5% 84.27 72.45 76.34 72.5 72.45 74.11 

10% 88.67 87.91 78.75 76.25 78.35 77.72 

15% 73.55 74.18 79.79 78.75 79.25 79.28 

20% 70.78 88.27 82.51 79.44 89.20 87.18 

25% 95.87 92.26 93.98 83.05 94.64 90.25 

In the above Table 3 signifies that the Experimental Analysis on projected Model on three datasets. In the evaluation 

of different missing ratios, in the 5% of missing ratio, the WBC dataset accuracy as 84.27 and F1-score range of 72.45 and 

another PID dataset, the accuracy value as 76.34 and the F-score range as 72.5 and additionally the collected dataset, the 

accuracy value as 72.45 and then F1-score rate as 74.11 correspondingly. Then the 10% of missing ratio, the WBC dataset 
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accuracy as 88.67 and F1-score range of 87.91 and another PID dataset, the accuracy value as 78.75 and another PID 

dataset, the accuracy value as 76.25 and additionally the collected dataset, the accuracy value as 78.35 and F1-score range 

of and additionally the collected dataset, the accuracy value as 77.72 correspondingly. Then the 15% of missing ratio, the 
WBC dataset accuracy as 73.55 and F1-score range of 74.18 and another PID dataset, the accuracy value as 79.79 and 

another PID dataset, the accuracy value as 78.75 and another PID dataset, the accuracy value as 79.25 and additionally the 

collected dataset, the accuracy value as 79.28 correspondingly. Then the 20% of missing ratio, the WBC dataset accuracy 

as 70.78 and F1-score range of 88.27 and another PID dataset, the accuracy value as 82.51 and F1-score range of 79.44 

and additionally the collected dataset, the accuracy value as 89.20 and F1-score range of 87.18 correspondingly. Then the 

25% of missing ratio, the WBC dataset accuracy as 95.87 and F1-score range of 92.26 93.98 and another PID dataset, the 

accuracy value as 83.05 and additionally the collected dataset, the accuracy value as 94.64 and F1-score range of 90.25 

correspondingly. Fig 2 show in Graphical Comparison on Missing Ratio 

 

 
Fig 2. Graphical Comparison on Missing Ratio 

 

V. CONCLUSION 

To further improve presentation and generalisation ability, especially in the case of missing data, we present a 

straightforward yet effective negative regularisation technique built upon NB. The suggested model preserves both the 

independence of the deliveries of positive and negative samples at the output level, as well as the distributions derived from 

the same data sample. Adaptive DASO model is used to fine-tune the NB's hyper-parameters for maximum performance. 

By combining DA and ASO with an adaptive framework, we get the Adaptive DASO algorithm. In addition, we develop 

a novel max-minus negative sampling method that is more efficient than the standard in-batch negative example sampling 
technique and aids in the convergence process. Validation of the usefulness of the suggested strategy, especially in the 

situation of missing data, is provided by extensive experimental findings on medical datasets containing both full and 

missing data cases. Using a deep learning architecture and a hybrid optimisation model, it will be possible to forecast the 

missing healthcare data in the future.  
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