#

Advances in Computational Intelligence in Materials Science

Book Series

About the Book
About the Author
Table of Contents

Buy this Book

eBook
  • • Included format: Online and PDF
  • • eBooks can be used on all reading devices
  • • ISSN : 2960-2408
  • • ISBN : 978-9914-9946-6-7


Hand Cover
  • • Including format: Hardcover
  • • Shipping Available for individuals worldwide
  • • ISSN : 2960-2394
  • • ISBN : 978-9914-9946-7-4


Services for the Book

Download Product Flyer
Download High-Resolutions Cover

1st International Conference on Emerging Trends in Mechanical Sciences for Sustainable Technologies

A Survey About an Extraction of Fruit Fibers from Borassus Flabellifer L and Composite Characteristics

Gowtham S, Logesh Kumar M, Logesh Kumar S and Manikandasamy R, Department of Mechanical Engineering, Sri Eshwar College of Engineering, Coimbatore, Tamil Nadu, India.


Online First : 07 June 2023
Publisher Name : AnaPub Publications, Kenya.
ISSN (Online) : 2960-2408
ISSN (Print) (Online) : 2960-2394
ISBN (Online) : 978-9914-9946-6-7
ISBN (Print) : 978-9914-9946-7-4
Pages : 035-040

Abstract


Natural fiber reinforced composite materials are used to develop the best outcome materials because of their easy availability, capacity to be recycled, and environmental friendliness.Both urban and rural areas can benefit from the products developed from this material.Borassus flabellifer L fruits, leavesand leaves stems are utilized economically, and part of them is thrown away as trash. This Borassus Flabellifer byproduct can be used as a source of fibers and as the primary component of natural fiber polymer composites with reinforcement. This article aims to provide a thorough understanding of Borassus fibers and their composites. Studies have been done on Borassus fibers and its composites' chemical, mechanical, thermal, and morphological characteristics as well as alkali treatment approaches and various production methods. Overall, this review paper analyzes and pinpoints gaps in the earlier studies' work, and it offers valuable data for additional investigation in various streams using reinforcement from Borassus fiber.

Keywords


Natural Fiber Reinforced Polymer Matrix Composites, Alkaline Treatment, SEM Analysis, Laminated Composites.

  1. J. K. Singh, A. K. Rout, and K. Kumari, “A review on Borassus flabellifer lignocellulose fiber reinforced polymer composites,” Carbohydrate Polymers, vol. 262, p. 117929, Jun. 2021, doi: 10.1016/j.carbpol.2021.117929.
  2. N. Graupner, K. Narkpiban, T. Poonsawat, and P. Tooptompong and J鰎g M黶sig, “Toddy Palm (Borassus Flabellifer) Fruit Fibre Bundles as Reinforcement in Polylactide (PLA) Composites: An Overview About Fibre and Composite Characteristics,” Journal of Renewable Materials, vol. 7, no. 8, pp. 693–711, 2019, doi: 10.32604/jrm.2019.06785.
  3. M. N. Abubakar, T. K. Bello, M. T. Isa, and K. Lawal, “Effect of alkaline treatment on the physical and mechanical properties of borassus flabellifer leaf fiber,” Polymer Bulletin, vol. 80, no. 12, pp. 12577–12590, Jan. 2023, doi: 10.1007/s00289-022-04666-5.
  4. N. P. Sunesh, S. Indran, D. Divya, and S. Suchart, “Isolation and characterization of novel agrowaste‐based cellulosic micro fillers from Borassus flabellifer flower for polymer composite reinforcement,” Polymer Composites, vol. 43, no. 9, pp. 6476–6488, Aug. 2022, doi: 10.1002/pc.26960.
  5. A. Lalolau, J.Bale, T. R. E. S. N. A. Soemardi, and O. Polit, “Lontar Borassus flabellifer fiber composite: energy dissipation and thermal response under dynamic tensile testing,” J Eng Sci Technol, Vol.16, no.2, 1258-1271, 2021.
  6. J. S. Bale, Y. M. Pell, M. Jafri, and R. Selan, “Experimental Investigation on Mechanical Joint of Lontar (Borassus Flabellifer) Fiber Reinforced Polyester Composites under Static Flexural Test,” Indonesian Journal of Science and Technology, Vol.4, no.1, pp.17-27, 2019.
  7. J. K. Singh and A. K. Rout, “Characterization of raw and alkali-treated cellulosic fibers extracted from Borassus flabellifer L.,” Biomass Conversion and Biorefinery, vol. 14, no. 10, pp. 11633–11646, Aug. 2022, doi: 10.1007/s13399-022-03238-x.
  8. N. Graupner et al., “Functional gradients in the pericarp of the green coconut inspire asymmetric fibre-composites with improved impact strength, and preserved flexural and tensile properties,” Bioinspiration & Biomimetics, vol. 12, no. 2, p. 026009, Feb. 2017, doi: 10.1088/1748-3190/aa5262.
  9. A. Balakrishna, D. N. Rao, and A. S. Rakesh, “Characterization and modeling of process parameters on tensile strength of short and randomly oriented Borassus Flabellifer (Asian Palmyra) fiber reinforced composite,” Composites Part B: Engineering, vol. 55, pp. 479–485, Dec. 2013, doi: 10.1016/j.compositesb.2013.07.006.
  10. S. H. Dhoria, and M. Vijaya, “Investigation of mechanical properties of Borassus Flabellifer fibre reinforced polymer composites,” Journal of Emerging Technologies and Innovative Research, Vol.2, no.12, 88-93, 2015.
  11. N. Srinivasababu, J. S. Kumar, and K. V. K. Reddy, “Manufacturing and Characterization of Long Palmyra Palm/Borassus Flabellifer Petiole Fibre Reinforced Polyester Composites,” Procedia Technology, vol. 14, pp. 252–259, 2014, doi: 10.1016/j.protcy.2014.08.033.
  12. I. Prabowo, J. Nur Pratama, and M. Chalid, “The effect of modified ijuk fibers to crystallinity of polypropylene composite,” IOP Conference Series: Materials Science and Engineering, vol. 223, p. 012020, Jul. 2017, doi: 10.1088/1757-899x/223/1/012020.
  13. A. G. Adeniyi, D. V. Onifade, J. O. Ighalo, and A. S. Adeoye, “A review of coir fiber reinforced polymer composites,” Composites Part B: Engineering, vol. 176, p. 107305, Nov. 2019, doi: 10.1016/j.compositesb.2019.107305.
  14. M. D. Alotaibi et al., “Characterization of natural fiber obtained from different parts of date palm tree (Phoenix dactylifera L.),” International Journal of Biological Macromolecules, vol. 135, pp. 69–76, Aug. 2019, doi: 10.1016/j.ijbiomac.2019.05.102.
  15. S. Gowtham et al., “A Survey on Additively Manufactured Nanocomposite Biomaterial for Orthopaedic Applications,” Journal of Nanomaterials, vol. 2022, pp. 1–7, Jun. 2022, doi: 10.1155/2022/8998451.
  16. A. Vinod, M. R. Sanjay, S. Siengchin, and S. Fischer, “Fully bio-based agro-waste soy stem fiber reinforced bio-epoxy composites for lightweight structural applications: Influence of surface modification techniques,” Construction and Building Materials, vol. 303, p. 124509, Oct. 2021, doi: 10.1016/j.conbuildmat.2021.124509.
  17. A. A. M. Moshi, D. Ravindran, S. R. S. Bharathi, S. Indran, S. S. Saravanakumar, and Y. Liu, “Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree,” International Journal of Biological Macromolecules, vol. 142, pp. 212–221, Jan. 2020, doi: 10.1016/j.ijbiomac.2019.09.094.
  18. J. Naveen, M. Jawaid, P. Amuthakkannan, and M. Chandrasekar, “Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites,” Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, pp. 427–440, 2019, doi: 10.1016/b978-0-08-102292-4.00021-7.
  19. Y. Jia and B. Fiedler, “Tensile creep behaviour of unidirectional flax fibre reinforced bio-based epoxy composites,” Composites Communications, vol. 18, pp. 5–12, Apr. 2020, doi: 10.1016/j.coco.2019.12.010.
  20. Y. Zhang, X. Huang, Y. Yu, and W. Yu, “Effects of internal structure and chemical compositions on the hygroscopic property of bamboo fiber reinforced composites,” Applied Surface Science, vol. 492, pp. 936–943, Oct. 2019, doi: 10.1016/j.apsusc.2019.05.279.
  21. N. A. Ramlee, M. Jawaid, E. S. Zainudin, and S. A. K. Yamani, “Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites,” Journal of Materials Research and Technology, vol. 8, no. 4, pp. 3466–3474, Jul. 2019, doi: 10.1016/j.jmrt.2019.06.016.
  22. S. Gillela et al., “A review on Lantana camara lignocellulose fiber-reinforced polymer composites,” Biomass Conversion and Biorefinery, vol. 14, no. 2, pp. 1495–1513, Feb. 2022, doi: 10.1007/s13399-022-02402-7.
  23. A. Vinod, M. R. Sanjay, S. Suchart, and P. Jyotishkumar, “Renewable and sustainable biobased materials: An assessment on biofibers, biofilms, biopolymers and biocomposites,” Journal of Cleaner Production, vol. 258, p. 120978, Jun. 2020, doi: 10.1016/j.jclepro.2020.120978.
  24. V. Moses, A. Narula, N. Chetan, and R. Kumar Mishra, “Hydroxymethyl furfural (HMF) a high strength cellulose resin for wood composite laminates,” Heliyon, vol. 8, no. 12, p. e12081, Dec. 2022, doi: 10.1016/j.heliyon.2022.e12081.
  25. B. Muthu chozha rajan et al., “Mechanical and Thermal Properties of Chloris barbata flower fiber /Epoxy Composites: Effect of Alkali treatment and Fiber weight fraction,” Journal of Natural Fibers, vol. 19, no. 9, pp. 3453–3466, Dec. 2020, doi: 10.1080/15440478.2020.1848703.
  26. A. Vinod, M. R. Sanjay, S. Siengchin, and S. Fischer, “Fully bio-based agro-waste soy stem fiber reinforced bio-epoxy composites for lightweight structural applications: Influence of surface modification techniques,” Construction and Building Materials, vol. 303, p. 124509, Oct. 2021, doi: 10.1016/j.conbuildmat.2021.124509.
  27. C. Wang et al., “Diameter optimization of polyvinyl alcohol/sodium alginate fiber membranes using response surface methodology,” Materials Chemistry and Physics, vol. 271, p. 124969, Oct. 2021, doi: 10.1016/j.matchemphys.2021.124969.
  28. J. Parameswaranpillai et al., “Effect of Water Absorption on the Tensile, Flexural, Fracture Toughness and Impact Properties of Biocomposites,” Composites Science and Technology, pp. 35–50, 2022, doi: 10.1007/978-981-16-8360-2_3.
  29. L. Boopathi, P. S. Sampath, and K. Mylsamy, “Investigation of physical, chemical and mechanical properties of raw and alkali treated Borassus fruit fiber,” Composites Part B: Engineering, vol. 43, no. 8, pp. 3044–3052, Dec. 2012, doi: 10.1016/j.compositesb.2012.05.002.
  30. A. G. Adeniyi, D. V. Onifade, J. O. Ighalo, and A. S. Adeoye, “A review of coir fiber reinforced polymer composites,” Composites Part B: Engineering, vol. 176, p. 107305, Nov. 2019, doi: 10.1016/j.compositesb.2019.107305.
  31. K. Obi Reddy, C. Uma Maheswari, M. Shukla, J. I. Song, and A. Varada Rajulu, “Tensile and structural characterization of alkali treated Borassus fruit fine fibers,” Composites Part B: Engineering, vol. 44, no. 1, pp. 433–438, Jan. 2013, doi: 10.1016/j.compositesb.2012.04.075.

Cite this article


Gowtham S, Logesh Kumar M, Logesh Kumar S and Manikandasamy R, “A Survey About an Extraction of Fruit Fibers from Borassus Flabellifer L and Composite Characteristics”, Advances in Computational Intelligence in Materials Science, pp. 035-040, June. 2023. doi:10.53759/acims/978-9914-9946-6-7_4

Copyright


© 2023 Gowtham S, Logesh Kumar M and Logesh Kumar S, Manikandasamy R. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.