Efficient and High-Speed Spintronic Data Storage Devices

Sri Vasagi K May 23, 2022 | 10:00 AM Technology

A research team has successfully created efficient and high-speed spintronic devices to look at spin dynamics inside rare earth materials, using a tabletop ultrafast soft-X-ray microscope.

Figure 1: efficient and high-speed spintronic devices.

Figure 1 shows that Sharing real-time information requires a complex network of systems. A favorable approach for speeding up data storage devices consists of switching the magnetization, or the electrons’ spin, of magnetic materials with ultra-short femtosecond laser pulses.

The research team, led by Professor François Légaré at the National Institute for Scientific Research (INRS), in collaboration with international partners, has made a major breakthrough in this field. The group’s findings were published in the journal Optica. [1]

The subject strongly relies on limited access large X-ray facilities such as free-electron lasers and synchrotrons. The team demonstrates, a tabletop ultrafast soft X-ray microscope to spatio-temporally resolve the spin dynamics inside rare earth materials, which are promising for spintronic devices.

This new soft X-ray source based on a high-energy Ytterbium laser represents a critical advance for studying future energy-efficient and high-speed spintronic devices and could be used for many applications in physics, chemistry, and biology.

"Our approach provides a robust, cost-efficient and energy-scalable elegant solution for many laboratories. It allows the study of ultrafast dynamics in nanoscale and mesoscale structures with both nanometre spatial and femtosecond temporal resolutions, as well as with the element specificity," says Professor Andrius Baltuska, at TU Wien. [2]

With this bright source of X-ray photons, a series of snapshot images of the nanoscale rare earth magnetic structures have been recorded. They clearly expose the fast demagnetization process, and the results provide rich information on the magnetic properties that are as accurate as those obtained using large-scale X-ray facilities.

"Development of ultrafast tabletop X-ray sources is exciting for cutting-edge technological applications and modern fields of science. We are excited about our results, that could be helpful for future research for spintronics, as well as other potential fields," says INRS postdoctoral researcher, Dr. Guangyu Fan.

"Rare earth systems are trending in the community because of their nanometre size, faster speed, and topologically protected stability. The X-ray source is very attractive for many studies on future spintronic devices composed of rare earth." says Nicolas Jaouen, senior scientist at the French national synchrotron facility.

"Considering the quick emergence of high-power Ytterbium laser technology, this work represents huge potential for high-performance soft X-ray sources. This new generation of lasers, which will be available soon at the Advanced Laser Light Source (ALLS), will have many future applications for the fields of physics, chemistry, and even biology," Professor Légaré says.

References:
  1. https://www.innovationnewsnetwork.com/creating-efficient-high-speed-spintronic-devices/20651/
  2. https://phys.org/news/2022-04-breakthrough-efficient-high-speed-spintronic-devices.html
  3. https://www.sciencedaily.com/releases/2022/04/220425085735.htm
Cite this article:

Sri Vasagi K (2022), Efficient and High-Speed Spintronic Data Storage Devices, Anatechmaz, pp. 287