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Abstract – The significance of agriculture lies in its role in ensuring the sustenance of the human population through the 

production of essential resources such as food, feed, and fiber. Precision agriculture is employed to effectively administer 

appropriate treatments at the correct location and time in order to attain agricultural output that is characterized by low 

input, high efficiency, and long-term sustainability. The primary objective of precision agriculture is to enhance agricultural 

productivity while minimizing adverse environmental impacts. Precision agriculture, an agricultural approach that 

leverages advanced technologies such as robotics and automation, is predominantly employed to enhance the efficiency 
and precision of farm management practices. The utilization of mobile robots in agricultural activities, such as harvesting, 

spraying, inspection, and planting, has been extensively investigated and researched in the past few decades. This study 

investigates the rapid increase in the utilization of automation and robots in the agricultural sector over the past five years. 

In this study, we categorize the latest applications into four distinct groups, each representing a specific range of activities 

conducted during the entire process of planting management, starting from the initial sowing stage and concluding with 

the final harvest. In the final section of the paper, an analysis of various challenges and suggestions is provided to 

underscore potential opportunities and enhancements in the advancement of an effective robotic and autonomous system 

for agricultural purposes. 

Keywords – Precision Agriculture, Precision Farming, Robotic and Autonomous Systems, Planting Management, Farming 

Management Practices. 

I. INTRODUCTION
Precision agriculture has become a pivotal instrument in contemporary society, enabling farmers to enhance environmental 

stewardship and ensure long-term food production with minimal human intervention.  Precision agriculture encompasses the 

meticulous management of planting, fertilization, and harvesting procedures, characterized by a notable level of precision 

and accuracy. Agricultural operations are conducted using diverse methods that are contingent upon the specific soil type. 

There are four distinct groups of agricultural lands, namely orchards and vineyards, cropland and pasture, confined feeding 

activities. The land utilized in restricted feeding operations comprises ecosystems that have been modified by human 

activities to facilitate intensive livestock farming. In contrast, agricultural crops such as soybeans, maize, and wheat are 

frequently cultivated on both farmland and pasture land, which serves the dual purpose of supporting livestock grazing.  

The land designated for cultivation in orchards and vineyards is primarily utilized for the growth and maintenance of 

fruit-bearing trees and plants, such as grapevines, apple trees, and pear trees. Lastly, the second category of agricultural land 

encompasses ecosystems that are being effectively utilized for the production of food and fiber, yet do not align with the 
classifications of the preceding two categories. Specialized agricultural areas encompass various examples such as farms, 

small ponds, and corrals. Currently, precision agriculture is being implemented across diverse landscapes. Precision 

agricultural development has focused on a range of topics, including technology, digitization, societal impact, skills, 

environment, and productivity.  

Precision Farming (PF) [1] has effectively utilized various technological advancements like Global Navigation Satellite 

System (GNSS), geo-referencing, autonomous navigation, and advisory systems. The advent of the information and 

communication technology revolution has led to a significant digital transformation within the agricultural sector. The 

utilization of digitalization initiatives such as Internet of Things (IoT) and cloud computing has facilitated the ability of 

farmers to efficiently collect and analyze substantial volumes of data. In addition to streamlining farmers' tasks and reducing 

their workload, precision agriculture endeavors to instigate transformative societal changes within rural communities, akin 

to the impact of computers on urban populations, by introducing novel social paradigms and business ventures. The current 
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scarcity of labor in the agricultural sector has resulted in an increase in the adoption of automated farming systems, which 

are capable of performing various tasks such as planting, inspecting, spraying, trimming, and harvesting.   

The term "automated agriculture" encompasses various tools or machines designed to supplant human labor within 

agricultural settings. The focus of agricultural automation revolves primarily around the implementation of autonomous 

vehicle technologies, such as robots and tractors. These technologies aim to mitigate the challenging, hazardous, time-
consuming, and physically demanding working conditions faced by farmers, while also offering a more accurate and efficient 

control system. Maintaining a consistent level of quality and quantity in the output is crucial to ensure its safe consumption 

by humans. Consequently, there is a growing interest in the agricultural research community to develop an efficient 

automation system in the field of agriculture, with the aim of ensuring the sustainable maintenance of food security in the 

long run.  

This article examines the utilization of automation and robots by farmers over a retrospective period of five years.  The 

classification of the current application is informed by four significant agricultural processes, namely planting, inspecting, 

spraying, and harvesting. Different agricultural operations will have diverse requirements, thus the implementation of 

automation and robots will differ in terms of structure, planning, and execution. The subsequent assessment will proceed to 

examine the challenges and potential advantages associated with the potential expansion of automation and robotics in the 

agricultural industry. The rest of the article has been organized as follows: Section II focusses on the present applications of 

robotic and automation systems in the agricultural sector. Section III reviews the challenges and future scope of the 
technological initiatives in the agricultural sector. Section IV is the final section, which provides final remarks regarding the 

article.  

II. PRESENT APPLICATIONS 

The initial focus of this analysis will involve an examination of advancements in automation technology that have broad 

applicability across various industries. Subsequently, we will delve into an exploration of the projected adoption of 

automation and robotics within the realm of agricultural production. In [2] discusses three fundamental forms of automation 

technology, namely physical robotics, robotic process automation, and cognitive automation. In forthcoming times, 

automated machines will be employed to execute labor-intensive tasks within the industrial sector. Robotic process 

automation (RPA) entails the utilization of software to supplant human involvement in previously manual procedures. 

Cognitive automation leverages sophisticated software to either achieve complete process automation or enhance process 

accuracy. Cognitive automation encompasses the utilization of machine learning, visual data processing, and extensive data 
collections in order to augment the process of decision making. 

According to [3], the widespread implementation of automation technologies does not necessarily imply the complete 

elimination of entire professions. Nevertheless, it is anticipated that a considerable portion of tasks across various professions 

will undergo automation. The classification of jobs into three distinct categories is undertaken by the [4], with the 

categorization being determined by the degree of susceptibility to automation. These categories are as follows: 1) jobs that 

are highly vulnerable to automation, 2) jobs that are moderately susceptible to automation, and 3) jobs that are least 

susceptible to automation. Personnel management, along with planning, creativity, and decision-making, is considered to be 

one of the least susceptible occupations. Examples of activities that are less susceptible to vulnerability include engagements 

with stakeholders and spontaneous physical labor. The [5] provided illustrations of physically demanding occupations that 

encompass construction, forestry, and animal rearing, highlighting their potential hazards. Tasks involving data processing 

and other mundane bodily functions are particularly susceptible to vulnerability. Tuncel and Topaloglu [6] provided 

instances of physically predictable activity, such as assembly-line welding and soldering, food preparation, and packing. 
It is noteworthy to mention that a significant portion of businesses can potentially derive advantages from automation, 

primarily owing to the widespread utilization of data processing and the presence of predictable physical job tasks. Based 

on the findings of Kreuzfeld, Felsing, and Seibt [7], it has been determined that a significant proportion, specifically more 

than 20%, of the total working hours in Germany are allocated towards engaging in physically strenuous activities, such as 

the operation of machinery or the manipulation of materials. The researchers have identified three sectors that are particularly 

vulnerable to automation: the service industry, manufacturing, and retail. Financial and insurance services, building and 

construction, and farming are examples of activities and industries that occupy a position within the automation spectrum. 

Automating operations that entail the unpredictable manual labor frequently observed in agriculture and construction 

presents a greater level of complexity, albeit not an insurmountable challenge. 

Automating the tasks of managing and directing individuals, as well as utilizing knowledge for decision-making, 

planning, and creative endeavors, presents significant challenges. Computers demonstrate exceptional performance when 
provided with explicit instructions. According to Deng, Ji, Rainey, Zhang, and Lu [8], there exists a difficulty in codifying 

and enhancing machine learning methods to replicate human attributes such as leadership, creativity, intuition, judgment, 

tacit knowledge, social interaction, peer evaluation, motivation, and various other tasks. Automation faces a significant 

challenge in dealing with tacit knowledge, which refers to the knowledge that individuals possess but are unable to fully 

articulate. The existence of tacit knowledge introduces complexity to the machine learning programming process. 

Planting  

The act of planting involves the deliberate placement of seeds or seedlings in the soil with the intention of facilitating their 

growth and eventual maturation into fully developed plants. Due to the diverse spacing requirements of different plant 
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species, achieving optimal development and maximum production necessitates a higher level of precision in this procedure. 

In the conventional method of planting, manual labor is employed to individually plant each seed. The successful 

implementation of this method necessitates a significant investment of time and effort, as it encompasses a vast agricultural 

region with a focus on achieving uniformity and accuracy. Consequently, an agricultural implement known as a planter 

machine has been devised, enabling farmers to sow seeds into the soil by directing its trajectory.   
Hence, the implementation of a dependable autonomous system becomes imperative, wherein the system ensures the 

attainment of a flawlessly aligned plant row and eliminates any possibility of seed omission. Various crops like vegetables, 

sugarcane, wheat, and maize, have implemented autonomous models as a substitute for the labor-intensive manual planting 

method. A number of factors have been identified as key objectives in the design phase, with the intention of developing an 

efficient autonomous system for the planting procedure. The primary requirement is that the robot or vehicle possesses the 

capability to navigate accurately along a straight trajectory, even when confronted with the irregular terrain found in 

agricultural fields. The straightness of the seeding process is a critical factor as it directly impacts the efficacy of subsequent 

automated planting steps, including inspection and harvesting. Another important consideration is the impact of soil moisture 

on the excavation process. Various varieties of seeds require varying depths for soil excavation.  

Consequently, in order to ensure the appropriate depth of excavation, it is necessary to modify the cultivation's digging 

force by taking into account the levels of soil moisture and compaction. Lastly, it is imperative to have a seeding detection 

device in place. This particular apparatus serves the purpose of identifying the moment when seeds are about to be sown by 
the vehicle. The implementation of this approach is of utmost importance in order to ensure that the planter does not overlook 

any areas designated for planting. The primary focus of current research in the field of planting is the refinement of 

autonomous seeding systems, which aim to ensure that seeds are planted at consistent distances and depths. The development 

of an autonomous seeding robot was achieved utilizing the Agribot platform, as documented by Terada, Ando, and 

Mizukawa [9].  

In [10], an Infrared (IR) sensor was employed to assess the condition of the seed tank and to determine the arrangement 

of the rows. The findings demonstrated promising outcomes in terms of the accuracy of seed spacing. A technique was 

devised to regulate the seed metering units in order to achieve consistency in planting. A seed metering device is frequently 

employed during the planting procedure to dispense precise quantities of seeds into the soil. Prior to being dispersed at 

consistent intervals, the seeds are frequently classified into multiple categories. The evaluation of planting quality involves 

assessing variance among rows, plant spacing uniformity, negative slippage, and fuel consumption. To evaluate the operation 
of the seed metering device, it is necessary to consider varied speeds and seed spacing. The enhanced planting quality and 

approximately 22% rise in fuel efficiency have been ascribed to the effective design of the seed metering unit.   

Inspection 

As an integral component of the agricultural inspection process, plants undergo thorough examination to detect infections 

and other quality deficiencies. The primary cause of diminished productivity and subsequent economic losses in the 

agricultural sector can be largely attributed to the prevalence of plant diseases.  The agricultural environment is characterized 

by its dynamic nature, leading to numerous unforeseen and abnormal stress scenarios that have had adverse effects on plants 

and their products.  If these anomalies are not promptly addressed, there is a possibility of experiencing severe and 

irreversible harm. Throughout history, farmers have traditionally depended solely on their own visual faculties to detect any 

irregularities in plants during the inspection procedure. The efficiency of inspection operations has been compromised due 

to the increasing average age of American farmers and the natural degradation of the human visual system over time. In 
order to achieve full automation in agricultural inspection, it is imperative to substitute the visual inspection capabilities of 

human eyes with appropriate technological alternatives. Consequently, computer vision has predominantly supplanted 

human visual perception in the realm of agricultural plant inspection. Computer vision is an advanced image processing 

technology that exhibits promising potential and possesses the capability to supplant human vision in certain inspection tasks 

that require meticulous attention to detail. 

Several other industries, such as the agricultural sector, have adopted computer vision systems.  The expansion of image 

processing and computer vision applications in agriculture can be attributed to several factors, including minimized costs of 

equipment, increased computing power, and an increasing interest in non-perishable food evaluation techniques. Most 

agricultural vision system applications primarily focus on disease diagnosis, with a smaller portion dedicated to product 

quality assurance. Various methodologies have been devised to enhance the efficiency and precision of image processing. 

These methodologies encompass Support Vector Machine (SVM), Neural Network based algorithms, K-Nearest Neighbors, 
Machine Learning Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). Over the past five years, there has been 

extensive utilization of neural network-based algorithms such as Convolutional Neural Network, Deep Convolutional Neural 

Network, Deep Neural Network, Back Propagation Neural Network, and Regions with Convolutional Neural Network (R-

CNN) in the domain of agricultural inspection image processing.  

Munikoti, Agarwal, Das, Halappanavar, and Natarajan [11] indicate that the Neural Networks algorithm exhibits strong 

performance in the field of agricultural monitoring, attained a peak precision of 99%. In addition to an approach to image 

processing approach commonly employed in agricultural monitoring, Mandal, Pedersen, George, Deborah, and Boust [12] 

utilize hyperspectral imaging for the purpose of plant disease diagnosis. Alexander [13] employ a novel Normalized Different 

Spectral Index (NDSI) for the purpose of detecting lesions on peanut leaves. The utilization of hyperspectral vegetation 
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index deviation measurements is advantageous due to their distinctiveness in detecting variations in leaf characteristics. 

Other detection methods, such as immunochromatography, have also been employed to identify the presence of fumonisin, 

a chemical constituent that has the potential to contaminate agricultural products.  The approach employed in this technique 

utilizes a quantitative immunochromatography detection method that relies on ultrasensitive gray imaging for the purpose 

of monitoring the presence of chemical molecules in food.  
The emergence of cyber physical systems, characterized by the interconnection of devices and sensors through cloud 

technology, has become a prominent area of interest in the IR 4.0 (Industrial Revolution 4.0) concept. The direction of 

agricultural inspection technology is aligned with the concept of IR 4.0. Farmers are now able to remotely monitor their 

agricultural management systems through the utilization of computer technology and mobile applications. The predominant 

utilization of Internet of Things (IoT) applications in the agricultural sector involves the real-time monitoring of plant 

diseases through the capture of images and collection of sensory data pertaining to moisture levels, temperature, and humidity 

from the agricultural site. This data is subsequently presented on a website or mobile application for easy access and analysis. 

This enables the farmer to detect illnesses such as powdery mildew, late blight, and early blight at an early stage, thereby 

preventing their further dissemination.  

In their study, Pietroń, Żurek, and Śnieżyński [14] observed a significant performance advantage of deep learning (DL) 

neural approaches over traditional machine learning (ML) methods in the context of plant categorization in mages. The 

research of deep neural network in an agricultural context is hindered by a lack of transparency resulting from unresolved 
issues with dense sceneries. In their scholarly publication, Yeboah, Department of Electrical and Computer Engineering, 

South China University of Technology, Zhuliang, Wei, and School of Automation Technology [15] conducted a 

comprehensive review examining the practical applications of machine vision technology within the agricultural industry. 

Based on their research findings, it is suggested that the application of computer vision has the potential to contribute to the 

progress of agricultural automation in the context of small-scale fields. This could result in notable benefits such as reduced 

costs, enhanced productivity, and heightened precision. Nevertheless, the focus was on the digital process instead of machine 

vision. 

In their study, Hayashi [16] proposed the utilization of a convolutional neural network as an effective approach for the 

detection and quantification of maize kernels in photographic images. The researchers developed numerous models to 

facilitate efficient object identification across diverse environmental and illumination conditions. Yin, Li, Laghari, Karim, 

and Jumani [17] employed the established sliding window strategy for kernel detection in their study. The precision of their 
results, as depicted in Fig 1, can be attributed to the thorough dataset annotations. 

Fig 1. The Process of Counting Corn Kernels using Images That Have Been Processed Using a CNN 

Gibson, Dirks, Medlin, and Johnston [18] achieved successful weed detection in photographs by employing various 

architectures, namely Mask R-CNN, YOLOv3, and SVM The respective F1 scores obtained were 94%, 94%, and 88%. The 

F1 metric can be defined as the harmonic mean of a model's accuracy and recall. Dunn's test was designed to receive 

statistical measures comparing evaluations conducted by humans and those conducted by automated systems. The 

researchers illustrated that deep learning models have the potential to enhance accuracy in estimating weed coverage and 

mitigate the influence of human error. Guo, Wei, and Yu [19] employed multiple distinct DCNN models in their study to 

classify Bermuda plants. The VGGNet model outperformed the GoogLeNet model in the task of weed detection, exhibiting 

superior F1 scores that exceeded 0.95. The scholars proposed several approaches to enhance the detection of anomalies for 

each deep learning model. 

Mohammed Abdelkader [20] employed deep learning meta-infrastructures such as UNET and SegNet, alongside encoder 

blocks such as ResNet-50 and VGG16, to identify the presence of weed plants in canola lands. The ResNet-50-oriented 
SegNet system demonstrated the most significant outcomes, attaining a 0.8288 mean crossover value, and a 0.9869 

frequency-oriented crossover value. In their study, the scholars employed DCNNs to evaluate various models aimed at the 

(a) (b) 
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identification of prevalent weed species such as Taraxacum officinale Web (dandelion), Euphorbia maculata L (euphorbia), 

and Glechoma hederacea L. (ground ivy). The inclusion of GoogleNet, AlexNet, and DetectNet was considered. DetectNet 

achieved the greatest F-score (0.9843) in weed identification when compared to other models on the test datasets. 

Spraying 
In the field of agriculture, it is customary to apply a fine mist containing pesticides, fertilizer, or other growth-promoting 

substances to plants as a means of mitigating plant diseases and controlling plant growth. In order to mitigate the transmission 

of diseases, it is common practice to apply pest-control substances uniformly across entire agricultural fields. Despite the 

fact that numerous pests and diseases exhibit non-typical geographical distributions, especially during their initial stages of 

development, this approach continues to be employed. Hence, over the past twenty years, there has been significant progress 

in the development and examination of selective spraying techniques aimed at minimizing the expenses associated with pest-

control chemicals employed in agricultural practices. Automated selective spraying systems, frequently operated by 

advanced machinery or mobile robots, enable the precise application of pesticides at specific locations and times as desirable. 

This targeted intervention is aimed at minimizing the reliance on pesticides for maintaining a disease-free environment 

within the greenhouse.   

The utilization of herbicides and pesticides has been employed with the aim of augmenting agricultural productivity. 

However, the excessive application of these substances has resulted in the emergence of herbicide-resistant weeds and a 
significant decline in both flora and fauna biodiversity. Due to their diminutive dimensions, the visibility of weeds during 

the initial phases of crop growth, when herbicides are commonly employed, may be challenging. Farmers allocate financial 

resources towards the acquisition of herbicides and pesticides, which are subsequently applied to crops using conventional 

spraying methods such as Knapsack and Boom sprayers. This process is often characterized by inefficiencies in the 

distribution of the sprayed substances, as depicted in Fig 2 (a) and (b). The excessive utilization of pesticides and herbicides 

has a deleterious impact on agricultural practitioners.  

Traditional sprayers are inefficient in their application of pesticides, resulting in a significant amount of wastage. This 

wastage leads to a substantial financial burden on farmers, as the pesticides fail to effectively reach the targeted weeds and 

pests. The insufficient implementation of route planning and the absence of a GPS survey of the field resulted in suboptimal 

application of the maximum quantity of spray to the intended target. Consequently, spray loss was observed in the form of 

both spray drift and field turns. The inefficiency of broadcast sprayers can be attributed to the lack of precision, resulting in 
a significant amount of wasted effort. Throughout history, farmers have faced a significant challenge in the form of the 

adverse effects that weeds have on agricultural productivity. The occurrence of spray loss, manifested as spray drift and 

environmental contamination, can be attributed to the inadequacy of technologies in promptly identifying the precise weed 

and insect targets. In recent times, the market has witnessed the emergence of sensor and AI-driven spraying technology, 

such as variable sprayers and drone sprayers.  

Fig 2. The application of a Knapsack sprayer on cotton (a), a boom sprayer on wheat (b), and the utilization of a 

schematic representation of a smart sprayer (c) are employed in agricultural practices. 

Technology offers numerous advantages, such as its capability to identify and distinguish plants, weeds, and pests, 

followed by the precise administration of pesticides. Initially, an image or plant detection sensor captures visual data, which 

is subsequently processed by deep learning algorithms to differentiate between different plant species and identify instances 

of diseases. This enables the decision support system to accurately identify the specific plant variety or ailment under 

consideration. The selection of plants and herbicides will be determined by algorithms. Fig. 2 (c) depicts a simplified 

schematic representation of a smart sprayer. The development of advanced sprayer technology is influenced by sustainable 

agricultural goals, which encompass environmental preservation, economic benefits for farmers, and enhanced food security. 

The recent advancements in cellular technologies, specifically 4G LTE and 5G, have brought about significant changes in 
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conventional methods of crop monitoring and the precise application of insecticides and herbicides. Weeds and pests exhibit 

robust growth and proliferation in extensively cultivated field crops, encompassing a variety of plant species such as 

vegetables, wheat, rice, and cotton. 

Prior research has primarily focused on the development of an effective spraying system that is cost-efficient in the 

context of autonomous selective spraying techniques. The aforementioned objective can be accomplished by employing a 
variable rate spraying technique, which permits farmers to dynamically transform herbicide or pesticide quantity employed 

to the target according to the sizes of the canopy and the necessary treatment. The implementation of this strategy has the 

potential to significantly reduce pesticide usage by precisely targeting application, thereby minimizing farmers' direct 

exposure to the adverse effects of chemicals. This is made possible by the availability of automation and robotics 

technologies that are currently prevalent in the market. Several studies have been conducted to investigate navigation 

management strategies aimed at reducing pesticide usage and optimizing the operational costs of robots, particularly in terms 

of time and energy, through the implementation of precise location monitoring.  

The field of study under consideration is of paramount importance in ensuring the precise and efficient spraying 

capabilities of the robot, achieved through the minimization of travel distances.  According to Wang, Tu, and Qiu [21], a 

multi-objective approach known as the Non-dominated Sorting Genetic method with Reference Point has been proposed as 

a means to reduce operational expenses. With the objective of reducing expenses in relation to time, distance, and deviation 

from the intended route. Truc, Van Quyen, and Quang [22] conducted a study to investigate the impact of various robot 
velocity on the mass discharge rate of flow of pineapple leaf fibers during composite spray operation. In [23], a route planning 

method using Simulated Annealing is proposed, which considers various objectives like input cost, herbicide volume, fuel 

efficiency, travel duration, and cost per mile.   

Researchers focus on achieving high levels of location accuracy for agricultural robots, while simultaneously reducing 

the costs associated with developing navigation systems for spraying operations. The development of wheeled robot tractors 

designed for the purposes of weeding and spraying is documented in [24]. The navigation system utilizes an inertial 

measurement unit (IMU) and Real-Time Kinematic GPS (RTK-GPS) as attitude and position sensors, respectively. This 

integration aims to enhance the stability of the auto steering system, achieving a precision of 0.05 m. The high cost associated 

with RTK-GPS has led the scholars in [25] to propose a data fusion technique employing MSPI for the purpose of filtering 

noisy raw data obtained from affordable sensors like Differential GPS, inertial measurement units, and cameras. This 

technique is intended to enhance the performance of vineyard pesticide spraying robots.  
However, this particular method exhibits lower accuracy compared to an implementation based on RTK-GPS, with a 

minimum variation of 0.11 m. Although the majority of autonomous spraying operations in the field of agriculture 

predominantly utilize ground-based vehicles, there is a growing interest in the potential application of unmanned aerial 

vehicles (UAVs). The mitigation of overspraying is achieved through the utilization of a fleet of unmanned aerial vehicles 

(UAVs) in [26]. These UAVs employ the Heat Equation Driven Area Coverage (HEDAC) approach, which is a multi-agent 

technique for achieving comprehensive coverage of a given area.  

Harvesting 

The exponential growth of the population has placed an overwhelming strain on the agricultural industry. In recent years, 

there has been a notable shift towards the adoption of smart agricultural systems, characterized by the integration of sensor 

technologies, diverse equipment, and robotics. This transition has resulted in enhanced precision and productivity within the 

agricultural sector. Significant progress has been made in various domains, including but not limited to planting, weeding, 
harvesting, detecting plant diseases, evaluating damage and defects in fruits and vegetables, categorizing their quality, and 

identifying pests and insects. The act of harvesting is an essential component of the process of collecting crops from 

agricultural fields, and the utilization of harvesting robots serves as a prominent factor in enhancing precision, effectiveness, 

and output.  

Consequently, agricultural researchers encounter numerous challenges throughout the different phases of the autonomous 

robotic harvesting process, necessitating their resolution for the development of a proficient harvesting robot. In recent years, 

extensive research has been conducted to identify the optimal location for agricultural cultivation. The vision system is 

commonly employed to accurately determine the exact location of the fruit in the majority of instances. The designed vision 

system aims to tackle two complex challenges: the considerable natural variability present in the detected object and the 

absence of a consistent lighting or occlusion arrangement within the working environment. To effectively detect targets 

during the harvesting process, it is imperative to employ a diverse range of vision techniques. Table 1 provides a summary 
of four different vision techniques that are employed for target recognition in the context of agricultural harvesting. The 

efficacy of utilizing agricultural robots in dense crop environments relies heavily on the implementation of strong motion 

management and accurate end-effectors placement at the required vegetable or fruit target.  

The fruit-picking process was facilitated by the utilization of a robot, which was equipped with a stereo camera placed 

about half a meter beneath the robot arm base. This camera arrangement enabled us to obtain an upward perspective of the 

fruit tree. In instances where the fruit is situated at a distance beyond the access of the robotic arm, the lift table supporting 

the machinery can be adjusted vertically to facilitate access to the desired target. The robotic manipulator employed in our 

study is commonly referred to as the UR3 (UNIVERSAL ROBOTS). Based on the data presented in Table 1, the robot 

exhibits a 0.1 millimeters repeatability. The palm of the robot hand had a diameter of 5 centimeters, thereby effectively 
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dampening any inadvertent motions. The stereo camera utilized in this study was ZED, developed by Stereo Labs. The 

specifications of ZED are presented in Table 2. 

Table 1. UR3 Specifications 

Capacity of weights 3 kilograms 

Repeatability +/- 0.1 millimeters 

Weight 11 kilograms 

Freedom degree 6 

Reach 500 millimeters 

Table 2: ZED specification 

Resolution of output 3840 by 1080 

Baseline 120 millimeters 

Range of depth 0.5 to 20 meters 

Frames/second 30 

In this section, we elucidate the methodology for apple harvesting employing robotic technology. The experiment on an 

apple tree was conducted by the Horticultural Research Center and Miyagi Prefectural Agriculture, as depicted in Fig 3. The 

trees observed in this study exhibited a similar characteristic to those found at the Horticultural Research Center, and Miyagi 

Prefectural Agricultural, namely a shared V-shaped growth pattern. Given the challenges associated with undertaking the 

experimentation during the harvesting season of apples, a tree model was employed as a substitute. 

This article presents the results of our experimental investigations involving an automated fruit harvesting system, along 

with an analysis of the robot's detection unit. The initial step involved the identification of the fruit within a two-dimensional 

framework. The outcome of the fruit detection performed by the SSD is illustrated in Fig 4. In the section pertaining to fruit 

position identification, a learning model was utilized, which demonstrated a success rate of over 90% in accurately 

identifying the fruits that were subjected to testing. A red border was applied to demarcate the area in which the probability 

of fruit occurrence exceeded or equaled 60%. The robot demonstrated a level of apple identification proficiency that was 

deemed comparable to that of a human, thus satisfying the requirements of the experiment. Furthermore, the depth of the 

fruit was quantified. Fig 5 present the 3D optical center coordinates of the frame, as recognized by SSD. The 3-dimensional 

reconstructions of all objects, with the exception of the apples, exhibited subpar quality. However, for the purpose of this 

exercise, it is only necessary to focus on the underside of the apples. The apple's core was successfully captured, resulting 

in satisfactory outcomes. 
The robot was positioned 10 centimeters beneath the targeted fruit in order to facilitate the insertion of the hand from 

beneath for the purpose of picking, as depicted in Fig 6. Subsequently, the appendage ascended above the edible produce 

(Fig 7). The fruit was subsequently collected by the robotic appendage through a twisting motion, specifically by detaching 

it from its peduncle, as illustrated in Fig 8. Each fruit was harvested at approximately 16 seconds. The process of determining 

the joint angle based on the detected fruit location typically requires approximately 2 seconds. The process of collecting all 

Fig 3. Apple tree framework Fig 4. Recognition of 2D position Fig 5. Recognition of 3D position

Fig 6. Reaching targeted apple Fig 7. Harvesting targeted apple
Fig 8. Grasping targeted apple
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the fruit required approximately 14 seconds. The harvesting process was time-consuming due to the need for multiple 

rotations of the hand. Acceleration can be achieved through a reconsideration of these factors. 

III. CHALLENGES AND FUTURE SCOPE

Fig 9 illustrates the global agricultural robotics market from 2020 to 2025, with specific emphasis on the valuation in United 
States dollars. During the specified projection period spanning from 2023 to 2028, it is anticipated that the Agricultural 

Robots Market will experience a notable growth trajectory. The marketplace is projected to increase from an earlier projected 

value of $13 billion in 2023 to a final projected value of $24 billion. Agribots, also known as agricultural robots, represent 

a recent advancement that holds considerable promise for revolutionizing the agricultural industry. Self-operating machines 

are utilized to enhance productivity and efficiency, thereby diminishing the reliance on human labor. The global population 

is experiencing a notable growth trajectory, which is contributing to the escalation of food prices. Consequently, farmers are 

progressively allocating resources towards the adoption of advanced technological solutions, such as agricultural robots, 

with the aim of augmenting agricultural productivity and enhancing financial gains. 

Fig 9. Global Agricultural Robotics Market from 2020 to 2025 

Governments worldwide are implementing financial incentives and initiating educational campaigns to enhance farmers' 

comprehension of automated technology. This encompasses a wide range of technologies and practices in the agricultural 

sector, ranging from regulatory measures and intelligent tools to fully automated farming systems. Notably, the European 

Union has recently introduced initiatives like Robs4Crops, which aim to develop and implement autonomous farming 

systems. The issue of labor shortage in the agricultural sector is being tackled through the implementation of the recently 

introduced initiative known as Robs4Crops. The projected growth of the agricultural robotics industry is expected to be 

augmented as a consequence of this development. Furthermore, several prominent agribusiness corporations as well as 

emerging entities are allocating resources towards research and development endeavors aimed at creating a novel cohort of 
agricultural robots. In 2021, AGCO Corporation's Precision Ag Line (PAL) program conducted a trial to introduce a platform 

aimed at standardizing support services for farmers who utilize AGCO solutions and manage a mixed-fleet operation. 

Agricultural robots, tailored for the purpose of farming, have the potential to enable a wide range of tasks, enabling 

farmers to decrease their reliance on manual labor while concurrently enhancing their productivity, product quality, and 

operational effectiveness. They are capable of performing various tasks, such as analysis, reflection, and action. The 

classification of the agricultural robots’ market takes into account various factors, including the types of robots used such as 

drones, driverless tractors, automated harvesting models, and milking robots. Moreover, applications of these robots 

encompass dairy farm control, broad acre applications, aerial data collection, forecasting, weather tracking and inventory 

control. The market classification also considers the offerings available, which include hardware, software, and services. 

Furthermore, the geographical parts of Europe, North America, Asia-Pacific, Africa, and South America are taken into 

consideration when categorizing the agricultural robots market. The study offers an assessment of the market size and future 
projections for the aforementioned categories, expressed in US dollars. 

Based on the assessment, a key objective of the act of planting is to establish consistency and identify any anomalous 

seeds. Greater emphasis, however, must be placed on the implementation of course correction strategies to maintain the 

integrity of the linear arrangement. The current state of research has reached a level of complexity that presents challenges 

in effectively monitoring and managing the structural integrity of robots during the execution of planting tasks. This 

difficulty arises from various factors, such as the non-uniformity of soil surfaces and the varying stiffness of different soil 

types (e.g., sand, loam, clay) under both dry and muddy conditions. Consequently, these factors can contribute to 



ISSN: 3005-9852  Journal of Robotics Spectrum 1(2023) 

55 

inconsistencies in the arrangement of rows during the planting process. The majority of the proposed inspection algorithms 

demonstrated efficacy in identifying the presence of illness or defects in both virtual and physical experimental settings. The 

majority of practical experiments typically entail the isolation of a genuine plant ailment or quality defect, which is 

subsequently superimposed onto a white background to facilitate its detection. Capturing an image of the plant within its 

natural environment, against a dynamic backdrop, will significantly augment this procedure.  
Hence, forthcoming advancements in robot design will enable more precise implementation of plant disease and quality 

defect detection, rendering the robot a faithful emulation of the plant inspection process as conducted by humans.  Upon 

reviewing the present status of robotics and automation in the context of spraying tasks, it becomes evident that the 

predominant focus of ongoing research lies in the development of a spraying system that is economically viable. In order to 

effectively implement a fully autonomous system in real-world spraying applications, it is crucial to place significant 

emphasis on spraying management. This entails developing an autonomous system that can identify an optimized route for 

executing selective spraying operations, taking into account various spraying characteristics such as spraying capacity and 

refill mechanism.  

Most of the research conducted on harvesting has primarily focused on target identification as a strategy to precisely 

determine the location of the commodity to be gathered. While the identification of targets remains a crucial focus within 

the field of harvesting operations, there exists an opportunity for further enhancement in the realm of harvesting management. 

This is attributed to the existence of potential for enhancement in the ability of an autonomous system to devise a strategic 
plan for maximizing agricultural product yield within a minimal timeframe, while considering constraints related to travel 

timeframe to the depots and the storage capacity.  

Therefore, the harvesting process can be conducted efficiently and with minimal operational costs. Farmers express 

concerns regarding the financial burden associated with the adoption of agricultural robots and automation, despite 

encountering numerous challenges in various agricultural activities. Certain farmers exhibit reluctance in allocating funds 

towards the acquisition of novel technological advancements, as they harbor apprehensions regarding the potential 

ineffectiveness of said innovations in the future. Hence, it is imperative for agricultural specialists to devise strategies for 

the creation of an affordable and adaptable agricultural robotic system. One potential avenue to explore during the 

development of an agricultural robot is the incorporation of a modular and highly resilient robotic architecture.  

IV. CONCLUSION
The significance of agriculture lies in its provision of the necessary sustenance for human survival, encompassing the 

production of food, feed, and fiber. Precision agriculture is employed to effectively administer appropriate treatments at the 

correct location and time in order to attain agricultural output that is characterized by low input, high efficiency, and long-

term sustainability. The achievement of future food security is contingent upon the substantial utilization of robotics and 

automation within the agricultural sector. The advent of robotics machinery has facilitated the timely completion of 

agricultural tasks, thereby enabling farmers to leverage advanced technology in their operations. The primary objective of 

agricultural robotic system development is to replicate human labor in the execution of various agricultural activities like 

inspecting, spraying, planting, and harvesting. This approach aims to achieve efficient task completion while minimizing 

operating costs and reliance on human labor. Several ongoing studies are focused on enhancing the efficiency and reducing 

the errors of the existing autonomous system. This is crucial because different agricultural operations require specific features 

and specifications that are dependent on the unique environment and type of plants involved. The agricultural sector 

continues to face several unresolved challenges, prompting scholars to diligently investigate and address these issues.  In the 
future, it is conceivable that a comprehensive autonomous agricultural robotic system could be devised by integrating various 

technologies developed for each specific operation. The ultimate goal would be to establish a resilient and effective 

agricultural robotic system that can be widely adopted by farmers worldwide, with the primary objective of generating 

substantial agricultural output to ensure food security. 
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