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Abstract – Today's major goals in sensor network research are to extend the life of wireless sensor networks (WSNs) 

and reduce power consumption.  IoT-based WSN are widely used in a range of applications, including military, 

healthcare, and industrial monitoring.  WSN nodes often have limited battery capacities, making energy efficiency an 

important consideration for clustering and routing.  Data is transferred from the source SNs to the destination SNs.  

These are likely to be completed in a secure manner and in less time.  Energy-efficient data transmission is a significant 

challenge for WSNs coupled with IoT.  This research provides an optimal clustering and routing paradigm for increasing 

network lifetime, reducing energy usage, and ensuring reliable data transfer.  Cluster creation is carried out using a 

Trusted Energy-Efficient Fuzzy Logic-Based Clustering (TEEFLC) Algorithm, which takes into account node 

trustworthiness, residual energy, and network density.  The Improved Fossa Optimization Algorithm (FOA) is used to 

choose the ideal Cluster Head (CH), maintaining balanced energy distribution and reducing the number of CH 

replacements.  To provide efficient data transmission, a Federated Deep Q-Network (FDQN) based routing strategy is 

used, which optimizes next-hop selection based on energy efficiency and link quality.  Simulation findings show that the 

proposed method outperforms standard clustering and routing protocols in terms of energy efficiency, packet delivery 

ratio, and network longevity, indicating that it is a viable solution for WSN-IoT applications. 

 

Keywords – Wireless Sensor Networks, Internet of Things, Cluster Head, Fossa Optimization Algorithm, Federated 

Deep Q-Network, Trusted Energy-Efficient, Fuzzy Logic-Based Clustering. 

 

I. INTRODUCTION 

Wireless Sensor Networks (WSN) are integral to daily life, widely employed across diverse sectors including area 

monitoring, military surveillance, manufacturing and underwater detection, weather forecasting, industrial automation, 

agriculture, defense, healthcare, traffic management, and various commercial applications.   However, the architecture of 

the routing protocol may be affected by factors like as real-time monitoring, node deployment tactics, security, and 

energy usage.  This network comprises numerous sensor nodes (SN) for evaluating, acquiring, and detecting data 

distributed across the environment.  Moreover, these sensor nodes demonstrate increased complexity and rely on a 

limited battery for power.  Thus, the principal issue is the inadequate power sources leading to node malfunction.  

Clustering is an efficient approach for developing routing algorithms in WSNs, as it improves the network's longevity 

and scalability.  The CH in a clustered WSN is crucial for data transfer.  A substantial body of research has been 

undertaken on cluster-based routing.  However, challenges arise from fault tolerance, uneven load distribution, and 

locally optimal solutions.  This study aims to introduce a novel cluster-based routing method that improves routing 

efficiency and extends network longevity [1]. 
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Efficient energy transmission is vital for WSN inside the IoT to improve network lifetime and guarantee dependable 

communication.   Node trust, residual energy, and base station proximity determine clusters in the proposed paradigm 

using TEEFLC.  FOA aids CH selection, increasing energy equity and reducing re-clustering activity.   Multi-hop routing 

is improved by FDQNs adjusting to network conditions for data delivery. This fuzzy logic system considers network 

quality, residual energy, and traffic load to improve routing decisions. Deep reinforcement learning reduces energy 

footprint and packet loss with adaptive routing [2][3]. 

The IoT requires WSNs for real-time monitoring and data collecting, but energy constraints are a major issue.  

Clustering and routing methods often waste energy, re-elect CHs, and increase packet loss, shortening network lifespan.  

This research seeks an intelligent, energy-efficient, and adaptive data transport technique that reduces power 

consumption.  This study uses fuzzy logic for clustering, FOA for CH selection, and FDQN for routing to reduce energy 

consumption, balance network load, and improve dependability.  Scalable, self-adaptive, and durable WSN-IoT networks 

for environmental monitoring, smart agriculture, and industrial automation are needed [4-6]. 

Intelligent clustering and adaptive routing techniques are used in this research to improve WSN energy efficiency and 

reliability with the IoT.  TEEFLC ensures optimal cluster formation, whereas FOA enhances CH selection for energy 

balance.  Deep reinforcement learning improves data transfer in FDQN routing, reducing packet loss and network 

congestion.  This study is relevant for smart cities, precision agriculture, industrial IoT, and environmental monitoring 

because it extends network longevity, improves data reliability, and reduces energy usage. This research overcomes 

WSN-IoT routing and clustering limitations to improve sensor network scalability, adaptability, and energy efficiency for 

practical deployment. 

Opportunistic energy-efficient dynamic self-configuration routing (OEDSR) is used in the existing model for IoT 

applications.  The residual energy and mobility factors of the SNs are used to identify the best path to the BS in a graph 

theory-based routing tree model. To decrease connections, dynamic cluster creation with hierarchical tree architecture 

creates an ideal path. To demonstrate the OEDSR protocol's efficacy, throughput, latency, and PDR are compared to peer 

routing systems [9]. The hybrid K-LionER scheme for WSN backed by the IoT was introduced in another model.  K-

LionER promises to improve network longevity and energy efficiency. K-means generates WSN clusters, with ant lion 

optimization selecting each CH. CHs aggregate cluster data and send it to the BS.  K-LionER assigns the CH based on 

routing parameters, Remnant Energy (RE), CH-BS distance, and Intra-cluster Communication Cost. A detailed 

simulation is done with MATLAB 2017a.  Compare K-LionER's success to LEACH, ECFU, and GADA-LEACH. The 

simulation findings show improvements in active nodes, stability duration, inactive nodes, and network longevity. K-

LionER increases network lifespan by 10% to 48% compared to other routing methods [10]. 

The proposed WSN-IoT clustering and routing architecture prioritizes energy efficiency, network longevity, and data 

reliability. It uses fuzzy logic-based clustering, efficient CH selection, and deep reinforcement learning routing. A 

trustworthy energy-efficient fuzzy logic-based clustering algorithm first clusters SNs by residual energy, trustworthiness, 

and density. This ensures fair cluster formation, network stability, and energy savings. After clusters develop, the FOA 

evaluates energy levels, communication distances, and load distribution to find suitable CHs. FOA mimics fossa's 

predatory behavior to investigate and exploit suitable CH locations and reduce re-elections.  After choosing the CH, an 

FDQN is used to run a multi-hop routing protocol. The fuzzy logic system evaluates residual energy, network quality, 

and traffic load to improve next-hop selection and adaptive routing. DRL in FDQN improves routing algorithms by 

examining historical data, energy efficiency, packet loss, and network performance. SNs collect data, CHs aggregate and 

transmit it using FDQN-based routing, and the deep reinforcement learning module optimizes transmission paths.  In 

large WSN-IoT networks, the suggested solution improves energy efficiency, re-clustering costs, scalability, and data 

transmission. 

The Major Contribution of The Work are as Follows 

• Introduces a reliable energy-efficient fuzzy logic-based clustering algorithm to improve cluster formation by 

accounting for residual energy, node trustworthiness, and density, hence improving network stability. 

• Employs the FOA to identify energy-efficient CHs, hence assuring equitable energy utilization and minimizing 

the frequency of re-clustering. 

• Implements a FDQN based routing system that dynamically selects the optimum paths based on residual energy, 

connection quality, and traffic load, decreasing packet loss and network congestion. 

• Incorporates deep reinforcement learning (DRL) within FDQN to dynamically optimize routing patterns, 

improving energy efficiency and extending network longevity. 

• Ensures scalability for extensive WSN-IoT networks by optimizing load allocation across nodes, minimizing 

communication overhead, and enhancing data transmission reliability. 

• The suggested method markedly decreases energy consumption, enhances load balancing, and prolongs the 

lifespan of WSN-IoT networks in comparison to traditional clustering and routing methodologies. 

The remaining parts of the work is organized as follows: Section 2 shows the survey of the existing models. Section 3 

explains the working of proposed A Trust-Aware Energy-Efficient Framework for Intelligent Clustering and Routing in 

WSN-IoT model. Result and discussion part is represented in section 4. The work is concluded in section 5. 
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II. LITERATURE SURVEY 

Vijayendra K. H. Prasad et al. (2023) introduced an energy-efficient clustering-based routing methodology for WSNs, 

employing bioinspired optimization approaches for the selection of CHs and an adaptive routing strategy to reduce 

energy usage.  The suggested model extends network longevity, minimizes energy expenditure, and enhances data 

transmission efficacy through the dynamic selection of appropriate CHs and paths.  The methodology may encounter 

scaling challenges in ultra-large-scale WSN and may necessitate supplementary computational overhead for real-time re-

clustering and routing modifications [11]. 

Greeshma Arya et al. (2022) introduced an energy-efficient routing protocol for IoT-based WSN, incorporating 

reinforcement learning (RL) for clustering, MRFO for CH selection, and a Deep Belief Network (DBN) for optimum 

data transmission.  The proposed paradigm extends network longevity, elevates PDR, diminishes energy usage, and 

augments node accessibility inside clusters.  The method may incur computational overhead from deep learning-based 

routing decisions and may necessitate further optimization for real-time implementation in extensive networks [12]. 

Rajeswari A.R et al. (2021) proposed a secure and energy-efficient cluster-based routing algorithm, the TEEFCA, 

which utilizes a fuzzy inference system for the optimal selection of cluster leaders and the formation of clusters based on 

residual energy, cluster density, and proximity to the base station.  The proposed TEEFCA optimizes energy 

conservation, improves network stability, and prolongs network lifespan in comparison to current cluster-aware routing 

methodologies.  The computational complexity of the fuzzy inference system may escalate with network size, 

necessitating additional optimization for real-time scalability in extensive WSN deployments [13]. 

Venkatesan Cherappa et al. (2023) introduced an energy-efficient clustering methodology utilizing the Adaptive 

Sailfish Optimization (ASFO) algorithm alongside K-medoids for optimal CH selection, and implemented an E-CERP to 

reduce network overhead and identify the shortest path.  The suggested approach attains a PDR of 100%, a packet 

latency of 0.05 seconds, a throughput of 0.99 Mbps, a power consumption of 1.97 mJ, a network lifespan of 5908 cycles, 

and a PLR of 0.5% for 100 nodes, surpassing current methodologies.  The methodology may incur computational 

overhead from ASFO-based clustering and may necessitate additional optimization for scalability in extensive WSN 

deployments [14]. 

N Nathiya et al. (2023) introduces an energy-efficient clustering and intrusion detection system for IoT-enabled 

WSN, employing the MapDiminution-based Training-Discovering Optimization method for optimal cluster routing and 

task scheduling, in conjunction with a hybrid Artificial Neural Network (ANN) and Simulated Annealing (SA) classifier 

for intrusion detection.  The suggested framework attains an energy consumption of 0.01 J and an intrusion detection 

accuracy of 97.57%, surpassing current methods in energy efficiency and security.  The computational complexity of the 

hybrid ANN-SA model may escalate with extensive deployments, and real-time processing efficiency may necessitate 

additional tuning [15]. 

Masood Ahmad et al. (2021) presented a Memetic Algorithm (MemA)-based clustering method for WSN-IoT aimed 

at addressing early convergence challenges in evolutionary algorithms, dynamically balancing cluster loads, and 

enhancing CH selection via local exploration techniques.  The proposed method attains diminished control message 

overhead, optimized cluster quantity, decreased reaffiliation rate, and extended cluster longevity, surpassing established 

methods such as MobAC, EPSO-C, and PBC-CP.  The computational complexity of MemA, attributed to local search 

and crossover mechanisms, may prolong processing time, necessitating additional optimization for real-time applications 

in extensive WSN-IoT. 

Ahmad Saeedi et al. (2025) introduced a multi-objective binary whale optimization algorithm (BWOA) for the 

optimal selection of CH) in IoT-based WSN, integrated with a Mamdani-type fuzzy inference system (FIS) to facilitate 

energy-efficient cluster formation.  A multi-hop shortest path routing mechanism is also employed to improve data 

transmission.  The suggested methodology realizes a 4.5% enhancement in First Node Death (FND), a 7.8% 

improvement in Half Node Death (HND), and a 1.5% rise in Last Node Death (LND) relative to current methodologies, 

indicating superior network longevity and energy efficiency in IoT-based WSN.  The computational complexity of 

BWOA and fuzzy-based clustering may elevate processing overhead, hence complicating real-time deployment in 

extensive IoT networks [17]. 

Nguyen Duy Tan et al. (2023) introduced an energy-efficient routing protocol employing grid cells (EEGT) to extend 

the lifespan of WSN-based IoT applications.   The network is divided into virtual grid cells, and a CH Node (CHN) is 

selected depending on remaining energy and distance to the sink.   In each cell, the Kruskal algorithm generates a 

minimum spanning tree (MST) to improve intra-cell communication, while the Ant Colony Algorithm (ACO) is 

employed to provide energy-efficient routes from CHNs to the sink.   The proposed EEGT protocol exhibits enhanced 

energy efficiency and extended network lifespan relative to the LEACH-C, PEGASIS, and PEGCP routing protocols.   

The computational demands of ACO and MST-based routing may intensify in extensive WSNs, potentially leading to 

heightened latency in dynamic scenarios [18]. 

T. Kanimozhi et al. (2025) proposed an Enhanced Energy-Efficient Clustering Protocol (EEECP) to augment the 

lifespan of WSN-based IoT networks.  The methodology enhances cluster quantity through Modified Fuzzy C-Means 

(MFCM) for energy stabilization and employs Modified Glowworm Swarm Optimization (MGSO) for CH selection.  

MGSO utilizes a dynamic threshold technique to maintain equitable CH lifetime within clusters.  The proposed EEECP 

protocol exhibits enhanced efficacy compared to current clustering methodologies, achieving improvements in First 
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Node Dies (FND) by X%, Last Node Dies (LND) by Y%, and Half Node Dies (HND) by Z%, while optimizing 

Weighted First Node Dies (WFND) for stability, minimizing energy consumption, and prolonging network longevity.  

The computational complexity of MFCM and MGSO may result in increased processing overhead, especially in 

extensive and dynamic WSN-IoT contexts [19]. 

Nageswararao Malisetti et al. (2022) introduced an innovative cluster-based routing methodology for WSN, 

employing the Moth Levy-adopted Artificial Electric Field Algorithm (ML-AEFA) for optimal CH selection and 

Customized Grey Wolf Optimization (CGWO) for effective data transfer.  The suggested method markedly extends 

network longevity, attaining a 35.77% enhancement compared to existing GWO, MSA, AEFA, BOA+ACO, and refined 

ACO methodologies in a 100-node context.  The computational complexity of ML-AEFA and CGWO elevates 

processing overhead, necessitating additional optimization for extensive WSN deployments [20]. Table 1 represents 

Existing work summary table. 

 

Table 1. Existing Work Summary Table 

Author 

Name & 

Year 

Proposed Methodology Outcome Limitation 

Vijayendra K 

(2023) 

Energy-efficient clustering-

based routing employing 

bioinspired optimization 

methods for CH selection and 

adaptive routing. 

Enhanced network lifetime, 

reduced energy dissipation, 

and improved data 

transmission 

Scalability issues in ultra-

large-scale WSNs and 

additional computation 

overhead for real-time re-

clustering 

Greeshma 

Arya 

(2022) 

RL-based clustering, MRFO 

for CH selection, and DBN for 

optimized data transmission 

Improved network lifetime, 

packet delivery ratio, and 

node reachability 

Computational overhead 

due to deep learning-based 

routing decisions 

Rajeswari 

A.R 

(2021) 

TEEFCA using fuzzy inference 

for CH selection based on 

energy, density, and distance 

Enhanced power 

conservation, network 

stability, and extended 

lifetime 

Increased computational 

complexity with network 

size 

Venkatesan 

Cherappa 

(2023) 

ASFO method utilizing K-

medoids for CH selection and 

E-CERP protocol for routing 

High PDR (100%), low 

packet delay (0.05s), 

improved throughput (0.99 

Mbps), extended network 

lifespan (5908 rounds) 

Computational overhead 

due to ASFO-based 

clustering 

N Nathiya 

(2023) 

MapDiminution-based 

Training-Discovering 

Optimization for clustering and 

hybrid ANN-SA for intrusion 

detection 

Energy consumption of 

0.01J, intrusion detection 

accuracy of 97.57% 

Increased computational 

complexity in large-scale 

deployments 

Masood 

Ahmad 

(2021) 

MemA-based clustering for 

load balancing and optimized 

CH selection 

Lower control message 

overhead, optimized cluster 

count, reduced reaffiliation 

rate 

Higher processing time due 

to local search and 

crossover mechanisms 

Ahmad 

Saeedi 

(2025) 

Multi-objective BWOA for CH 

selection and Mamdani-type 

FIS for clustering 

4.5% improvement in FND, 

7.8% in HND, and 1.5% in 

LND 

High processing overhead 

for large-scale IoT 

networks 

Nguyen Duy 

Tan 

(2023) 

EEGT protocol using virtual 

grid cells, Kruskal’s MST for 

intra-cell communication, and 

ACO for CH routing 

Higher energy efficiency, 

extended network lifespan 

compared to LEACH-C, 

PEGASIS, and PEGCP 

Increased computational 

overhead in large-scale 

WSNs 

T. Kanimozhi 

(2025) 

EEECP using MFCM for 

energy stabilization and 

MGSO for CH selection 

Improved FND, LND, 

HND, and WFND, reduced 

energy consumption, and 

extended lifetime 

Higher processing overhead 

in large-scale and dynamic 

WSN-IoT environments 

Nageswararao 

Malisetti 

(2022) 

ML-AEFA for CH selection 

and CGWO for data 

transmission 

35.77% improvement in 

network lifetime over 

GWO, MSA, AEFA, 

BOA+ACO, and improved 

ACO 

Increased processing 

overhead requiring further 

optimization for large-scale 

WSNs 
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Problem Statement 

WSN integrated with the IoT encounter substantial obstacles in attaining energy-efficient data transmission, dependable 

communication, and extended network longevity due to the resource-limited characteristics of SNs.  Conventional 

clustering and routing methodologies experience disproportionate energy consumption, recurrent CH re-selection, 

elevated packet loss, and suboptimal routing strategies, resulting in early node exhaustion and diminished network 

efficacy.  Furthermore, the selection of an ideal CH and routing path is a significant concern, as inadequate choices 

elevate energy usage and exacerbate network congestion.  Current methodologies do not adequately adjust to network 

conditions or optimize energy consumption efficiently.  This research presents a reliable, energy-efficient fuzzy logic-

based clustering algorithm for optimal cluster creation, FOA for CH selection, and FDQN-based routing for adaptive data 

transmission to tackle these difficulties.  The suggested approach guarantees equitable energy distribution, astute routing 

decisions, and reduced communication overhead, markedly enhancing network scalability, reliability, and energy 

efficiency for WSN-IoT applications [21]. 

 

III. PROPOSED METHODOLOGY 

The suggested WSN-IoT model functions in three phases: clustering, CH selection, and routing, guaranteeing energy-

efficient and dependable data transfer.  The TEEFLC algorithm initially establishes ideal clusters by assessing node 

residual energy, trustworthiness, and density, thereby minimizing energy dissipation and enhancing network stability.  

Subsequent to cluster creation, the FOA designates CHs based on energy levels, communication range, and load 

balancing, so maintaining equitable energy distribution and reducing the frequency of re-clustering.  Upon the selection 

of CHs, an adaptive multi-hop routing strategy utilizing a Federated Deep Q-Network (FDQN) is implemented.  The 

fuzzy logic system enhances next-hop selection by evaluating residual energy, network quality, and traffic load, thereby 

assuring dependable and congestion-free routing.  The deep reinforcement learning aspect of FDQN perpetually refines 

routing algorithms by analyzing historical data transfers, enhancing energy efficiency, and minimizing packet loss.  The 

comprehensive workflow entails SNs gathering data and relaying it to CHs, which consolidate and transmit the 

information to the base station via clever, energy-efficient routing pathways.  The suggested architecture markedly 

improves network durability, data integrity, and scalability, rendering it appropriate for extensive WSN-IoT 

implementations. [21-23] 

 

WSN System Model 

The suggested WSN model is designed to enhance energy efficiency and facilitate effective data transfer in IoT 

applications.  It comprises SNs, CHs, and a base station functioning in a hierarchical structure.  The network architecture 

consists of SNs randomly distributed throughout a designated area, organized into clusters by a reliable energy-efficient 

fuzzy logic clustering method.  Each cluster has an appointed CH chosen through the FOA, considering parameters such 

as residual energy, node density, and communication distance.  SNs relay their data to the CHs, which subsequently 

aggregate and transfer the information to the base station.  The energy model adheres to the first-order radio energy 

paradigm, wherein transmission energy is contingent upon distance and data packet size.  Due to the elevated energy 

consumption of CHs resulting from data aggregation and long-range transmission, the model guarantees equitable energy 

distribution by optimizing CH selection and reducing redundant transmissions.  The suggested method improves network 

lifetime and ensures steady communication in extensive WSN-IoT contexts through the implementation of energy-aware 

clustering and effective CH selection. Fig 1 represents the architecture of WSN model [24]. 

 

 
Fig 1. WSN Architecture Diagram. 

Energy Model 

This model employs both free space and multi-path fading channels, contingent upon the distance between the 

transmitter and receiver. If the distance is less than the threshold value d0, the free space (fs) model is applied; otherwise, 

the multipath (mp) model is employed. Let Eelec, εfs, and εmp represent the energy necessary for the electronic circuit, 
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the amplifier in free space, and the amplifier under multipath conditions, respectively.   The energy required for the radio 

to transmit a l-bit message over a distance d is articulated as follows: 

 

  ET(l, d) = {
lEelec + lεfsd

2        for   d < d0

lEelec + lεmpd
4     for   d ≥ d0

    (1) 

 
The energy required by the radio to receive an l-bit message is given by 

 

   ER(l) = lEelec         (2) 

 

The Eelec depends on several factors, including digital coding, modulation, filtering, and signal spreading, while the 

amplifier energy, εfsd2 /εmpd4, is affected by the distance between the transmitter and receiver and the allowable bit-

error rate.   This is a basic model.   The propagation of radio waves is typically diverse and difficult to model. 

 

Network Model 

A WSN paradigm where all SNs are randomly deployed beside several gateways and immovable.   If the gateway is 

within communication range, a SN can be assigned.   So, a SN might have a specific gateway. Consequently, each SN 

has a list of gateways and can choose one.   The data collection procedure has rounds like LEACH.   Each cycle, all SNs 

send local data to their CH.   After removing redundant and uncorrelated data, gateways send the aggregated data to the 

base station via another CH as a relay node. For energy conservation, all nodes turn off their radios between rounds.   All 

communications are wireless.   If two nodes are within communication range, they form a wireless link [25]. 

The recommended WSN architecture optimises energy-efficient IoT data transport. The hierarchical framework 

includes SNs, CHs, and a base station.   Randomly distributed in a given region are N SNs with sensing, processing, and 

communication capabilities. The nodes are clustered using energy-efficient fuzzy logic, assuring fair energy 

consumption. A CH is picked in each cluster using the Focus of Attention (FOA) based on residual energy, node density, 

and communication range.   CHs distribute member node data to the BS, a centralized data processor and store.   The 

CH-BS interaction is improved to reduce energy use and network congestion. A hierarchical network architecture 

improves scalability, reliability, and energy efficiency, making it suitable for large WSN-IoT applications. 

 

Cluster Formation 

Clustering in WSN begins with the selection of the CH. The CH disseminates the advertisement message to all nodes 

within the radio range.   The nodes transmit a join request message to the CH with which they intend to associate.   

Cluster formation may be conducted centrally by the base station in specific protocols, whereas in other approaches, it 

transpires autonomously of the CH.   The best clustering approaches concentrate on managing cluster size and enhancing 

energy efficiency inside the network.   In specific approaches, the cluster formation step commences exclusively upon 

application request. 

The clustering strategy is recognized as an optimal design method for reducing energy consumption in SNs while 

enhancing network performance and quality.  Consequently, clustering-based routing improves energy efficiency, 

promotes stability, and reduces route time.  The clustering process consists of two main phases: the selection of a CH and 

the transmission of data via the CH.  Consequently, selecting the energy-efficient CH can extend the network's longevity.  

Consequently, numerous research investigations have been conducted, emphasizing energy as a crucial element in the 

selection of CHs, the clustering process, and routing. Furthermore, the security level of the CH must be evaluated due to 

the existence of malicious nodes, as data transmission occurs through the CHs.  Trust management solutions have been 

proposed to mitigate security issues.  In an IoT environment, the principal design objective is to provide an energy-

efficient and trust-aware secure cluster-based routing algorithm to enhance network longevity and performance [27]. 

 

Proposed TEEFLC Algorithm 

Establishing secure and energy-efficient cluster-based routing is a significant architectural challenge in the IoT 

ecosystem.  This study presents the TEEFCA to resolve these concerns. The primary objective of the suggested study is 

to augment the network's durability and elevate the security level of the IoT-based WSN.  This section provides a 

detailed explanation of the proposed TEEFCA technique. Upon selecting CH nodes, the process of constructing the 

cluster commences to provide efficient data routing. Consequently, sink nodes will disseminate the roster of reliable CH 

to all nodes. The assessment of REL, cluster density, and node-base station distance (BS) dictates cluster formation. Each 

node uses fuzzy logic to assess the probability of joining the Cluster Leader. CL Member Choice necessitates three 

intricate input components and their corresponding linguistic factors, as enumerated below. REL encompasses low, 

medium, and high linguistic factors. CL Density categorizes linguistic attributes as low, medium, or high. The output 

variable CL Member Choice includes low, medium, and high linguistic variables. The following are the criteria for CL 

Member Choice in a "IF-THEN" format [27]. 

In this suggested study, the FIS are delineated under the subsequent two situations.  Firstly, for the selection of the 

suitable CL, and secondly, for the integration of member nodes with the CL.  The FIS utilized in this study comprises 
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four primary components: Fuzzifier, FIE, Fuzzy Rule Base, and Defuzzifier.  Fig 2 illustrates the architecture of the 

proposed Fuzzy Inference System. 

 

 
Fig 2. Fuzzy Inference System. 

 

This fuzzy inference technique assesses CL Fitness and CL Member Choice utilizing triangular and trapezoidal 

membership features.  Triangular membership functions denote intermediate variables, while trapezoidal membership 

functions are employed for boundary variables. The calculations for these functions are conducted using Equations (3) 

and (4), respectively. 

 

    𝐴 =

{
 
 

 
 

0, x ≤ a1
x−a1

b1−a1
, a1 ≤ x ≤ b1

c1−x

c1−b1
,   b1 ≤ x ≤ c1

0, x ≤ a2 }
 
 

 
 

                (3) 

 

  𝐴 =

{
 
 

 
 

0, x ≤ a2
x−a2

b2−a2
, a2 ≤ x ≤ b2

d2−x

d2−c2
,         c2 ≤ x ≤ d2

0, d2 ≤ x }
 
 

 
 

     (4) 

 

This fuzzy inference method determines CL Fitness and CL Member Choice using triangular and trapezoidal 

membership functions. Triangular membership functions represent intermediate variables, whereas trapezoidal 

membership functions are used for boundary variables. The calculations for these functions are conducted using 

Equations (3) and (4), respectively. 

 

    COA =
∫μA(x).xdx

∫μA(x)dx
   (5) 

 

where 𝜇𝐴(𝑥) denotes the fuzzy values for the membership functions. The main flow of the proposed TEEFCA is 

shown below in the Algorithm1. 

 

Algorithm 1: Proposed TEEFCA 

Initialize Cluster Leader = False 

For each node 𝑎 from 1 to 𝑁: 

      Initialize Trustworthy Candidate Node = { } and Malicious Node = { } 

      Measure PR(a) and PF(a) 

     Compute Node Fitness Value (NFV) using Eq. (3) and (4) 

     If 𝑁𝐹𝑉 > 𝑁𝐹𝑉𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , then: 

          Add node 𝑎 to Trustworthy Candidate Node 

          Otherwise, add node 𝑎 to Malicious Node 

          Compute Cluster Leader Fitness using Fuzzy_Logic_1 (REL, Distance between Node & BS) 

          Set Cluster Leader = True 

          Transmit Cluster Leader Message (ID, REL, Distance between Node & BS) to neighbors 
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For each neighbor 𝑀 upon receiving the Cluster Leader Message: 

     Compute Cluster Member Choice using Fuzzy_logic_2 (REL, CL Density, Distance between Node & BS) 

     Node 𝑀 joins the cluster leader as a Cluster Member 

End loop 

 

CH Selection Using FOA 

The selection process for the CH is vital for enhancing energy efficiency and extending the longevity of the WSN. The 

suggested model employs the FOA for CH selection, ensuring equitable energy usage across SNs. The selection criteria 

evaluate various characteristics, including as residual energy, node density, and communication distance, to determine 

the most appropriate node for the CH position. FOA assesses potential nodes according to their capacity for data 

aggregation and long-range communication, all while reducing energy consumption.  Upon selection of a CH, it gathers 

data from cluster members, processes the information, and communicates the aggregated data to the BS. The suggested 

method dynamically adjusts CHs in each round to minimize excessive energy consumption in certain nodes, thereby 

improving network stability, load balancing, and overall efficiency in WSN-IoT applications. 

By ensuring energy efficiency, load distribution, and appropriate node selection, the FOA improves WSN CH 

selection. FOA assigns CHs based on residual energy, node density, and communication distance, guaranteeing high-

energy nodes perform CH functions and increase network lifespan. FOA improves network stability and efficiency by 

reducing intra-cluster communication distance and member node energy usage. Its fast convergence rate allows for 

optimal CH selection in large and dynamic WSN-IoT systems.FOA optimises data aggregation and transmission, 

reducing unnecessary data forwarding and improving network performance. Its topological adaptability ensures 

scalability, making it a resilient WSN energy-efficient clustering solution.   FOA optimizes CH selection by balancing 

exploration and exploitation better than current models. FOA reduces premature convergence and improves energy 

efficiency and load distribution over conventional models. It is ideal for large WSN-IoT applications since it converges 

faster than Genetic Algorithms and Particle Swarm Optimization.   FOA dynamically adapts to network changes with 

minimum computing load, ensuring resilient and energy-efficient clustering and routing. 

 

 Fossa Optimization Algorithm (FOA) 

This section examines the primary motivation behind the development of the proposed FOA. The examination 

commences with the biological and behavioral traits of the fossa that have been replicated in the design of FOA. We 

subsequently provide a comprehensive mathematical analysis of the algorithm's implementation methods, illustrating the 

conversion of these natural occurrences into computational optimization strategies [25]. 

 

Inspiration of FOA 

The fossa is a cat-like mammal native to Madagascar, included under the Eupleridae family. The fossa's hunting strategy 

for lemurs is very remarkable among its natural behaviors in the wild. This astute methodology consists of two stages: (i) 

the fossa's progression towards the detected lemur's position and (ii) the chase between the fossa and the lemur among 

the trees. The mathematical representation of intelligent fossa behaviors in hunting has been utilized to develop the 

suggested FOA, which is outlined below. 

 

Algorithm Initialization 

Fossas represent population members in the proposed FOA, a population-based optimization approach.   FOA identifies 

optimal solutions by emulating the natural search behaviors of fossas within the problem domain. This comparison 

utilizes the fossa's habitat as the problem-solving domain and each fossa's position as a potential optimization solution. 

The position of each fossa is determined by a vector containing choice variable values. The fossa location may be a 

solution. Eq. (1) shows a matrix representing the entire fossa population, each with a position vector.   Using Eq. (2), the 

fossas are randomly placed in the problem space.   This methodical approach lets FOA efficiently search the search space 

and refine optimal solutions using the fossas' dynamic positional alterations. FOA guarantees a full problem domain 

investigation by using the fossas' intrinsic search capabilities, providing in superior solutions for complex optimization 

problems. 

 

 X =

[
 
 
 
 
X1
⋮
Xi
⋮
XN]
 
 
 
 

N×m

=

[
 
 
 
 
x1,1 ⋯ x1,d ⋯ x1,m

⋮ ⋱ ⋮    ⋰     ⋮
xi,1
⋮
xN,1

⋯
⋰
⋯

xi,d
⋮
xN,d

⋯
⋱
⋯

xi,m
⋮

xN,m]
 
 
 
 

N×m

    (6) 

 

   𝑥𝑖,𝑑 = 𝑙𝑏𝑑 + 𝑟. (𝑢𝑏𝑑 − 𝑙𝑏𝑑)    (7) 

 

In this context, 𝑋 is the FOA population matrix, while 𝑋𝑖 signifies the ith fossa, which may constitute a solution. In 

the search space, 𝑥𝑖 denotes the dth dimension of the ith fossa, N signifies the total number of fossas, 𝑚 indicates the 
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number of decision variables, 𝑟 is a stochastic variable, and 𝑙𝑏𝑑 and 𝑢𝑏𝑑 indicate the lower and upper limits of the dth 

decision variable, respectively.    Each fossa signifies a potential solution and is evaluated by the objective function.    

Objective function values can be represented as vectors, as indicated by Eq. (8). 

 

 𝐹 =

[
 
 
 
 
𝐹1
⋮
𝐹𝑖
⋮
𝐹𝑁]
 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)
⋮

𝐹(𝑋𝑖)
⋮

𝐹(𝑋𝑁)]
 
 
 
 

𝑁×1

      (8) 

 

In this context, 𝐹 denotes the vector of assessed objective function values, with 𝐹𝑖 being the objective function value 

associated with the ith fossa. 

 

Mathematical Modelling of FOA 

The FOA algorithm mimics fossas' strategic movement in the wild. Two phases update FOA member positions in the 

problem-solving domain:   Exploration Phase: This phase mimics fossas' early lemur hunting. The algorithm prioritizes 

extensive search space exploration to find potential locations in this step.  As the fossa prepares and attacks, its 

placement changes during exploration.  The fossa refines its approach to accurately target the lemur through the trees 

during the Exploitation Phase. In the exploitation phase, the algorithm increases search inside promising regions, 

improving solutions.  Fossa dynamic changes during chase determine positional changes during exploitation.   Here is the 

mathematical modeling and detailed explanation of each FOA updating procedure [25]. 

 

Phase 1: Attacking and Moving Towards the Lemur (Exploration Phase) 

Simulation of the fossa's attack on a monitoring lemur changes population members' placements in the problem-solving 

area during the FOA's early phase. Fossas' high olfactory, aural, and visual talents allow them to identify lemurs. The 

fossa approaches the lemur after finding it. FOA's worldwide exploration capabilities are enhanced by the simulated 

migration during the attack phase, which changes population placements. Lemurs live in fossas when other population 

members have greater objective function values.   Eq. (9) evaluates objective function values to determine candidate 

lemurs for each fossa: 

 

      𝐶𝐿𝑖 = {𝑋𝑘: 𝐹𝑘 < 𝐹𝑖𝑎𝑛𝑑 𝑘 ≠ 𝑖},   where i=1, 2,...,N and k{1, 2,...,N}  (9) 

 

Here, 𝐶𝐿 denotes the set of potential lemur locations for the 𝑖th fossa, 𝑋𝑘 signifies the population member with a 

greater objective function value in relation to the 𝑖th fossa, and 𝐹𝑘 represents its corresponding objective function value.  

The FOA posits that the fossa arbitrarily chooses one of the possible lemurs within its environment and initiates an 

assault.  Utilizing the fossa's location alteration during the assault on the designated lemur, a novel random position for 

each individual in the FOA population is computed employing Eq. (10). If the new location produces a superior objective 

function value, it supersedes the prior position of the corresponding population member, as specified in Eq. (11). 

 

 𝑥𝐼
𝑃1 = 𝑥𝑖,𝑗 + 𝑟𝑖,𝑗 ∙ (𝑆𝐿𝑖,𝑗 − 𝐼𝑖,𝑗 ∙ 𝑥𝑖,𝑗)   (10) 

 

   𝑋𝑖 = {
𝑋𝑖
𝑝1
, 𝐹𝑖

𝑝1
≤ 𝐹𝑖

𝑋𝑖 ,             𝑒𝑙𝑠𝑒
      (11) 

 

In this case, 𝑆𝐿𝑖 represents the lemur selected by the 𝑖th fossa, whereas 𝑆𝐿𝑖 refers to the 𝑗th dimension of the position 

of this chosen lemur.  𝑋𝑖 𝑃1 denotes the recently calculated position for the 𝑖th fossa during the attack phase of the FOA, 

with 𝑥𝑖, 𝑃1 representing its 𝑗th dimension.  The value of the objective function at this new point is 𝐹𝑖 𝑃1.  The variables 

𝑟𝑖 are stochastic values inside the interval [0,1], while 𝐼𝑖,𝑗 are random numbers, specifically 1 or 2. 

 

Phase 2: Chasing to Catch Lemur (Exploitation Phase) 

Simulating the fossa's pursuit of the lemur changes population positions in FOA's second phase. The fossa chases the 

lemur through the trees and branches using its climbing skills. This happens in a hunting ground region. By repeating the 

fossa's motions during the hunt, the FOA's local search optimization is improved by introducing few population member 

location changes. Fossa-lemur pursuit dynamics are shown by small population positioning variations in the FOA design.  

Equation (7) calculates a new position for each FOA member during lemur pursuit. Eq (13) states that this new 

placement supersedes the member's prior position if it has a higher objective function value. 

 

    𝑥𝑖,𝑗
𝑃2 = 𝑥𝑖,𝑗 + (1 − 2 𝑟𝑖,𝑗) ∙

𝑢𝑏𝑗−𝑙𝑏𝑗

𝑡
     (12) 
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   𝑋𝑖 = {
𝑋𝑖
𝑃2,        𝐹𝑖

𝑃2 ≤ 𝐹𝑖
𝑋𝑖 ,           𝑒𝑙𝑠𝑒

    (13) 

 

In this respect, 𝑋𝑖 𝑃2 signifies the adjusted position determined for the 𝑖 th fossa during the pursuit stage in the 

suggested FOA. Each 𝑥𝑖, P2 denotes the 𝑗th dimension of the new position, whereas Fi P2 signifies the corresponding 

objective function value. The variables 𝑟𝑖 are generated at random inside the interval [0,1], and 𝑡 denotes the current 

iteration count. 

 

Federated Deep Q-Network (FDQN) Based Routing 

The suggested routing technique utilizes Federated Deep Q-Network (FDQN) to guarantee efficient and intelligent data 

transfer within the WSN.  FDQN, a sophisticated reinforcement learning methodology, facilitates decentralized decision-

making while safeguarding data privacy.  In this paradigm, each CH operates as an agent that acquires optimal routing 

policies through interaction with the network environment.  The routing decision relies on critical parameters including 

energy levels, network quality, latency, and hop count.  FDQN utilizes a federated learning framework, enabling several 

CHs to collaboratively train local Q-networks without the need to share raw data, rather than depending on a centralized 

server for training.  Locally learned models are periodically consolidated to enhance global routing performance.  This 

decentralized learning system diminishes communication overhead and improves flexibility in dynamic WSN-IoT 

contexts.  Through the ongoing refinement of the routing policy, FDQN enhances path selection, reduces energy 

expenditure, and prolongs network longevity while guaranteeing dependable data transmission to the base station (BS).  

The incorporation of FDQN markedly enhances scalability, security, and robustness in comparison to conventional 

routing protocols [26]. 

 

FDQN 

Value-based reinforcement learning techniques formally utilize an action-value function F (s, c) to estimate the expected 

return from state s upon executing action c: 

 

   𝐹𝜋(𝑠𝑡 , 𝑐) = 𝐸𝜋{∑ 𝛾𝑘−1𝑟𝑡+𝑘−1|𝑠𝑡 , 𝑐
∞
𝑘=1 }   (14) 

 

   = 𝐸𝑠𝑡+1,𝑐{𝑟𝑡 + 𝛾𝐹𝜋(𝑠𝑡+1, 𝑐)|𝑠𝑡 , 𝑐𝑡}    (15) 

 

𝐹(𝑠𝑡 , 𝑐) serves as the reference for the reinforcement learning agent, defined as the largest expected cumulative 

discounted: 

 

    𝐹∗(𝑠𝑡 , 𝑐) = 𝐸𝑠𝑡+1 {𝑟𝑡 + 𝛾max𝑎
𝐹∗(𝑠𝑡 , 𝑐)|𝑠𝑡 , 𝑐}    (16) 

 

In DRL, a function estimation method, namely a Deep Neural Network (DNN) in this context, is employed to learn a 

parameterized value function F (s, c; θ) to estimate the optimal F-values.  The one-step look-ahead 𝑟𝑡 +

𝛾max
𝑎
𝐹 (𝑠𝑡+1, 𝑐; 𝜃𝑓) serves as the aim for deriving F(𝑠𝑡 , 𝑐; 𝜃𝑓). Consequently, the function 𝐹(𝑠𝑡 , 𝑐; 𝜃𝑓) is defined by the 

parameters 𝜃𝑓.  The choice of an effective action depends on precise action-value estimate; hence, DQN seeks to identify 

the ideal parameters 𝜃𝑓 to minimize the loss function:  

 

    𝐿(𝜃𝑞) = (𝑟𝑡 + 𝛾max
𝑎
𝐹 (𝑠𝑡+1, 𝑐; 𝜃𝑓) − 𝐹(𝑠𝑡 , 𝑐; 𝜃𝑓))

2

    (17) 

 

Similar to traditional Q-learning, the agent acquires experiences by engagement with the environment.  The network 

trainer compiles a dataset D by gathering events up to time t in the format of (st−1, ct−1, rt, st).  The loss function 𝐿(𝜃𝑓) 

is optimized using the collected data set D. During initial training, the agent's estimations lack precision, so a dynamic-

greedy policy is implemented to guide activities. The agent explores numerous behaviors with a defined probability, 

regardless of their rewards. This method increases estimation over time and avoids the risk of overfitting the framework 

to high-reward activities in the first training phase.    Adding the DQN cost function to the equation yields the FDQN 

cost: 

 

   min
𝜃𝑓

𝐿(𝜃𝑓) = ∑ 𝜔𝑖𝐿𝑖(𝜃𝑓𝑖)
 𝑁
𝑖=1       (18) 
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Algorithm 2: FDQN 

Initialize the model parameters θq from the server. 

For each episode e = 1 to Ne: 

     Set the initial state s and action c. 

     For each time step t = 1 to T: 

            Generate a random number r ∈ [0,1]. 

                   If  

                       r > ε, select action at = argmaxa 𝐹(𝑠𝑡 , 𝑐; 𝜃𝑓); 

                   Else 

                      pick a randomly from the action space. 

            Execute action at, transition to the next state st+1, and receive reward rt+1. 

            Store the experience {ct, st, rt+1, st+1}. 

     End for 

     Update model parameters: 

     If the episode index e is a multiple of Ag: 

            Send updated model parameters θf to the server for aggregation. 

            Receive the aggregated model parameters θq from the server. 

     End if 

End for 

End 

 

FDQN-based routing is selected for WSN-IoT contexts to improve energy efficiency, scalability, and privacy while 

accommodating dynamic network conditions. Conventional routing techniques exhibit elevated energy usage, 

congestion, and reliance on centralization, rendering them ineffective for extensive implementations. FDQN use 

reinforcement learning to enhance routing decisions by taking into account energy levels, network quality, latency, and 

hop count.  In contrast to traditional Deep Q-Networks (DQN), FDQN facilitates decentralized learning, allowing CHs 

(CHs) to train local models through federated learning, thereby minimizing communication overhead and safeguarding 

data privacy. Through the ongoing optimization of routing policies, FDQN guarantees equitable energy utilization, 

prolonged network longevity, and enhanced packet transmission, rendering it suitable for scalable and adaptable WSN-

IoT applications [26]. 

 

IV. RESULT AND DISCUSSION 

The suggested TEEFLC, FOA for CH Selection, and FDQN for Routing optimize network performance by optimizing 

energy usage, enhancing packet delivery, and maintaining steady data transmission. The FOA-based CH selection 

efficiently distributes energy consumption among SNs, resulting in prolonged network lifespan.  Simultaneously, FDQN-

based routing dynamically adjusts to network conditions, enhancing packet delivery dependability and minimizing 

transmission delays.  The suggested model exhibits enhanced CH stability, adaptive learning, and efficient load balancing 

compared to alternative optimization methods, rendering it highly suitable for WSN-IoT applications.  The amalgamation 

of FOA for clustering and FDQN for routing yields an energy-efficient, scalable, and dependable data transmission 

framework. The existing models compared with the suggested model include the Osprey Optimization Algorithm (OOA), 

Improved Grey Wolf Optimization Algorithm (IGWOA), Modified Jackal Optimization Algorithm (MJOA), and 

Sandpiper Optimization Algorithm (SOA). Table 2 represents the simulation parameter setup [28-30]. 

 

Table 2. Simulation Parameter Setup 

Parameters Values 

Simulation tool MATLAB 

Maximum Iterations 3000 

Node count 400 

Network size 500 m × 500 m 

Node initial energy 1.2 J 

Sink position (250 m, 250 m) 

Packet size 4000 bits 

𝜀𝑒𝑐 50 nJ/bit 

𝐸𝑒𝑙𝑒𝑐  50 nj/bit 

𝐸𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒  0.00012 μj/bit 

𝐸𝑟𝑒𝑐𝑒𝑖𝑣𝑒 0.055 μj/bit 

 

Table 3. Energy Consumption Comparison Analysis with Existing Model 
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No. of Rounds Proposed model OOA IGWOA MJOA SOA 

100 0.039 0.045 0.078 0.135 0.199 

200 0.085 0.108 0.159 0.198 0.270 

300 0.099 0.128 0.227 0.366 0.395 

400 0.156 0.364 0.446 0.482 0.541 

500 0.398 0.553 0.609 0.742 0.817 

 

 
Fig 3. Energy Consumption Comparison Analysis Graph with Existing Model. 

 

Table 3 and Fig 3 illustrate the energy consumption (in millijoules, mJ) of the Proposed Model, Osprey Optimization 

Algorithm (OOA), Improved Grey Wolf Optimization Algorithm (IGWOA), Modified Jackal Optimization Algorithm 

(MJOA), and Sandpiper Optimization Algorithm (SOA) over varying rounds (100 to 500).  The Proposed Model 

consistently demonstrates the lowest energy consumption, commencing at 0.039 mJ for 100 rounds and escalating to 

0.398 mJ for 500 rounds, so underscoring its efficacy in reducing energy expenditure.  In contrast, the OOA and IGWOA 

exhibit higher energy use, with OOA demonstrating intermediate efficiency and IGWOA revealing a substantial 

escalation in energy usage as rounds advance.  MJOA and SOA exhibit the most energy use, with MJOA utilizing 0.742 

mJ and SOA attaining 0.817 mJ after 500 rounds, underscoring their inefficiency in energy usage.  This indicates that the 

Proposed Model, including TEEFLC, FOA, and FDQN, represents the best energy-efficient solution for WSN-IoT 

applications, maximizing energy consumption while preserving performance. 

 

Table 4. Network Lifetime Comparison Analysis with Existing Model 

No. of Rounds Proposed model OOA IGWOA MJOA SOA 

100 1850 1700 1520 1350 1300 

200 2300 2150 1850 1610 1450 

300 2850 2500 2350 1850 1700 

400 3350 3010 2850 2610 2215 

500 3650 3450 3190 2870 2650 

 

 
Fig 4. Network Lifetime Comparison Analysis Graph with Existing Model. 
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Table 4 and Fig 4 discuss the network lifetimes of several models based on the number of rounds, emphasizing the 

efficacy of the Proposed Model, OOA, IGWOA, MJOA, and SOA.  The Proposed Model exhibits the longest network 

lifespan, commencing at 1850 rounds for 100 rounds and attaining 3650 rounds at 500 rounds, signifying exceptional 

energy efficiency.  OOA closely follows, attaining 3450 rounds at 500 rounds, whereas IGWOA sustains a moderate 

lifespan, achieving 3190 rounds.  Conversely, MJOA and SOA demonstrate reduced network lifetimes, with MJOA 

achieving 2870 rounds and SOA merely 2650 rounds at 500 rounds, indicating higher energy consumption and resulting 

in premature node depletion.  The results validate that the Proposed Model substantially improves network lifetime 

relative to current optimization methods. 

 

Table 5. PDR (%) Comparison Between Existing and Proposed Model 

No. of Rounds Proposed model OOA IGWOA MJOA SOA 

100 99.45 98.67 97.04 96.38 94.36 

200 98.59 97.26 95.95 94.38 93.22 

300 98.04 97.31 95.47 94.75 92.49 

400 97.53 96.38 94.29 93.09 91.83 

500 96.61 94.74 93.68 92.33 90.95 

 

 
Fig 5. PDR Comparison Analysis Graph with Existing Model. 

 

Table 5 and Fig 5 demonstrate that the suggested model constantly attains the maximum Packet Delivery Ratio 

(PDR), commencing at 99.45% after 100 rounds and sustaining a substantial value of 96.61% at 500 rounds, signifying 

dependable and efficient data transfer.  OOA demonstrates a minor decrease from 98.67% to 94.74%, whereas IGWOA 

has a more pronounced loss from 97.04% to 93.68% with the increase in rounds.  MJOA and SOA have the lowest PDR 

values, with SOA decreasing from 94.36% to 90.95%, signifying packet losses attributable to suboptimal routing and 

increased energy use. The results underscore the resilience of the Proposed Model in facilitating effective data transfer 

with little packet loss, establishing it as the most dependable method for energy-efficient WSN-IoT applications. 

 

Table 6. End to End Delay (ms) Comparison Between Existing and Proposed Model 

Number of nodes Proposed model OOA IGWOA MJOA SOA 

100 3.2 4.5 5 6.8 7.2 

200 4.5 5.3 6.5 7.5 8.5 

300 5 6.2 7.6 8.3 9 

400 6.1 7.4 8.2 9.5 10.2 

500 6.8 8.2 9.5 11 12.3 

 

Table 6 and Fig 6 demonstrate that the suggested model constantly attains the minimal latency, commencing at 3.2 

ms for 100 nodes and escalating to 6.8 ms for 500 nodes, hence evidencing effective data transfer and diminished 

network congestion.  OOA and IGWOA demonstrate mild delays, with OOA spanning from 4.5 ms to 8.2 ms and 

IGWOA escalating from 5 ms to 9.5 ms, signifying marginally elevated transmission latencies. Conversely, MJOA and 

SOA exhibit much greater delays, attaining 11 ms and 12.3 ms for 500 nodes, respectively, attributable to heightened 

network congestion and suboptimal routing. The results validate that the Proposed Model facilitates expedited data 

transmission, rendering it the most efficient method for real-time and delay-sensitive WSN-IoT applications. 
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Fig 6. End to End Delay (Ms) Comparison Between Existing and Proposed Model. 

 

Table 7.  No. of Alive Sensor Nodes Comparison Between Existing and Proposed Model 

No. of Rounds Proposed model OOA IGWOA MJOA SOA 

2000 485 471 450 390 280 

2250 478 465 415 274 210 

2500 460 442 392 200 135 

2750 400 390 313 130 50 

3000 355 350 235 28 20 

3250 335 321 183 14 7 

3500 296 285 136 0 0 

 

Table 7 and Fig 7 illustrate a comparison of the quantity of active SNs across successive rounds.  The Proposed 

Model consistently sustains a greater quantity of active SNs, with 485 nodes operational at 2000 rounds and 296 nodes 

remaining functional at 3500 rounds, demonstrating its energy-efficient clustering and routing methodologies.  OOA and 

IGWOA also exhibit reasonable node survivability, with OOA maintaining 285 nodes and IGWOA retaining 136 nodes 

at 3500 rounds, but they still underperform compared to the Proposed Model. Conversely, MJOA and SOA exhibit 

markedly reduced network longevity, as all nodes deplete after 3500 rounds due to suboptimal CH selection and elevated 

energy consumption.  These results demonstrate that the Proposed Model extends the network lifetime, ensuring 

prolonged data transmission and increased WSN sustainability, making it suited for long-term IoT applications. 

 

 
Fig 7. Alive Sensor Nodes Comparison Between Existing and Proposed Model. 

 

Table 8.  No. of Dead Sensor Nodes Comparison Between Existing and Proposed Model 
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No. of 

Rounds 

Proposed 

model 
OOA IGWOA MJOA SOA 

2000 25 30 52 110 143 

2250 40 45 93 174 237 

2500 55 58 107 285 316 

2750 100 113 185 320 375 

3000 155 162 270 425 467 

3250 175 180 320 446 490 

3500 200 210 368 500 500 

 

Table 8 and Fig 8 compare the quantity of dead SNs over various rounds.  The Proposed Model demonstrates the 

lowest node depletion rate, with merely 25 dead nodes at 2000 rounds and 200 dead nodes at 3500 rounds, indicating its 

exceptional energy efficiency and equitable load distribution.  OOA and IGWOA exhibit intermediate performance, with 

OOA attaining 210 dead nodes and IGWOA reaching 368 dead nodes after 3500 rounds, signifying more energy 

consumption compared to the Proposed Model.  Conversely, MJOA and SOA undergo swift node depletion, resulting in 

the demise of all 500 nodes after 3500 rounds, underscoring ineffective CH selection and routing.  The results validate 

that the Proposed Model substantially improves network longevity, optimizing resource utilization and extending sensor 

operability, rendering it exceptionally appropriate for energy-limited WSN-IoT applications. 

 

 
Fig 8. Dead sensor nodes comparison between existing and proposed model. 

 

Table 9. Computation Complexity Comparison Table Between Existing and Proposed Model 

Models Computation complexity 

Proposed Model O(N × I) + O(E × S × A) 

Osprey Optimization Algorithm (OOA) O(N × I × D) 

Improved Grey Wolf Optimization 

Algorithm (IGWOA) 
O(N × I × log N) 

Modified Jackal Optimization Algorithm 

(MJOA) 
O(N × I × D) 

Sandpiper Optimization Algorithm (SOA) O(N × I) 

 

Table 9 juxtaposes the computational complexity of the Proposed Model against known techniques.  The Proposed 

Model exhibits a complexity of O(N × I) + O(E × S × A), effectively balancing efficiency and accuracy for extensive 

WSN-IoT networks.  OOA and MJOA (O(N × I × D)) exhibit greater complexity owing to an expanded search space, 

whilst IGWOA (O(N × I × log N)) provides moderate efficiency.  SOA (O(N × I)) is the most straightforward however 

may exhibit limited adaptability.  The Proposed Model guarantees optimal cluster formation, CH selection, and routing 

while preserving computational efficiency, rendering it highly suitable for energy-efficient WSN-IoT applications. 

 

V. CONCLUSION 

The proposed WSN-IoT-based energy-efficient data transmission model incorporates TEEFLC for optimal cluster 

formation, FOA for effective CH selection, and FDQN for intelligent routing. This hybrid methodology prolongs 

network longevity, reduces energy expenditure, and optimizes data transmission efficacy relative to current techniques. 

The findings indicate that the suggested model surpasses OOA, IGWOA, MJOA, and SOA for packet delivery ratio, 
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network longevity, and SN viability. Future research will investigate additional optimization methods and real-time 

execution for extensive WSN-IoT applications. Future endeavors will concentrate on incorporating adaptive 

reinforcement learning methodologies for dynamic routing and investigating hybrid metaheuristic algorithms to enhance 

energy optimization in extensive WSN-IoT networks. Real-time implementation and security enhancements will be 

considered to improve system robustness. 
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