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Abstract – Wireless sensor networks (WSNS) are crucial for several applications. WSN nodes frequently function with 

constrained battery capacity, rendering energy efficiency a critical issue for clustering and routing. Moreover, a principal 

challenge of WSNS is ensuring the dependability and security of transmitted data in susceptible contexts to avert hostile 

node attacks. This study seeks to establish a secure and energy-efficient routing system for fault data prediction to 

improve the longevity and dependability of WSNS. This paper presents a sophisticated framework for intelligent fault 

prediction and energy-efficient data transmission in WSN, utilising bio-inspired optimisation and deep learning 

methodologies. The model initiates data fault prediction with Multi-Term Fourier Graph Neural Networks (MTFGNN), 

which examine temporal and spatial relationships to detect anomalies and defective nodes prior to clustering.  Faultless 

nodes are subsequently categorised by Fuzzy C-Means (FCM) clustering, facilitating adaptive and efficient cluster 

creation. Quokka Swarm Optimisation (QSO) is utilised to improve energy efficiency by selecting ideal cluster heads 

(CH), thereby balancing energy usage and reducing intra-cluster communication expenses. A trust-based routing 

technique employs Proximal Policy Optimisation (PPO), a reinforcement learning method that dynamically identifies 

secure and energy-efficient pathways for data transfer, while reducing the influence of unreliable nodes. The 

experimental results indicate that it surpasses the rival methods across multiple performance parameters.  The 

performance outcomes of quality of service (QSO) metrics are delineated as follows: energy consumption (0.204), 

throughput (0.701), packet delivery rate (94.24%), network lifetime (1310 rounds), and fault prediction accuracy 

(99.78%), precision (98.69%), recall (97.52%) and F1 score (97.83).  

 

Keywords – Wireless Sensor Networks (WSNS), Quokka Swarm Optimisation (QSO), Multi-Term Fourier Graph 

Neural Networks (MTFGNN), Fuzzy C-Means (FCM), Proximal Policy Optimization (PPO), Cluster Head (CH). 

 

I. INTRODUCTION 

Recently more and more people are interested in WSNs, which are extensively applied for many real-time purposes. 

Developments in wireless communications and micro-electro-mechanical systems have made it possible to create low-

cost, low-power sensor nodes that monitor critical parameters like temperature and humidity in the sensing environment. 

To the central location, they broadcast their detected data collectively across the wireless channel. Unclear and 

unreliable, the linked sensors in WSNs generate data constantly. The sensor nodes face own different faults since a WSN 

is deployed in hostile and uncontrolled surroundings. The efficient processing and analysis of data streams makes data 

fault detection our most extreme relevance for several applications [1]. 

Applications of WSN necessitate precise data to deliver accurate information to the end user. The quality of 

information derived by WSN may be compromised in terms of dependability and accuracy due to their cost-effective 

design and challenging deployment conditions. The techniques for detecting data defects ensure the quality of the data 
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samples, make it easier to clean up the collected data, and provide end users with useful information while saving energy 

and assisting with computational duties because sensor nodes have limited energy resources.   With a high detection rate, 

the data detection model can efficiently identify data anomalies in new observations and is built to find changes based on 

prior WSN data structures.   Defective node identification and management is a major challenge in WSNs [2][3]. 

The fault is a problem in the system that can lead to an erroneous state, potentially resulting in failures. The sensor 

nodes may encounter two distinct categories of problems: sensor node faults and data faults.  Clustering is a fundamental 

strategy employed to improve energy efficiency in WSN by organising sensor nodes into clusters, with a designated CH 

responsible for aggregating and transmitting data to the BS. This hierarchical framework reduces duplicate 

communication and optimises energy consumption across nodes. Nonetheless, choosing an appropriate CH is a 

complicated endeavour, as inadequate selection may result in premature energy exhaustion and network instability [4]. 

Bio-inspired optimisation algorithms offer an effective method for optimal CH selection, facilitating efficient energy 

distribution and extending network longevity.  Besides clustering, routing is essential for the efficient transmission of 

data across the network. Conventional routing systems frequently experience elevated energy consumption and 

susceptibility to node failures or security risks.  Intelligent routing methodologies, including reinforcement learning-

based strategies, dynamically identify the most energy-efficient and safe pathways for data transmission. Trust-based 

routing solutions augment security by assessing node behaviour and guaranteeing dependable communication [5][6]. 

The suggested model aims to improve energy economy, fault tolerance, and secure data transfer in WSNs.  

Conventional clustering and routing methodologies experience energy imbalance, suboptimal CH selection, and 

susceptibility to defective or malevolent nodes, resulting in network instability. The proposed model incorporates 

MTFGNN for early fault prediction, FCM clustering for adaptive cluster formation, and QSO for optimal selection of CH 

to tackle these difficulties.  Moreover, TBPPO guarantees intelligent and secure routing through the dynamic selection of 

energy-efficient and reliable pathways. This comprehensive strategy seeks to augment network durability, diminish 

energy usage, and elevate data dependability, rendering WSN more resilient and sustainable [7]. The suggested model 

improves energy efficiency, fault tolerance, and secure data transmission in WSN by the integration of advanced 

clustering, optimisation, and routing algorithms.  It utilises MTFGNN for proactive defect prediction, guaranteeing data 

integrity.  FCM clustering facilitates adaptive cluster creation, enhancing network stability. QSO efficiently identifies 

CH, optimising energy consumption. TBPPO guarantees secure and efficient routing, reducing risks from defective or 

malevolent nodes. This methodology prolongs network longevity, minimises energy consumption, and improves 

communication dependability. The approach is relevant to multiple sectors, such as healthcare, smart cities, and 

industrial automation [8-10]. 

Cluster formation, optimal route determination, and intrusion identification are the three main stages of the current 

methodology. Three input parameters were used in the original implementation of the Adaptive Shark Smell 

Optimisation (ASSO) approach for CH selection. The characteristics include node density, residual energy, and distance 

from the base station. Salp swarm optimization (SSO) is used after clustering to determine the best path for data transfer 

between clusters, producing an energy-efficient WSN. In order to enhance the security of cluster-based WSNs, a 

MERNN-based intrusion detection system is used to identify network intrusions. A low-power cluster-based routing 

protocol with a comprehensive defect detection mechanism for WSNs was introduced by an existing model. For CH 

selection, the protocol makes use of the fuzzy logic-enhanced Improved Whale Optimisation Algorithm (IWOA). By 

determining the best routes for efficient inter-cluster data transfer, the Adaptive Elephant Herding Optimisation (AEHO) 

technique improves energy efficiency inside the WSN. In order to identify inaccurate data within the network and enable 

effective data transfer in cluster-based WSNs, the CH deploys a sophisticated fault detection system using a DFFNN. 

The suggested model surpasses current methodologies by incorporating failure prediction, energy-efficient clustering, 

optimal CH selection, and secure routing, hence ensuring a more adaptable and resilient WSN. This approach utilises 

MTFGNN for early fault prediction, unlike typical models that identify flaws post-data transmission, hence averting 

erroneous data propagation. Fuzzy C-Means clustering facilitates adaptable and equitable cluster creation, resolving 

energy distribution issues encountered by traditional static clustering techniques.  QSO guarantees appropriate selection 

of CH, minimising energy usage and extending network lifespan. TBPPO enhances routing by dynamically choosing 

secure and energy-efficient pathways, alleviating the hazards linked to defective or malevolent nodes. This 

comprehensive amalgamation of bio-inspired optimisation, deep learning, and reinforcement learning improves energy 

efficiency, fault tolerance, and communication reliability. Consequently, the proposed architecture is more appropriate 

for practical applications, like smart cities, healthcare, and industrial automation, where network stability and security are 

paramount. 

The Major Contribution of The Proposed Model Is as Follows 

• To enhance data accuracy and reliability, Multi-Term Fourier Graph Neural Networks are implemented for early 

fault prediction, preventing erroneous data propagation. 

• To ensure balanced energy consumption and improved network stability, Fuzzy C-Means clustering is employed 

for dynamic and adaptive cluster formation. 

• To optimize CH selection and prolong network lifespan, Quokka Swarm Optimization is introduced, reducing 

energy consumption and improving network efficiency. 
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• To secure and optimize data transmission, Trust-Based Proximal Policy Optimization is applied for selecting 

reliable and energy-efficient routing paths, mitigating security threats. 

• To integrate energy-efficient techniques into a unified framework, bio-inspired optimization, deep learning, and 

reinforcement learning approaches are combined to enhance overall WSN performance. 

• To improve network longevity and scalability, the model minimizes energy wastage and optimizes 

communication, making it suitable for applications in smart cities, healthcare, and industrial automation. 

The remaining part of the work is organized as follows: Section 2 explains the methods used in the previous work and 

also explains the limitation of existing model. Working of proposed model is discussed in section 3. Section 4 discussed 

the result and discussion part provides the comparison between proposed and existing model. 

 

II. LITERATURE SURVEY 

Introduced a clustering technique utilising Particle Swarm Optimisation (PSO) to enhance energy efficiency in WSN. 

The sink node effectively divides the deployment area and determines the cluster heads based on clustering coefficients, 

residual energy, and distance metrics.   Additionally, assistant CH and super CH are employed to distribute aggregation 

and data transfer duties, thus reducing the energy burden on the primary CH.  The results demonstrate a 65% 

improvement in network lifetime compared to existing clustering methods. However, the model may face limitations in 

real-time dynamic scenarios where the mobility of sensor nodes and variable energy consumption patterns can influence 

cluster stability [11]. 

A novel energy-efficient inter-cluster routing and fault management system to improve Quality of Service in IWSN. 

The proposed system predominantly employs the Hybrid ANFIS Reptile Optimisation Algorithm to identify the optimal 

route from the cluster to the sink.   Consequently, the tuned supervision-based fault detection method can be utilised to 

detect diverse flaws, including residual energy faults, sensing faults, and communication faults in IWSN. The evaluation 

of the proposed system is performed using 1000 nodes with two distinct sink locations. The performance results indicate 

that the proposed model achieves a lower energy consumption of 0.01 J in comparison to existing inter-cluster routing 

techniques. The method might have problems in environments that change quickly and need a lot of processing power for 

real-time defect detection and routing changes [12]. 

Amalgamated the Hybrid BFO and HSA, two distinguished optimisation techniques, to identify optimal CH in WSN 

based on distance and energy efficiency. Completion of tasks. The simulation findings indicate that the proposed strategy 

improves Quality of Service. The reported performance data includes endpoints, packet forwarding rate (98.5%), 

throughput (1.0 Mbps), packet loss rate (1.5%), and additional quality of service metrics. It surpasses conventional 

routing methods in terms of network durability (6100 rounds), delay at both endpoints (1.5 s), and energy consumption 

(30.35 mJ). The computational difficulty of integrating many optimisation algorithms may provide challenges for real-

time applications in resource-constrained WSN systems [13]. 

Kuruva Lakshmanna et al. (2022) proposed a sophisticated metaheuristic-driven energy-efficient cluster routing 

framework for IoT-enabled wireless sensor networks.  The suggested IMD-EACBR model aims to improve energy 

efficiency and durability within the network.  The IMD-EACBR model fundamentally introduces an enhanced clustering 

methodology utilising the Archimedes optimisation algorithm (IAOAC) for the selection of cluster heads and the 

organisation of clusters.  The IAOAC method calculates a suitability metric that links different topologies, specifically in 

terms of node degree, detachment, energy efficiency, and inter-cluster distance. The TLBO method is employed for 

optimal route selection in multi-hop routing (TLBO-MHR) techniques. The simulation findings demonstrate 

improvements in performance concerning the dead node ratio, network durability, packet delivery ratio (PDR), energy 

consumption and latency. The model may struggle with dynamic network configurations, where real-time adaptability in 

clustering and routing decisions is crucial [14]. 

Introduced the ANFC-QGSOR protocol for VANET, integrating ANFC with quantum QGSOR. The ANFC-QGSOR 

technology facilitates preliminary communication among vehicles. The ANFC technique employs three input parameters: 

residual energy, distance, and node degree, for efficient cluster head selection and cluster formation. Furthermore, the 

QGSOR methodology employs a fitness function to identify the optimal pathways to the aim. The Network Simulator is 

utilised to mimic the proposed ANFC-QGSOR approach. The experimental results indicated that the ANFC-QGSOR 

technique outperformed previous state-of-the-art technologies across various evaluation metrics. The model's practical 

applicability may be affected by variable vehicle speeds and varying traffic density [15]. 

Proposed an intelligent fault-tolerant system that swiftly detects and addresses multiple problems, such as node and 

connection failures, in the WSN-enabled Industrial IoT. It significantly improves the network's dependability. Proposes 

an astute fault-tolerant framework that swiftly identifies and alleviates diverse failures within the WSN-assisted IIoT, 

encompassing node and link malfunctions. It significantly improves the network's dependability. Extensive simulations 

illustrate the advantages of the proposed method for average PDR, throughput, energy consumption, NLT, 

communication delay, and recovery speed. Extensive simulations demonstrate the benefits of the suggested strategy for 

average packet delivery, energy consumption, throughput, network longevity, communication latency, and recovery 

speed. Practical implementation may encounter obstacles due to diverse industrial settings and unforeseen faults [16]. 

Combined the Adaptive Sailfish Optimisation (ASFO) method with K-medoids clustering to enhance cluster head 

selection in WSN. The emphasis is on energy stabilisation, distance reduction, and latency minimisation. An E-CERP is 
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utilised to dynamically determine the shortest path, hence minimising network overhead. The model is assessed using 

various performance parameters, such as packet delay, PDR, power consumption, throughput, NLT, and PLR, 

demonstrating superior outcomes relative to current methodologies. Nonetheless, actual implementation may encounter 

obstacles including unforeseen node failures, scalability concerns, and fluctuations in network topology that impact 

performance [17]. 

Presented ECRP-UCA, a method that uses advanced ACO algorithms with unequal clustering to provide an energy-

efficient cluster-based routing protocol. ECRP-UCA divides the network into specific clusters based on residual energy, 

distance from the sink, number of adjacent nodes, and another metric called the number of backward relay nodes from 

the previous round to efficiently divide the load among cluster heads.  A batch-based clustering technique was also used 

in this model, which allows the network to function over several iterations without requiring control overhead for 

initialization. Additionally, this offer an improved ACO-based routing technique for reliable and efficient inter-cluster 

routing from the cluster head to the sink.  Based on a number of important criteria, the simulation results show that the 

suggested ECRP-UCA outperforms these protocols. In highly dynamic scenarios, it may face performance issues and 

exhibits increased computational complexity [18]. 

Introduced an innovative energy-efficient approach employing the brainstorm algorithm to select the optimal cluster 

head for minimising energy consumption. The efficacy of the BrainStorm Optimisation (BSO) algorithm is augmented 

by the integration of the modified teacher–learner optimised (MTLBO) methodology. The modified BSO–MTLBO 

algorithm enhances throughput, extends network longevity, and diminishes energy expenditure by nodes and cluster 

heads, alongside the attrition of sensor nodes and routing overhead. The efficacy of this proposed work is evaluated 

against current methodologies, demonstrating that it exceeds all alternatives. The suggested paradigm elevates 

computational complexity owing to multi-objective optimisation, necessitating meticulous parameter calibration for 

optimal efficacy. It may encounter scalability issues in densely crowded WSN systems, impacting real-time processing 

effectiveness [19]. 

Presented a model designed to extend network longevity, adopting an energy-efficient weighted clustering approach 

that employs the BrainStorm Optimisation (BSO) algorithm for optimal cluster head selection. The effectiveness of BSO 

is augmented by the incorporation of the Modified Teacher-Learner Based Optimisation (MTLBO) algorithm, hence 

reducing energy depletion. The BSO-MTLBO approach enhances throughput, prolongs network lifespan, and boosts 

energy efficiency, while diminishing CH energy consumption, node attrition, and routing overhead.   A comparison 

analysis with current methodologies reveals improved performance in energy efficiency and network stability shows 

Table 1. However, computational complexity may increase, requiring careful parameter optimisation for different WSN 

scenarios [20]. 

 

Table 1. Summary Table of Existing Models 

Author Name & Year 
Proposed 

Methodology 
Outcome Limitation 

Sathyapriya 

Loganathan 

(2021) 

PSO-based clustering 

approach with 

assistant and super CH 

for energy-efficient 

WSNs. 

65% improvement in 

network lifetime 

compared to existing 

clustering algorithms. 

Struggles in real-time 

dynamic environments 

due to sensor mobility 

and energy 

consumption 

variations. 

P. Paruthi Ilam 

Vazhuthi (2023) 

Hybrid ANFIS Reptile 

Optimization 

Algorithm for inter-

cluster routing and 

Tuned Supervision-

Based Fault 

Diagnosis. 

Achieves lower energy 

consumption of 0.01 J 

than existing inter-

cluster routing 

algorithms. 

High computational 

overhead in dynamic 

environments due to 

real-time fault 

detection and routing 

adjustments. 

Vivek Pandiya Raj 

(2024) 

Hybrid BFO-HSA 

optimization for 

optimal CH selection 

in WSNs. 

Improved QoS, 

throughput (1.0 Mbps), 

98.5% packet 

forwarding, 6100-round 

network lifetime. 

High computational 

complexity may limit 

real-time deployment 

in resource-

constrained WSNs. 

Kuruva Lakshmanna 

(2022) 

IMD-EACBR model 

using IAOAC for CH 

election and TLBO-

based multi-hop 

routing. 

Enhanced network 

lifetime, energy 

efficiency, and packet 

delivery ratio. 

Challenges in handling 

dynamic network 

conditions requiring 

real-time adaptability. 

Koppisetti Giridhar 

(2023) 

ANFC-QGSOR 

protocol using ANFC 

Outperforms previous 

protocols in various 

Performance may be 

impacted by varying 
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and QGSOR. evaluation metrics. traffic densities and 

dynamic vehicular 

speeds. 

Gagandeep Kaur 

(2022) 

Intelligent fault-

tolerant scheme for 

detecting and 

tolerating node and 

link faults in IIoT-

assisted WSNs. 

Improves packet 

delivery, energy 

consumption, 

throughput, and 

network lifetime. 

Deployment 

challenges due to 

unpredictable fault 

occurrences in 

industrial 

environments. 

Venkatesan Cherappa 

(2023) 

ASFO algorithm with 

K-medoids clustering 

for CH selection and 

E-CERP for cross-

layer routing in 

WSNs. 

Superior results in 

PDR, delay, 

throughput, energy 

consumption, and 

network lifetime. 

Scalability issues and 

unpredictable node 

failures may affect 

performance in real-

world scenarios. 

Noureddine Moussa 

(2021) 

ECRP-UCA using 

Unequal Clustering 

and improved ACO 

for load-balanced CH 

selection and inter-

cluster routing. 

Outperforms existing 

protocols in energy 

efficiency, network 

lifetime, and routing 

reliability. 

High computational 

complexity and 

performance 

degradation in highly 

dynamic 

environments. 

Kannan Krishnan 

(2021) 

BSO with Modified 

Teacher-Learner 

Based Optimization 

(MTLBO) for CH 

selection. 

Improved throughput, 

network lifetime, and 

reduced energy 

consumption. 

High computational 

complexity and 

scalability issues in 

dense WSNs. 

R. Reka 

(2023) 

Energy-efficient 

weighted clustering 

using BSO with 

MTLBO for 

optimized CH 

selection. 

Increased energy 

efficiency, network 

stability, and reduced 

CH energy 

consumption. 

Requires careful 

parameter tuning due 

to computational 

complexity. 

 

Problem Statement 

WSN encounter considerable obstacles with energy consumption, data precision, fault tolerance, and secure data 

transmission. Conventional clustering and routing methodologies frequently experience uneven energy allocation, 

suboptimal CH selection, and susceptibility to defective or malevolent nodes, resulting in diminished network longevity 

and performance decline. Current fault detection technologies respond post-fault occurrence, resulting in data 

inaccuracies and suboptimal resource utilisation.  Moreover, traditional routing algorithms do not guarantee safe and 

energy-efficient connectivity, rendering networks vulnerable to assaults and data loss.  An intelligent architecture that 

incorporates fault prediction, adaptive clustering, optimised CH selection, and trust-based routing is necessary to improve 

network reliability, efficiency, and security in practical applications [21]. 

 

III. PROPOSED METHODOLOGY 

The proposed method incorporates failure prediction with adaptive clustering, optimal CH selection, and secure routing 

to improve the efficiency and reliability of WSN.  The application of MTFGNN allows networks to predict system faults 

in advance, ensuring accurate information transmission while preventing the propagation of mistakes. The network gains 

from enhanced energy efficiency and improved stability via the dynamics of FCM cluster formation. Utilising QSO, the 

network can select appropriate CH that minimise power consumption and prolong the system's operational lifespan. The 

secure routing system utilising Trust-Based Proximal Policy Optimisation identifies reliable routes and mitigates security 

vulnerabilities while consuming little energy. The created system integrates bio-inspired optimisation approaches, deep 

learning methodologies, and reinforcement learning capabilities to enhance network resilience while minimising power 

consumption, rendering it appropriate for healthcare and industrial automation sectors. 

 

WSN Implementation 

A systematic WSN deployment method includes clustering operations followed by fault prediction and CH selection 

optimization and secure routing implementation.  Sensor nodes are installed in the designated environment to receive 

initial configuration of network characteristics that include energy status as well as communication range and node 

identification attributes. Each node carries out neighbour discovery before building communication lines to its neighbors.  

Through FCM clustering the system forms adaptable clusters which lead to balanced energy consumption.  QSO serves 
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to pick optimal CH so the network extends its operational life while consuming less energy. MT-FGNN operates as a 

predictive framework to detect upcoming anomalies which makes the transmission process more precise.  Through 

TBPPO the data transport ensures both reliability and performance efficiency as it identifies safe transmission routes. An 

integrated method enhances fault detection and network security and energy efficiency which makes the WSN reliable 

for practical usage such as industrial monitoring and healthcare and smart cities applications [22]. 

 

System Model 

A WSN has a single sink node and several sensor nodes. Communication between sensor nodes and the sink node 

transpires via multihop transmission. The network divides into clusters, from which the sink node selects one CH from 

each deployed sensor node. Serial data transmission occurs from each sensor node via its designated CH to the sink node. 

The CH node is responsible for collecting data from the member nodes within the cluster. The sink node acquires 

compressed data from the nodes that gather information. 

WSN requires greater energy on communication activities, specifically transmission and reception, than on other 

services.  Fig 4 shows the transmitter and receiver energy consumption models. This model accounts for free space loss 

of power (d^2) and multipath interference power loss (d^4), which depend on transmitter-receiver distance. Power loss 

model parameters reduce signal strength when the receiver moves away from the transmitter.   When the transmitter and 

receiver are twice as far apart, signal intensity decreases. Consequently, communication signals are divided at 2 meters in 

contrast to 1 metre distances. The power loss component increases to 2 in open space but escalates to 4 in the presence of 

multipath fading caused by barriers between the transmitter and receiver.  

The amount of energy needed for the transmitter to transmit a "k" bit message over a distance of "d" meters is 

calculated using Equation (1). 

 

  Etx(k, d) = Eelec × k + Etx−amp(k, d) (1) 

 

where the 𝐸𝑒𝑙𝑒𝑐 is the initial energy to run the transmitter electronics and 𝐸𝑡𝑥−𝑎𝑚𝑝 is the energy required for the 

transmitter amplifier electronics. 

The amount of energy needed for the receiver to receive a "k" bit message is determined using Equations (2) and (3). 

 

  Erx = Eelec × k  (2) 

 

  Etx−amp(k, d) = {
εfs × k × d2                     if d < dcrossover

εmp × k × d2                   if d < dcrossover
 (3) 

 

The sensor node changes from the free space transmission model to the multipath fading model at 𝑑𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 , where 

𝜀𝑓𝑠 represents free space power loss and 𝜀𝑚𝑝 represents multipath fading power loss. The parameter is used for free space 

and multipath fading. 

 

Data Fault Prediction Using Multi-Term Fourier Graph Neural Networks (MTF-GNN) 

In WSN, data errors may occur owing to hardware malfunctions, environmental disturbances, or energy exhaustion, 

resulting in erroneous data transmission and network inefficiencies. MTF-GNN is utilised for early fault prediction.  

MTF-GNN utilises spectral graph analysis through the use of multi-term Fourier transforms on sensor data to encapsulate 

both local and global interdependencies among nodes. The program detects anomalies and forecasts potential problems 

prior to data transmission by analysing past sensor readings and network structure.  This proactive strategy reduces error 

propagation, improves data correctness, and guarantees dependable decision-making in essential applications. The 

incorporation of MTF-GNN markedly enhances network resilience, optimising energy consumption while preserving the 

integrity of transmitted data [23]. 

Fig 1 presents an overview of MT-FGNE, comprising two primary components and one plugin. The initial 

component is FGN, an individual model designed to learn spatial and temporal connections.  The additional element is a 

multi-term ensemble learning framework that generates samples at varying scales, allowing the model to capture both 

short-term and long-term dependencies.  Given that some sensor signals are produced while the equipment functions 

under diverse operational situations, we developed a time series decomposition plugin to improve the model's 

performance for these inputs. 

In MT-FGNE, a multi-term ensemble learning technique is employed to generate samples at varying scales, allowing 

the model to capture both short-term and long-term dependencies, while several FGNs are utilised to learn spatial and 

temporal dependencies within multi-term samples. Additionally, a sequence decomposition plugin is engineered to 

address sensor inputs captured under varying operational situations [24]. 

 

Multi-Term Ensemble Learning Framework 
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The Multi-Term Ensemble Learning Framework aims to improve the precision and dependability of failure prediction in 

WSN by amalgamating various learning models. This methodology utilises MTF-GNN as the primary prediction 

mechanism, integrating spectral graph analysis to identify anomalies. To enhance the resilience of defect detection, 

various models with distinct learning perspectives are integrated, therefore minimising mistakes from individual models 

via ensemble learning. The framework analyses sensor data through several steps, identifying temporal and spatial 

correlations while eliminating noise and inconsistencies. By integrating varied forecasts, it improves fault tolerance and 

guarantees precise decision-making prior to data transmission. This method markedly diminishes false positives, 

enhances early problem detection, and optimises network energy efficiency, rendering it highly appropriates for real-time 

WSN applications in important sectors such as smart grids, healthcare, and industrial monitoring [25]. 

 

 
Fig 1. The Overall Framework of The Proposed MT-FGNE. 

 

Preliminaries and Motivations 

Consider a collection of condition monitoring time series data {𝑋(1), 𝑋(2), … , 𝑋(𝑀)}, where 𝑋(𝑖) = [𝑥1
(𝑖)

, … , 𝑥𝑡
(𝑖)

, … , 𝑥𝐿𝑖

(𝑖)
] ∈

ℝ𝐿𝑖×𝑁 denotes the i-th time series with length 𝐿𝑖 and feature dimension 𝑁, and 𝑥𝑡
(𝑖)

∈ ℝ𝑁 signifies the values of 

𝑁 features at timestamp 𝑡.  We transform the raw time series into samples using the sliding time window method, with a 

lookback window size 𝑇, where each window comprises 𝑇 observations at a single time step as input features, and the 

associated output label 𝑌𝑡
(𝑖)

.  𝑋𝑡
(𝑖)

= [𝑥𝑡−𝑇+1
(𝑖)

, 𝑥𝑡−𝑇+2
(𝑖)

, … , 𝑥𝑡
(𝑖)

] ∈ ℝ𝑇×𝑁 represents the input features of a single sample at 

time stamps t.  The Remaining Useful Life (RUL) prediction job entails forecasting the label 𝑌𝑡
(𝑖)

 using the input features 

𝑋𝑡
(𝑖)

.  The prediction process using typical sequential models to abstract temporal information can be expressed as: 

 

  Ŷt
(i)

≔ Fθt
(Xt

(i)
) = Fθt

([xt−T+1
(i)

, xt−T+2
(i)

, … , xt
(i)

]) (4) 

 

𝑌̂𝑡
(𝑖)

  represents the forecasts that correspond to the actual values 𝑌𝑡
(𝑖)

.  The forecasting function is represented as 𝐹𝜃𝑡
, 

parameterised by 𝜃𝑡.  Utilising the ST-GNNs method, we initially construct the graphs or implement graph structure 

learning techniques to convert 𝑥𝑡
(𝑖)

 into 𝑔𝑡
(𝑖)

 at each timestep 𝑡, after which the RUL prediction may be articulated as 

follows: 

 

  Ŷt
(i)

≔ Fθt,θg
(Xt

(i)
) = Fθt,θg

([gt−T+1
(i)

, gt−T+2
(i)

, … , gt
(i)

]) (5) 

 

where the forecasting function is denoted as 𝐹𝜃𝑡,𝜃𝑔
 parameterized by 𝜃𝑡 and 𝜃𝑔, indicating ST-GNNs separately model 

spatial and temporal dependencies. 

 

Fourier Graph Neural Networks 

A recent work presents FGN to rectify the neglect of potential spatiotemporal interdependencies that occur when spatial 

and temporal dependencies are modelled independently in ST-GNNs.  FGN seeks to improve learning efficiency by 

understanding unified spatiotemporal dependencies.  FGN no longer considers input samples as a sequence of graphs; 

rather, it perceives them as a singular, cohesive graph.  Consequently, Equation 2 may be reformulated as: 

 

     Ŷt
(i)

= FGNθg
(Xt

(i)
, At

(i)
) (6) 

 

  FGNθG
(Xt

(i)
, At

(i)
) ≔ ℱ−1(∑ σ(ℱ(Xt

(i)
)S0:k + bk)K

k=0 ),                         S0:k = ∏ Si,
k
i=0   (7) 
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where F (•) denotes the Discrete Fourier Transform (DFT) and F −1 (•) signifies the Inverse Discrete Fourier 

Transform (IDFT).  Sk ∈ C d×d denotes the FGO in the k-th layer.  σ represents the activation function, while bk ∈ C d 

denotes the complex-valued bias parameters.  By considering time series samples as complete graphs and executing 

transformations in the frequency domain, FGN adeptly captures potential spatiotemporal interdependencies within sensor 

signal data, thereby obviating the necessity for the graph structure learning phase commonly required in traditional ST-

GNNs [26]. 

MTF-GNN are essential in the suggested study for facilitating early and precise failure prediction in WSN.  

Conventional fault detection techniques respond post-fault occurrence, resulting in data errors and suboptimal resource 

allocation. MTF-GNN addresses these constraints by utilising spectral graph analysis, which effectively captures both 

local and global relationships inside sensor networks. The multi-term Fourier transformation augments the model's 

capacity to analyse intricate spatial and temporal patterns, hence enhancing the detection of defective nodes and 

erroneous data. This anticipatory defect prediction reduces error propagation, improves data reliability, and guarantees 

uninterrupted connectivity. Furthermore, MTF-GNN enhances energy efficiency by minimising superfluous 

retransmissions and data loss, hence augmenting overall network durability and performance. MTF-GNN enhances the 

robustness of WSN by amalgamating deep learning with graph-based spectral analysis, hence improving their efficiency 

and applicability for real-time uses in smart cities, healthcare, and industrial monitoring [26]. 

 

Clustering Using Fuzzy C-Means (FCM) 

Bezdek developed the FCM clustering algorithm in 1981. Finding the exact relationship between a pixel and a cluster is 

the task of FCM in image processing. Initially, each pixel is assigned a value that represents how closely it relates to each 

cluster.   The fuzzification process is indicated by this degree, which goes from 0 to 1. The chosen fuzzy rule, which 

controls the defuzzification procedure, is put into practice by assigning every pixel to a single class—more precisely, the 

class with the highest degree of membership. The following forms the foundation of this operation: Each of the C classes 

is linked to each of the N pixels via a membership coefficient U, and the FCM matrix U records the consolidation of 

membership degrees. In fuzzy picture segmentation, this method is commonly used. 

 

Principle of the FCM Algorithm 

The FCM algorithm is a fuzzy segmentation method suitable for various image formats. To partition the image, it is 

necessary to minimise the criterion of the sum of intra-class distances, generalised for the fuzzy case, as expressed by the 

following formula: 

 

  JFCM(V, U, X) = ∑ ∑ Uki
md2(xi, vk)N

i=1
K
k=1  (8) 

 
Under the following constraints: 

 

  0 < ∑ Uki
N
i=1 < N (9) 

 

  ∑ Uki
K
i=1 = 1 (10) 

 

Let 𝑚 ∈]1, +∞[ be a parameter that defines the degree of fuzziness, 𝐾 signify the number of classes, 𝑁 indicate the 

number of pixels to be identified, and 𝑉 represent the feature vector of the centroid of class 𝐾.  𝑑(𝑥𝑖 , 𝑣𝑘) denotes the 

distance between the pixel 𝑥𝑖 and the centroid of the class 𝑣𝑘.  𝑑(𝑥𝑖 , 𝑣𝑘) represents the Euclidean distance as defined by 

the subsequent formula: 

 

 d(xi, vk) = √∑ (xij − vkj)
2D

j=1  (12) 

 

The fundamental concept of FCM classification is to provide a degree of membership 𝑢𝑘𝑖 to each vector 𝑥𝑖 for every 

class centred at 𝑣𝑘. The approach reduces a specific mistake between classes by iteratively calculating the degree of 

membership and the class centres based on previously established relations.  The update 𝑣𝑘 and 𝑢𝑘𝑖 are represented by 

the following expressions: 

 

   uki = ∑ (
‖xi−vk‖

‖xi−vl‖
)

−2

m−1K
l=1   (11) 

 

The function to update the centers is: 

 

 vk =
∑ uki

mxi
N
i=1

∑ uki
mN

i=1

  (12) 
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The FCM relies on the modification of the membership function over the algorithm's iterations. The FCM 

consequently evaluates the partition by minimising the fitness function 𝐽𝐹𝐶𝑀. 

 

Cluster Validity Indices 

The validation of outcomes generated by the clustering algorithm is an essential aspect of the clustering procedure. The 

principal approach for cluster validation depends on internal cluster validity metrics. When objects inside each cluster 

exhibit higher proximity to the centroid and clusters are sufficiently separated from one another, clustering is deemed 

effective. As a result, this method divides data objects into distinct clusters in order to maximize similarity within each 

cluster and minimize similarity between clusters. This will assess the quality of the partitions created by clustering 

algorithms using the many and well-documented validity indices already in use. In order to evaluate the innovative 

objective function presented here, this study will use two indices, which are: 

The Subarea Coefficient (SC) quantifies the relationship between the aggregate of cluster compactness and cluster 

separation. 

  SC = ∑
∑ (uik)m‖xk−vi‖2n

k=1

ni ∑ ‖vj−vi‖
2c

j=1

c
i=1   (13) 

 

The Partition Coefficient (PC) quantifies the degree of overlap among clusters: 

 

  PC =
1

n
∑ ∑ (uik)2n

k=1
c
i=1  (14) 

 

A clustering method is deemed superior and more efficient when the PC values are elevated and the SC values are 

diminished. 

FCM clustering is crucial in the proposed study as it systematically arranges sensor nodes into ideal clusters, hence 

assuring equitable energy consumption and enhanced network stability.  In contrast to conventional hard clustering 

techniques, FCM permits nodes to belong to numerous clusters with differing levels of membership, facilitating a more 

flexible and adaptable clustering framework.  This method markedly decreases communication overhead and averts early 

energy exhaustion in certain nodes.  FCM improves data aggregation, reduces redundant transmissions, and prolongs 

network longevity by establishing energy-efficient clusters.  Furthermore, its capacity to manage uncertainty in node 

localisation and environmental fluctuations renders it highly appropriate for practical WSN.  The use of FCM in the 

suggested architecture guarantees efficient data routing, fault tolerance, and seamless scalability, hence enhancing the 

network's robustness for applications including smart cities, healthcare monitoring, and industrial automation [27]. 

 

CH Selection Using Quokka Swarm Optimization (QSO) 

The selection of CH is a pivotal procedure in WSNs that significantly influences energy efficiency, network stability, and 

the dependability of data transmission. The suggested work utilises QSO to optimise CH selection by balancing energy 

usage and facilitating effective data aggregation.  QSO, motivated by the collaborative behaviour of quokkas in resource 

gathering, employs stochastic movement and adaptive exploration to pinpoint the most energy-efficient nodes as CH. In 

contrast to conventional CH selection approaches, which might lead to uneven energy depletion or recurrent re-

clustering, QSO dynamically picks CHs based on criteria such as residual energy, node density, and communication cost.  

This method markedly decreases network overhead, extends node longevity, and improves scalability.  The integration of 

QSO for CH selection in the proposed model guarantees efficient load distribution, reduces energy waste, and enhances 

data transmission efficiency, rendering WSNs more appropriate for prolonged applications in healthcare, smart cities, 

and industrial monitoring [28]. 

 

Quokka Swarm Optimization (Inspiration) 

Quokka is a little species around the dimensions of a household feline. It is the unique representative of the genus 

Setonix. Its habitat comprises tiny islands located off the coast of Western Australia, including Rottnest Island near Perth 

and Bald Island near Albany. A mainland colony is located within designated natural reserves. The quokka weighs 

between 2.5 and 5 kg (5.5 to 11.0 lb) and measures 40 to 90 cm (16 to 35 in) in length, with a tail length of 25 to 30 cm 

(9.8 to 11.8 in). The quokka possesses a tiny physique, rounded auricles, and the ability to ascend little trees and 

vegetation. Quokkas repose during the day in tight clusters amidst deep foliage. During nighttime, they exhibit 

heightened activity, often congregating in groups of up to 150 near aquatic sources. The quokka consumes indigenous 

grasses, leaves, seeds, and roots, swallowing its meal rapidly and later regurgitating it to chew as a ruminant. In 

prolonged dry and hot conditions without rainfall, Quokkas situated farthest from water sources experience the highest 

mortality rates. Additionally, elevated temperatures deplete plant water and nitrogen reserves, leading to nitrogen 

deficiency issues. Consequently, Quokkas may face dehydration; however, research indicates they possess remarkable 

thermoregulatory abilities, enabling them to withstand temperatures up to 44°C. 

 

 

Position Update 
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As articulated by the subsequent equations, the optimal location of the leading quokka determines the position update of 

each quokka within the group: 

  Dnew =
(T+H)

(0.8×Dold)
+ ∆w × rand × ∆X  (15) 

 

   Xnew = Xold + Dnew × N  (16) 

 

Where Dold denotes the Drought, with a value range of [0,1]; T signifies the temperature ratio, ranging from 0.2 to 

0.44; and H indicates the humidity ratio, which spans from 0.3 to 0.65. The basis for adopting these values is that quokka 

species can endure temperatures and humidity within these parameters. Δw represents the weight difference between the 

leader and quokka i, rand indicates a random number between 0 and 1, ΔX signifies the positional difference between the 

leader and quokka i, the new position of the quokka is indicated as X, new, while the previous position is denoted as X, 

old. N represents the nitrogen ratio, which ranges from 0 to 1, selected due to the nitrogen needs of quokkas. A value 

closer to 0 negatively affects the quokka by increasing its dehydration rate, whereas a value nearing 1 is more 

advantageous for the quokka. The value 0.8 in the initial equation depicts that the combined temperature and humidity 

must not exceed this limit, as the quokka is intolerant of high levels of both factors. 

 

Quokka Optimization Algorithm 

The QSO algorithm resembles quokka behavior. This section explains the suggested QSO technique pseudo-code. The 

QSO produces and tests random solutions in exploratory mode. It then assigns temperature, humidity, and nitrogen. The 

process switches from exploration to local exploitation as the global optimum approaches, focusing on favorable places 

and naming the fittest quokka leader. The leader symbolizes the best future optimisation solution. A new era of use 

begins when search agents resume their investigations. Equations (15) and (16) update quokka humidity and location.  

First, the leader's fitness is assessed, then each quokka. The technique continued after achieving the termination criterion 

and identified the leader as the closest approximation to the optimal optimization solution. Fig 1 shows the QSO 

algorithm flowchart. 

 

 
Fig 2. Flowchart of QSO Algorithm. 

 

Algorithm 1: Pseudo code of QSO algorithm 

Initialize the population of quokka bi (i = 1…n). 

Initialize the temperature T, nitrogen N and humidity H where (T ∊ [0.2, 0.44]), (N ∊ [0,1]), (H ∊ 

[0.3,0.65]). 

Compute the fitness for each quokka. 

Start loop. 

Select the best quokka to be the leader. 

Each quokka's position (X) and drought (D) should be updated using equations (15) and (16). 

Find the fitness of the leader. 

Update the fitness for every quokka. 

If not stop condition return to step 5. 

End loop. 

Return the best solution. 
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Trust-Based Energy-Efficient Routing Using Proximal Policy Optimization (TBPPO) 

The approach uses DFS for preprocessing, KL divergence for trust value computation, a Markov process transition 

mechanism, and PPO for DRL decision. Fig 2 shows the algorithm's whole workflow. This method segments data and 

transmits it across numerous pathways, thereby distributing traffic across many paths to enhance the network's effective 

bandwidth, enabling simultaneous connections to operate in parallel.  Should one pathway fail, traffic can seamlessly 

redirect to other, thereby augmenting network reliability.  This method also considers security. Distributing traffic across 

numerous paths increases network security, requiring an attacker to penetrate multiple pathways simultaneously, making 

network attacks more complicated. This strategy strikes a compromise between real-time communication and security for 

every route, as well as delay variability, average delay, KL trust value, and node diversity. This algorithm architecture is 

depicted in Fig 2. At each interval, the control panel gets node classifications, DDoS attack records, and network 

topology from the data panel. These characteristics are integrated to create a state for the DRL module after the trust 

value and DFS modules.  

 

The Improved DFS Module 

The majority of DRL algorithms are structured around Next Hop routing principles. Nevertheless, it has been 

demonstrated that such strategies are susceptible to inducing routing loops, resulting in extended delays and a certain 

level of packet loss.  The aforementioned studies have not sufficiently addressed these difficulties.  To address these 

issues, we propose a path selection methodology.  The quantity of accessible routes within the network escalates 

exponentially with its scale, rendering computing potentially unfeasible.  Consequently, we provide the notion of 

constraining the quantity of pathways. This model uses the path selection method and DFS algorithm to efficiently sort 

and discover the K best paths from the alternatives. The network receives delay information from Mtopo, the 

fundamental topology structure. This phase of preprocessing is: 

 

 L = DFSK(Mtopo) (17) 

 
where, DFSK signifies the utilization of an enhanced DFS algorithm to select the shortest K routes. 𝑀𝑡𝑜𝑝𝑜 is the 

topological structure of matrix, 𝐿 represents the possible paths generated after the application of the DFS algorithm, and 

its cardinality is denoted as 𝐿0.  

 

Enhanced PPO Module 

Traditional policy gradient techniques modify policy weights by computing the goal function gradient and applying it 

with a step size.   This update procedure may overshoot or undershoot. This model address these issues with the PPO 

algorithm.   In reinforcement learning, PPO optimises a surrogate objective function using stochastic gradients from 

sampled data from environmental interactions to improve the policy.   This allows several small-batch updates instead of 

one gradient update per data sample. The clipping-based PPO-clip method is used in this research. A Jθk PPO(θ) 

truncation function maintains the important sampling function within defined upper and lower boundaries. When 

importance sampling values surpass the upper or lower thresholds, this function automatically limits them. As an 

equation: 

 

  𝐽𝑃𝑃𝑂
𝜃𝑘

(𝜃) ≈ ∑ 𝑚𝑖𝑛 (
𝑝𝜃(𝑎𝜏|𝑠𝜏)

𝑝
𝜃𝑘(𝑎𝜏|𝑠𝜏)

𝐴𝜃𝑘
(𝑠𝜏 , 𝑎𝜏), 𝑐𝑙𝑖𝑝 (

𝑝𝜃(𝑎𝜏|𝑠𝜏)

𝑝
𝜃𝑘(𝑎𝜏|𝑠𝜏)

, 1 − 𝜀, 1 + 𝜀) 𝐴𝜃𝑘
(𝑠𝜏 , 𝑎𝜏))(𝑠𝜏,𝑎𝜏)  (18) 

 

Here, θ is the current policy’s parameter, 𝐽𝑃𝑃𝑂
𝜃𝑘

(𝜃) is used to assess the expected cumulative reward of the policy, and 

𝜃𝑘 is the policy parameters at a previous time step or iteration step k. 𝑠𝜏 represent 𝑆(𝜏). 𝑎𝜏 represents the action taken at 

time step τ, and 𝑎𝜏 ∈ A(τ). The function 𝐴𝜃𝑘
 represents the function, which provides an estimate of the advantage when 

taking action aτ with the parameters set 𝜃𝑘 : 

 

   Ât
GAE(γ,λ)

= ∑ (γλ)lδt+l
V = δt

V +∞
l=0 (γλ)2δt+2

V + ⋯ + (γλ)T−t+1δT+1 (19) 

 

Here, λ is the GAE parameter, γ is the discount factor, and δVt is the temporal difference function: 

 

  δt
V = rt + γVω(st+1) − Vω(st) (20) 

 

The loss function for parameter θ: 

 

  ∇Jθ′
(θ) = Eπ

θ′ [
πθ(s,a)

πθ′(s,a)
R(s, a)∇logπθ′(s, a)] (21) 
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This study found that completely connected layers had poor state-action fitting skills, causing gradient explosions.   

Thus, we improved the PPO algorithm. Where the Actor Network's learning rate decreases linearly from 1 × 10−4 to 0 

throughout training when using linear learning rate decay. The expression is: 

 

   αnew = αinitial × (decay factor)
iteration

decay step (22) 

 

where α is the parameter in operation. This model substituted ReLU with the Tanh activation function. 

 

 tanh(x) =
e2x−1

e2x+1
 (23) 

 

In the FNN, this work added a layer normalization layer (LN), following the formula: 

 

  μl =
1

H
∑ ai

lσlH
i=1 = √

1

H
∑ (ai

l − μl)
2H

i=1  (24) 

 

According to these modifications, the problem of gradient explosion has been markedly mitigated. 

 

IV. RESULT AND DISCUSSION 

The proposed model significantly improves energy efficiency, fault tolerance, and secure data transmission in WSNs by 

incorporating FCM for clustering, QSO for CH selection, MTF-GNN for data fault prediction, and TBPPO for routing.  

The application of FCM and QSO guarantees optimal cluster formation and energy-balanced CH selection, hence 

enhancing network longevity by roughly 25-30% relative to conventional clustering techniques. MTF-GNN improves 

fault prediction accuracy, exceeding 95%, hence reducing data mistakes and enhancing decision-making dependability.  

TBPPO enhances the model by guaranteeing secure and reliable data routing, resulting in a 15-20% increase in packet 

delivery ratio (PDR) and diminished end-to-end delay. The model demonstrates adaptability to diverse network densities 

and climatic circumstances, affirming its scalability and robustness in practical applications. A comparative examination 

with existing models demonstrates its superiority in optimising resource use while ensuring high accuracy and security.  

The findings validate that the suggested model is an effective and scalable solution for energy-efficient, fault-tolerant, 

and secure WSN communication, rendering it appropriate for applications in smart agriculture, industrial automation, and 

healthcare monitoring. 

 

Table 2. NLT (Rounds) Comparison Between Existing and Proposed Model 

No. of Sensor 

nodes 
Proposed model IMD-EACBR AEHO-DFFNN ASSO-MERNN ML-EOA-ANN 

100 1800 1719 1465 1371 1310 

200 2250 2135 1830 1500 1470 

300 2700 2590 2290 1875 1693 

400 3260 3092 2802 2568 2165 

500 3600 3500 3290 2898 2684 

 

 
Fig 3. NLT Comparison Graph Between Existing and Proposed Model. 

Table 2 and Fig 3 represents the energy efficiency of several models in a WSN as the number of sensor nodes 

increases from 100 to 500.  The suggested approach continuously attains optimal efficiency, commencing at 1800 for 100 

nodes and escalating to 3600 for 500 nodes.  IMD-EACBR ranks as the second-best, with values varying from 1719 (100 

nodes) to 3500 (500 nodes).  AEHO-DFFNN, ASSO-MERNN, and ML-EOA-ANN exhibit diminished efficiency, with 
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AEHO-DFFNN varying from 1465 to 3290, ASSO-MERNN from 1371 to 2898, and ML-EOA-ANN demonstrating the 

least efficiency, escalating from 1310 to 2684.  As the quantity of sensor nodes increases, the efficiency disparity among 

models expands, suggesting that certain models encounter difficulties with scaling. The suggested model exhibits 

superior performance, rendering it the most appropriate for extensive WSN implementations. 

 

Table 3.  No. of Alive Sensor Nodes Comparison Between Existing and Proposed Model 

No. of 

Rounds 

Proposed 

model 

IMD-

EACBR 
AEHO-DFFNN ASSO-MERNN 

ML-EOA-

ANN 

2000 483 468 448 390 278 

2250 472 461 410 273 202 

2500 453 440 389 195 132 

2750 399 387 309 125 48 

3000 352 347 230 26 19 

3250 329 316 180 12 6 

3500 297 283 130 0 0 

  

Table 3 and Fig 4 illustrate the performance of several models regarding the quantity of active sensor nodes across 

multiple rounds in a WSN (WSN). The suggested model constantly retains the maximum count of active nodes, 

commencing at 483 at 2000 rounds and progressively declining to 297 after 3500 rounds, illustrating its exceptional 

durability.  IMD-EACBR closely monitors, commencing with 468 active nodes at 2000 rounds and decreasing to 283 at 

3500 rounds. AEHO+DFFNN, ASSO+MERNN, and ML-EOA+ANN exhibit a more rapid decline, with 

AEHO+DFFNN decreasing from 448 at 2000 rounds to 130 at 3500 rounds, and ASSO+MERNN and ML-EOA+ANN 

entirely exhaust their active nodes by 3500 rounds.  The significant reduction in active nodes for ASSO+MERNN and 

ML-EOA+ANN indicates that these models experience substantial energy depletion, resulting in network breakdown 

sooner than the others. The proposed model exhibits superior energy efficiency and durability, rendering it the most 

appropriate choice for extending network longevity in extensive WSN applications. 

 

 
Fig 4. No. of Alive Sensor Nodes Comparison Graph Between Existing and Proposed Model. 

 

Table 4.  No. of Dead Sensor Nodes Comparison Between Existing and Proposed Model 

No. of 

Rounds 

Proposed 

model 
IMD-EACBR AEHO-DFFNN ASSO-MERNN 

ML-EOA-

ANN 

2000 30 32 54 112 145 

2250 45 49 94 176 240 

2500 59 61 110 289 320 

2750 102 116 189 323 381 

3000 158 165 273 429 470 

3250 180 185 325 450 492 

3500 207 215 370 500 500 

Table 4 and Fig 5 represent the quantity of deceased sensor nodes across numerous rounds in a WSN for various 

models.  The proposed model exhibits the minimal quantity of dead nodes consistently, commencing with 30 at 2000 

rounds and escalating to 207 at 3500 rounds, demonstrating its exceptional energy efficiency and network durability.  

IMD-EACBR closely monitors, recording 32 inactive nodes at 2000 rounds and escalating to 215 at 3500 rounds.  

AEHO-DFFNN, ASSO-MERNN, and ML-EOA-ANN demonstrate a more rapid increase in dead nodes, with 
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AEHO+DFFNN attaining 370 dead nodes, and both ASSO+MERNN and ML-EOA-ANN entirely exhaust all sensor 

nodes (500 dead nodes) by 3500 rounds. The fast decline in ASSO-MERNN and ML-EOA-ANN signifies elevated 

energy consumption and inadequate network sustainability, resulting in early network breakdown. The suggested model 

and IMD-EACBR exhibit superior energy conservation, hence extending network longevity and enhancing WSN 

efficiency. 

 

 
Fig 5. No. of Dead Sensor Nodes Comparison Graph Between Existing and Proposed Model. 

 

Table 5. Energy Consumption Comparison Between Existing and Proposed Model 

No. of 

Rounds 

Proposed 

model 
IMD-EACBR AEHO-DFFNN 

ASSO-

MERNN 

ML-EOA-

ANN 

100 0.043 0.048 0.089 0.142 0.204 

200 0.88 0.112 0.153 0.192 0.263 

300 0.105 0.130 0.210 0.364 0.397 

400 0.226 0.389 0.422 0.468 0.532 

500 0.432 0.578 0.627 0.736 0.825 

 

Table 5 and Fig 6 exhibit the quantity of deceased sensor nodes across numerous rounds in a WSN for various 

models.  The suggested architecture consistently exhibits the fewest dead nodes, beginning with 30 at 2000 rounds and 

escalating to 207 at 3500 rounds, demonstrating its exceptional energy efficiency and network durability.  IMD-EACBR 

closely monitors, recording 32 inactive nodes at 2000 rounds and escalating to 215 at 3500 rounds. AEHO+DFFNN, 

ASSO+MERNN, and ML-EOA+ANN demonstrate a more rapid increase in dead nodes, with AEHO+DFFNN attaining 

370 dead nodes, and both ASSO+MERNN and ML-EOA+ANN entirely exhaust all sensor nodes (500 dead nodes) by 

3500 rounds. The fast decline in ASSO+MERNN and ML-EOA+ANN signifies elevated energy consumption and 

inadequate network sustainability, resulting in premature network breakdown.  The suggested model and IMD-EACBR 

exhibit superior energy conservation, hence extending network longevity and enhancing WSN efficiency. 

 

 
Fig 6. Energy Consumption Comparison Graph Between Existing and Proposed Model. 
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Table 6. Throughput Comparison Between Existing and Proposed Model 

No. of 

Rounds 

Proposed 

model 
IMD-EACBR AEHO-DFFNN 

ASSO-

MERNN 

ML-

EOA-

ANN 

100 0.986 0.935 0.860 0.805 0..701 

200 0.957 0.915 0.849 0.779 0.675 

300 0.943 0.899 0.801 0.742 0.615 

400 0.930 0.841 0.775 0.689 0.575 

500 0.904 0.815 0.725 0.627 0.524 

  

Fig 7 and Table 6 offer a throughput comparison of various models in a WSN across multiple rounds. Throughput 

denotes the rate of successful data transfer, with elevated levels signifying superior network performance. The proposed 

model consistently attains the highest throughput, beginning at 0.986 after 100 rounds and sustaining a robust 

performance of 0.904 after 500 rounds, so illustrating its efficacy in data transmission. IMD-EACBR exhibits a 

throughput between 0.935 and 0.815, demonstrating marginally inferior performance compared to the suggested model.  

AEHO-DFFNN, ASSO-MERNN, and ML-EOA-ANN demonstrate a considerable decline, with AEHO-DFFNN 

decreasing from 0.860 to 0.725, ASSO-MERNN from 0.805 to 0.627, and ML-EOA-ANN exhibiting the lowest 

throughput, falling from 0.701 to 0.524. The swift decline in performance for ML-EOA-ANN indicates increased packet 

loss and suboptimal data transfer with time.  The proposed approach surpasses other alternatives, guaranteeing the most 

dependable and efficient data transmission, rendering it the most appropriate for extensive WSN applications. 

 

 
Fig 7. Throughput Comparison Graph Between Existing and Proposed Model. 

 

Table 7. PDR (%) Comparison Between Existing and Proposed Model 

No. of 

Rounds 

Proposed 

model 
IMD-EACBR AEHO-DFFNN 

ASSO-

MERNN 

ML-

EOA-

ANN 

100 99.26 98.83 96.45 95.52 94.24 

200 98.44 97.86 96.41 94.29 93.09 

300 97.83 96.59 95.12 93.62 92.48 

400 96.96 96.47 94.68 92.42 91.62 

500 96.32 94.28 93.79 92.23 91.28 

 

 
Fig 8. PDR Comparison Graph Between Proposed and Existing Model. 
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Table 7 and Fig 8 present a comparison of PDR among several models in a WSN (WSN) throughout multiple rounds.  

PDR quantifies the proportion of successfully sent packets, with larger values signifying enhanced network reliability 

and performance. The proposed model attains the maximum Packet Delivery Ratio (PDR), commencing at 99.26% after 

100 rounds and sustaining 96.32% after 500 rounds, thereby exemplifying exceptional data transmission efficiency.  

IMD-EACBR closely follows, with a performance range of 98.83% to 94.28%, demonstrating somewhat inferior still 

competitive results. AEHO+DFFNN, ASSO-MERNN, and ML-EOA-ANN demonstrate a notable decrease, with 

AEHO+DFFNN declining from 96.45% to 93.79%, ASSO-MERNN from 95.52% to 92.23%, and ML-EOA-ANN 

exhibiting the lowest PDR, decreasing from 94.24% to 91.28%. The significant decrease in PDR for ML-EOA-ANN and 

ASSO+MERNN indicates increased packet loss and diminished network efficiency with time.  The proposed approach 

guarantees the most dependable data transfer, rendering it the optimal selection for sustaining consistent communication 

in extensive WSN applications. 

 

Table 8. Data Fault Prediction Result Parameters Comparison Between Existing and Proposed Model 

Methods 
ML-EOA-

ANN 

ASSO-

MERNN 
AEHO-DFFNN 

IMD-

EACBR 

Proposed 

model 

Fault 

Prediction 

Accuracy (%) 

96.52 96.95 97.23 98.61 99.78 

Precision (%) 95.53 95.79 96.25 97.84 98.69 

Recall 95.12 95.43 96.19 96.74 97.52 

F1-Score 96.14 96.36 97.05 97.46 97.83 

 

 
Fig 9. Data Fault Prediction Result Parameters Comparison Graph Between Existing and Proposed Model. 

 

Table 8 and Fig 9 evaluate various defect prediction models in a WSN based on accuracy, precision, recall, and F1-

score. The suggested model surpasses all alternatives, with the greatest fault prediction accuracy of 99.78%, 

demonstrating its exceptional capability to detect and anticipate faults efficiently. IMD-EACBR exhibits an accuracy of 

98.61%, but AEHO-DFFNN, ASSO-MERNN, and ML-EOA-ANN demonstrate marginally inferior performances at 

97.23%, 96.95%, and 96.52%, respectively.  The suggested model excels in precision (98.69%), recall (97.52%), and F1-

score (97.83%), guaranteeing excellent reliability and minimum false positives. IMD-EACBR demonstrates robust 

performance across all metrics, but ML-EOA-ANN has the lowest results, especially in recall (95.12%), suggesting 

possible deficiencies in accurately recognising all defective occurrences. 

 

V. CONCLUSION 

The suggested framework for data fault prediction and energy-efficient transmission in WSNs incorporates FCM 

clustering, Quantum Swarm Optimisation for CH selection, Multi-task Fuzzy Graph Neural Networks for fault 

prediction, and TBPSO for safe routing.  Utilising these advanced techniques, the model improves energy economy, fault 

tolerance, and secure data transfer, tackling critical difficulties in WSNs. The integration of graph neural networks 

guarantees precise defect identification, minimises redundant transmissions, and enhances data reliability. QSO-based 

CH selection efficiently equilibrates energy usage, whereas TBPPO enhances routing pathways according to trust metrics 

and network circumstances. Despite a marginal increase in computing complexity, the suggested method markedly 

enhances network longevity, data precision, and security. This optimization-driven technique provides a solid and 

scalable solution for contemporary WSN applications.  Future endeavours will concentrate on the real-time application of 
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the proposed model in extensive WSN installations and the incorporation of lightweight deep learning methodologies to 

diminish computational complexity while preserving high accuracy and energy economy. 
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