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Abstract – The usage of autonomous greenhouses has become essential in meeting the food demands of the world's 

expanding population. Finding the right optimization strategy to sustain growth, yield, and profit is one of the major issues 

with greenhouse production. Addressing this issue effectively requires a combination of advanced technologies, data-driven 

insights, and innovative management practices. The overarching goal is to maximize crop yield and quality while 

minimizing input costs and environmental impact. The automated optimizations, which are often implemented using 

reinforcement learning algorithms, encounter issues with sample efficiency and robustness due to the time-consuming 

nature of the real-world simulation. Therefore, the goal of this research is to solve these issues by combining the SAC and 

Q learning algorithms to create an ensemble method. To properly optimize the worst-case inefficient samples, a discrete 

randomization and dropout module is included. The problem of sample efficiency and resilience is treated as a Mismatch 

Markov Decision Optimisation problem. The suggested model outperforms the current methods in handling the robustness 

and sample efficiency issues, according to an experimental evaluation. Additionally, this improvement increased production 

and maximized net profit. 

 

Keywords – Mismatch Markov Decision Optimization Problem (MMDP), Discrete Randomization, Dropout, Ensembled 

Q and SAC Reinforcement Algorithm (EQSACRL). 

 

I.  INTRODUCTION 

The population of the globe is predicted to rise to 9.7 billion by 2050 [1], having reached 8.0 billion in November 2022. It 

is anticipated that this figure will peak in the 2080s. The need for food will rise by 56%, according to the meta-analysis 

published in [2], placing a heavy burden on agricultural land. Due to factors including urbanization, climate change, and 

restrictions on arable land, the amount of agricultural land is decreasing [3]. As a result, it is crucial to use technical 

breakthroughs to meet the world's expanding demand for food, and science-based farming has become increasingly popular 

in recent years. Greenhouse-based agricultural production is one invention that addresses crop production from a scientific 

standpoint in terms of yield and nutrition. This greenhouse-based agricultural production is powered by autonomous 

operations in terms of monitoring and control. 

With the assistance of the greenhouse, vegetable production as well as the land required to get the yield are very low 

[4]. Thus, spatial efficiency is great with greenhouse-based agricultural production. However, one of the common concerns 

with greenhouse-based agricultural production is the number of emissions. India produced its national climate agreement 

[5] after the Paris Agreement [6] in 2015, which aims for more than 40% reduction of greenhouse gas emissions by 2030 

and more than 90% reduction by 2050. The Indian greenhouses account for an average emission of 2.3 tCO2e per capita 

annually, which gives an alarming indication that the Indian greenhouse emissions are increasing, and this necessitates the 
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need to optimize greenhouse agriculture. Thus, the need for current greenhouse agriculture is to increase food production 

with less energy and emissions. In addition to improving the nation's ecology, optimized greenhouse production can have 

a positive financial impact on individual farmers. Energy sources account for more than 20% of overall earnings, and by 

2021, their price will have increased by 200%. Therefore, having the best greenhouse possible is also essential to increasing 

individual turnover. 

Considering the problem of energy accountability, the net profit for an individual can be increased only with better 

climate controllers inside the greenhouse, and there are several efforts in the literature for the optimization of climate 

controllers in the greenhouse. More recently, the usage of artificial intelligence techniques and algorithms for the 

optimization of greenhouses has become common. Wageningen University & Research is organizing its 4th Autonomous 

Greenhouse Challenge (AGC) based on the results obtained for other crops like lettuce and cherry tomatoes. Based on the 

excellent results, outperforming humans was observed when the lettuce crops were grown virtually and physically using 

fully autonomous algorithms. The approaches adopted by various researchers for the virtual growing of greenhouse plants 

are based on model predictive control and reinforcement learning [7, 8]. For the optimization of the tomato plants, various 

control experiments are performed as mentioned in [9] and [10]. To make decisions about crop production in an 

autonomous manner, as there is a shortage of well-trained crop managers. Thus, artificial intelligence has been used for 

various activities like pest detection [16], disease detection [11], weed detection [14], stress detection [15], harvesting [13], 

counting [12], etc. Though significant progress has been made in other detections, plant production control holds its 

limitations in terms of not providing an optimum temperature, light, and other factors in the greenhouse [17]. Consistent 

efforts are made by various researchers, like the one mentioned in [18]. There is continuous improvement in the 

optimization of the reinforcement algorithms, which has shown a significant increment in crop production as well as net 

profit. The problem arises when the optimized algorithms are used in real-time. There are certain practical difficulties 

associated with the adoption of these reinforcement algorithms in real-time, and they are as follows: 

• Due to its potential to harm machines and wipe out crops, sample efficiency is the most frequent issue encountered 

when trying to train a reinforcement algorithm in the real world. Because of the current sampling efficiency, 

simulations resort to reinforcement tactics. 

• Robustness is the primary problem in real-world greenhouse optimization since disruptions during the training phase 

might impact the algorithm's effectiveness, creating a gap between simulation and reality. 

• The most realistic model for greenhouse simulation and the issues with a single model for all kinds of greenhouses 

are not considered in this study since they call for greater financial outlays. 

Motivated by the reasons outlined in Section 1, the primary goal of this work is to apply the reinforcement learning 

algorithm to enhance the autonomous greenhouse control system. Sample efficiency and robustness are the two main issues, 

as discussed in Section 1. If these are optimized using the optimization processes in a simulative setting, they lose their 

practical value. Therefore, the primary goal of this effort is to close the gap that exists between the simulation and the real 

world. By making the agents in the reinforcement learning algorithm more efficient, this gap is closed. This is accomplished 

by exposing the agent to higher performance, which increases its robustness. Expanding the agent operating state is taken 

into consideration because it is an expensive endeavour to construct a more accurate greenhouse model that performs well 

in both simulated and real-world environments.  

This approach of expanding the agent operating condition is favored because it requires less time and money and is 

more in line with real-world requirements. As a result, this work primarily addresses the gap between simulation and reality 

while taking sample efficiency and robustness issues into consideration. This work's focus is limited to tomato plants that 

are grown in greenhouses. The tomato plant was chosen for adoption because of its rapid growth and widespread 

distribution around the world. In light of these issues, the research sought to provide answers to the following queries to 

solve the issues raised: 

• Does the reinforcement learning algorithm provide better robustness than the existing methods? 

• Do we have an option to make the reinforcement learning algorithm robust both in the training and evaluation 

conditions? 

• What is the contribution of the reinforcement algorithm to getting a better yield? 

• For the identification of answers to these questions, a greenhouse simulation environment is used, and some of the 

novel contributions of this work include: 

• With the assistance of the gymnasium interface for reinforcement learning, a parametrized greenhouse simulator is 

created. 

• We exhibit how the implementation of our ensemble model with randomization and dropout can handle the worst-

case performance. 

• We show how robustness and sample efficiency problems for worst-case performance can be improved using 

randomization and dropout. 

The rest of the paper is structured as follows: Section 2 gives the relevant background about growing tomatoes in a 

greenhouse, greenhouse control, reinforcement learning, and related works. Section 3 briefs the architecture of the 

greenhouse simulative environment and the optimization method algorithms for better yield. Section 4 gives an idea of the 

implementation, important findings, and result discussion. Finally, Section 5 discusses the key findings and gives directions 

for future research. 
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II. RELATED WORKS 

This section provides an overview of the literature. The purpose of this study is to learn about the latest advancements in 

automated greenhouse operations, the relevant history of tomatoes grown in greenhouses, and the latest reinforcement 

algorithms used to optimize greenhouse operations. 

Because of the increased need for food items during these years, greenhouse-based production is greater; thus, the main 

goal of greenhouses is to produce their maximum yield. Good plant development is the key to achieving maximum 

production, and photosynthesis is the single process that makes this possible [20]. Only under the ideal conditions of light, 

temperature, and carbon dioxide (Co2) can photosynthesis take place. During the early days, as mentioned in [21], the 

greenhouse was controlled using three approaches. The first approach requires manual involvement for switching on and 

off the valve positions of the light, temperature, etc. The second and third approaches used the PID and fuzzy mechanisms 

for controlling these valves autonomously. Along with this, the outside weather also plays a pivotal role while performing 

the optimization of the greenhouses. For example, the cloudy weather requires artificial lighting. For performing these 

operations automatically, recent advancements in artificial intelligence techniques [22, 23] have played a major role. Two 

approaches are used to apply AI to greenhouse control. The first perspective is utilizing digital twins to create a simulation 

environment [25–26]. When deciding which optimal values should be set for the highest yield, this twining is helpful. The 

twins essentially interact between real and virtual greenhouses [27], which makes this feasible. The expense of this testing 

is negligible since the parametric variables from the real greenhouse are sent straight into the virtual greenhouse. Since 

several situations have been verified, it is also possible to find an appropriate model that can manage the yield in addition 

to cost. 

As discussed in Section 1, the problems faced while trying to use RL algorithms for optimizing greenhouse control 

come in the form of sample efficiency and robustness, and in this section, we will review the various approaches used for 

handling these RL algorithm problems. Model-based approaches are commonly used to handle the sample efficiency 

problem, as mentioned in [28–31]. These methods have made significant improvements in dealing with sampling 

efficiency. However, these works are not robust enough because of their effect on the control policy while dealing with 

high-dimensional tasks. Due to the larger variation between the simulator and the real-world environment, performance is 

affected. Thus, to address the concern with control policy uncertainties, they are introduced into the transition models, 

which helps in figuring out the parameters that are generated using the sample inefficiency. 

Another popular strategy used for solving the sample efficiency and robustness problem is the use of ensemble learning. 

More robustness is achieved with the joining of more than one model since, in our method, we are going to adopt the 

ensemble technique with additional randomization and dropout. Let us review some of the ensemble approaches used so 

far. Sample-efficient ensembled reinforcement learning (SEERL) [32] outputs the model framework based on the 

ensembled policies. SEERL aims for the selection of better policies, and that is obtained with sequential training of the 

policies. For a converged policy, an increment in the learning rate is done, for which the new policy is obtained, and from 

that, a selection of optimized policies is obtained. Since our strategy is also to perform ensembling, this is different from 

the SEERL because we expect the ensembling to produce a better outcome in new environments. So, the aim is to achieve 

diversity among the policies, and this comes through the penalty. We expect the policy to be well-adapted to the new 

environment. Another approach using the Q-ensemble called SUNRISE [33] can better explore the environment. 

Traditional RL algorithms like Soft Actor-Critic and Soft Q-Learning are used in the literature for the policy optimization 

of the autonomous greenhouse. After understanding the state of the art of reinforcement learning in an autonomous 

greenhouse, it is important to improve the robustness of the greenhouse. Though our primary objective is not to implement 

a new RL algorithm, this work does not concentrate on building the implementation; instead, the focus is on understanding 

the effectiveness of these algorithms in solving the problem of sample efficiency and robustness. We followed these ideas 

and incorporated a dropout and randomization module to achieve robustness. 

 

III. PROPOSED SYSTEM 

This work considers the problem of autonomous greenhouse control as a mismatch Markov decision optimization problem 

(MMDP). The concept of model mismatch is included in the Markov Decision Optimisation problem because the agent 

needs to be evaluated in simulated and real environments. Using this, we can identify the gap between the training and 

evaluation environments. This section gives the preliminaries and notations of the considered problem and the approach to 

solving it. Notations and Preliminaries: 

Markov Decision Process (MDP) is denoted by a tuple 𝑀𝐷𝑃 = (𝑆, 𝐴, 𝑃, 𝑟, 𝛾, 𝜌0) where S denotes the state with 

dimension 𝑆 ∈ ℝⅆ𝑠 and A denotes the action with dimension 𝐴 ∈ ℝⅆ𝑎 . The transitioning in S at state s to take action a is 

represented as a transition probability P (s, a) denoting the state action pair. The reward function is mapped to this state 

action pair with [0,1] as discount factor. Thus reward 𝑟: (𝑠, 𝑎) ∈ [0,1]. H denotes the episodes of interaction 𝐻 =
{1,2, … … … 𝐻}. Suppose if the initial state 𝑠0 then the state 𝑠 ∈ 𝑠ℎ after taking the action 𝑎 ∈ 𝐴. After the action is 

encountered the environment will change from 𝑠ℎ to 𝑠ℎ+1 and that is denoted as state 𝑠′ with the probability 𝑃(𝑠′|𝑠, 𝑎). So, 

this means from the episode H it changes to H+1. Each state’s policy is a distribution over action A and there exists a 

deterministic policy for the agent.  
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The reward is thus expected following the policy on the state and suppose if the state 𝑠 ∈ 𝑠ℎ then the reward is notated 

using the tern 𝑉𝑀
𝜋(𝑠). Thus, the reward 𝑉𝑀

𝜋(𝑠) with transition P and policy 𝜋 is obtained using the equation 1 as a expectation 

over the probabilistic transition function. 

 

 𝑉𝑀
𝜋(𝑠) = expectation [∑ 𝑟(𝑠ℎ′

𝐻
ℎ′=ℎ , 𝜋(𝑠ℎ′)) |𝑠ℎ = 𝑠  (1) 

 

The goal is to find a policy 𝜋′ such that  

 

 𝜋′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑉𝑀
𝜋(𝑠0) (2) 

 

Since our problem is to identify the gap between the simulation and real environment, we expect the environment to be 

different at training and evaluation. Thus, this Markov Decision process is modelled randomly as a mismatch MDP and 

hence the training transition and testing transition is different denoted as𝑀𝐷𝑃∗ = (𝑆, 𝐴, 𝑃∗, 𝑟, 𝐻) for evaluation and 

𝑀𝐷𝑃𝑠 = (𝑆, 𝐴, 𝑃𝑠 , 𝑟, 𝐻) for training. The assumption here is only the transition are different so during the training time 

only 𝑃𝑠 samples are given to the agent and this state action pair generates a sample (𝑠′, 𝑟(𝑠, 𝑎)). For the transfer of training 

to testing a policy is defined that wanted both the environment to be similar. Hence a constraint is added to definition of 

the perturbation set. The constraint function C aims to map 𝑃∗ transition function to be located in C (𝑃𝑠). Hence the 

perturbation is obtained by subtracting the P from C(P) where P is the transition of training and C(P) is the transition of 

evaluation and this is obtained using the equation (3) 

 

 𝑃𝑒𝑟(𝑃) = {𝑃 + 𝐶(𝑃) (3) 

 

Where C(P)= [-1,1] so that 𝑃𝑠 contains the elements 0 and 𝑃∗ will be the neighbour values of 𝑃𝑠 

Since we aim for the robustness, the policy should be considered for the worst-case environment and that is defined 

using the equation (4) 

 

 V′M
π (s) = min (VM

π(s)) (4) 

 

The goal is to find the optimal policy 𝜋′ such that  

 

 𝜋′ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋𝑉′𝑀
𝜋 (𝑠0) (5) 

 

and the learning is better when the policy 𝜋′ satisfies the condition in equation (6) 

 

 𝐸𝑟𝑟(𝜋′ ) ≤ 0 ≥ 1 − (0,1) (6) 

 

The learning goal thus is the optimal policy for 𝑀𝐷𝑃𝑠 performs very poor for 𝑀𝐷𝑃∗ thus concluding a robust learning 

for the evaluation stage. 

 

Formulation 

We expect that the problem framed as MMDP needs to find a methodology that provides crop yield with less cost in both 

real and simulated environments. Though several factors frame this optimization problem, only the observable parameters 

are considered. Based on these, the formulations for the state space, action space, reward function, and transition function 

are defined below: 

 

State Space 

The state here is a 4 variable tuple that holds different values that determine the growth of the tomato plant. The variables 

that are considered are tabulated in Table 1. 

 

Table 1. State Space Variables That Make a Transition with The Changes from Action Variables 

Name min max 

Planting days 0 365 

Greenhouse temperature -25 90 

Greenhouse carbon 400 1000 

Greenhouse wind 0 25 
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Action Space 

The action space variables are the ones like temperature, light, and CO2, and any changes in the values of these variables 

make changes with regard to the state variables. Table 2 presents the action space variables. 

 

Table 2. Action Space Variables Whose Change Affects the State Transition 

Name Minimum value Maximum value 

Temperature set point 10 30 

Carbon-di-oxide set point 400 1000 

Light on time 0 20 

Light off time 0 20 

 

Reward Function 

The reward function R is the net profit that is obtained by subtracting the cost of spending in terms of the labour cost, 

resource consumption etc from the cost obtained with the total yield of the crop. 

 

Transition Function 

The transition value is unknown and the results are obtained based on the simulator results. This is basically a function that 

interchanges the state transitions to rewards. 

 

IV. METHODOLOGY 

The overall architecture for solving the greenhouse MMDP problem is presented in Fig 1. As shown in Fig 1, the 

greenhouse challenge dataset is used for the training and evaluation. In the simulation environment the ensembled 

optimization strategy is evaluated with the setting of the action variables. Thus, the optimization method is basically a 

predictive model learned from the greenhouse data. The robustness is measured by setting the simulation environment with 

unknown set of values. 

 

Fig 1. Overall Architecture of The Proposed Greenhouse Control System. 

Simulator 

Simulator plays an important role in solving the MMDP optimization problem. The brief summary of the simulation 

environment is presented in Table 3. As mentioned in Table 3, the simulation is supplied with details of the climate, 

weather, net profit, plant growth and reward function. 

Under the simulation environment, the agent gets transformed to a new state based on the components of the climate 

model and weather data through which the growth of the plant and the consumption details of the greenhouse are computed 

which then collectively combined to form the new state and the new reward.  

 

Discrete Randomization 

Since the weather is updated hourly, but the climate and plant development data need to be changed every minute, discrete 

randomization is introduced to the simulation. Discrete randomization is used inside the simulation environment of the 

model to account for this, prevent differential equation mistakes, and minimize action per episode. All it takes to do this is 

to simulate many time scales. The climate and plant models are updated fifteen times for a single step, requiring one hour 

and fifteen minutes for every step. 
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Table 3. Overall Components That are Implemented as a Part of The Simulation 

Model Name Components Function 

Climate 

Heater 

Screen 

Light 

Ventilation 

CO2 

Computing Greenhouse State using the 

weather and action variable input setting 

Weather Weather Dataset 
Local Real weather data is considered for 

the optimization of green house 

Plant 

Disease 

Extreme heat 

Freezing 

Factors that limit the growth of the plant 

Netprofit 

and Reward 

On and Off-

Peak usage 

price 

 

Consumption of the input components for 

the calculation of profit 

 

Ensembled Policy Optimization Algorithm 

Though the RL algorithms are meant to learn policies well, they face a problem in terms of training. The reduction in 

training efficiency causes a less robust model because of the higher number of interactions with the environment. To 

alleviate this problem, an ensemble RL algorithm is proposed along with the dropout mechanism in algorithm 1. The 

simulator created resembles the actual tomato growth environment, and through the greenhouse dataset, the simulation can 

now generate samples for the entire growth life cycle. These samples are fed as an input to the ensemble RL algorithm for 

optimizing the policies. 

Using the greenhouse challenge data, the model is pretrained, and this dataset is referred to as 𝐷𝑎𝑡𝑎𝑟𝑒𝑎𝑙  and this data 

includes the greenhouse and growth parameters. For the data samples to be more realistic and resemble real-world data, 

prior knowledge is used for adding restrictions such as the maximum level of light, temperature, etc. The reason this 

algorithm is proposed is to improve its robustness and address the sample inefficiency, which is its adaptability to work 

under varied scenarios. Utilising the idea proposed in [36], an ensemble approach is proposed using the Q-learning and 

actor critic methods. The reason to adopt an ensemble approach is to avoid the problems of sample efficiency and 

robustness so that the algorithm can adapt to the new environment with very little tuning. Thus, using the ensemble 

approach, the uncertainties in the greenhouse environment can be captured, thus increasing the growth of the plant as well. 

The fine-tuning here happens through the different sets of samples, and these samples are generated using the Bernoulli 

distribution with parameters 𝑝 ∈ (0,1],  on each of the sample data along with binary maskingℎ𝑖,𝑗. Thus, the subset samples 

are generated using the equation mentioned in (7). 

 

 Datasubset =  hi,jΘDataj|Dataj ∈ Datareal (7) 

 

Now these data from the sub sets are a completely new data and this is used for the fine tuning denoted as M =
{Mϕ1 ,Mϕ2 ,Mϕ3 , … … … … … … . MϕN

} and every member is a neural network that is probabilistic in nature and hence a 

Gaussian distribution is used to parametrize it. The output of the probabilistic neural network is μ∅, σ∅ and the objective 

function of the model is given in equation (8) 

Now these data from the subsets are completely new, and this is used for the fine-tuning, denoted as M =
{Mϕ1 ,Mϕ2 ,Mϕ3 , … … … … … … . MϕN}  ,every member is a neural network that is probabilistic in nature, and a Gaussian 

distribution is used to parametrize it. The output of the probabilistic neural network is μ∅, σ∅, and the objective function of 

the model is given in equation (8) 

 

 𝑙𝑜𝑠𝑠𝑀𝜙𝑖
=  ∑ [𝜇∅𝑖(𝑠𝑡

𝑁
𝑡=1  , 𝑎𝑡) − 𝑠𝑡+1  ]𝜎∅𝑖

−1(𝑠𝑡 , 𝑎𝑡)) − 𝑠𝑡+1  ] + log |𝜎∅𝑖(𝑠𝑡 , 𝑎𝑡) (8) 

 

In the proposed method, the simulator is trained to have an environment similar to the real environment. So the 

optimization samples are the ones that are pretrained using the simulator environment and the derived subset samples. 

Thus, at the training phase, policies aim to maximize the reward, irrespective of the environment. To achieve this, the 

policy divergence is achieved if the policies produce Gaussian distributions for actions, and thus the divergence policy is 

given using equations (9) and (10). 

 

 𝑝𝑜𝑙𝑖𝑐𝑦𝜋𝑖,𝜋𝑗 = 𝑐𝑜𝑛𝑐𝑎𝑣𝑒(||𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝜋𝑗(𝑎|0)] − 𝑒𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝜋𝑖(𝑎|0)||2] (9) 
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 𝑝𝑜𝑙𝑖𝑐𝑦𝜋𝑖,𝜋𝑗(0) = 𝑐𝑜𝑛𝑐𝑎𝑣𝑒(||𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝜋𝑗(𝑎|0)] − 𝑒𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝜋𝑖(𝑎|0)||2] (10) 

The concave function used here is sigmoid, and the reason for considering this as sigmoid is because the model need 

not worry about how different the policies are. Moreover, the distribution of trajectories is not cumulative, and the training 

is carried out in parallel, hence the objective function defined in equation (8) gets modified to include the ensembled 

members as shown in equation (11). 

 𝑙𝑜𝑠𝑠𝑀𝜙𝑖
(𝑑𝑖𝑣)=𝑙𝑜𝑠𝑠𝑀𝜙𝑖

+ 𝛿𝑝𝑜𝑙𝑖𝑐𝑦𝜋𝑖,𝜋𝑗) (11) 

Where 𝛿 is the hyperparameter that capture the variation between the policies. As a result of the policy divergence we 

have attained, policy learning proceeds smoothly in each model. Additionally, our strategy incorporates a dropout 

mechanism to prevent significant performance fluctuation across the models. The dropout discussed here, which draws 

influence from [37], seeks to exclude samples that offer an excessive reward to focus exclusively on the lowest-performing 

examples. As a result, the model becomes more reliable and appropriate for use in actual environments by guaranteeing 

plant output even under the most adverse circumstances. Algorithm 1 presents the overall optimization method used in this 

proposed system. 

 
Algorithm 1: Robust Ensembled Reinforcement Learning Algorithm (Usual Reinforcement learning algorithm instructions 

are not included here to highlight the difference between this approach and usual algorithm) 

Main function () 

 
Load original environment initialize hyperparameters, 𝐷𝑎𝑡𝑎𝑟𝑒𝑎𝑙  and policy 𝜋 = {𝜋𝜃1, 𝜋𝜃2,…………….𝜋𝜃𝑛} 

for 𝑁𝑒𝑝𝑜𝑐ℎ iterations do 

Take action in the greenhouse using policy𝜋𝜃1, 𝜋𝜃2,…………….𝜋𝜃𝑛 and add samples to 𝐷𝑎𝑡𝑎𝑟𝑒𝑎𝑙  

Mask 𝐷𝑎𝑡𝑎𝑟𝑒𝑎𝑙 into  

 𝐷𝑎𝑡𝑎𝑠𝑢𝑏𝑠𝑒𝑡 =  ℎ𝑖,𝑗𝛩𝐷𝑎𝑡𝑎𝑗|𝐷𝑎𝑡𝑎𝑗 ∈ 𝐷𝑎𝑡𝑎𝑟𝑒𝑎𝑙  (12) 

 

for 𝑁𝑡𝑟𝑎𝑖𝑛 iterations do 

Load the pretrained model and train on  

 𝐷𝑎𝑡𝑎𝑠𝑢𝑏𝑠𝑒𝑡 = {𝐷𝑎𝑡𝑎1 , 𝐷𝑎𝑡𝑎2 … … … … … … 𝐷𝑎𝑡𝑎𝑁 } (13) 

 

Get the pretrained ensemble model = {𝑀𝜙1 ,𝑀𝜙2 ,𝑀𝜙3 , … … … … … … . 𝑀𝜙𝑁
} 

While t<T do 

for every 𝜋𝜃𝑖 ∈ 𝜋 do 

 𝑙𝑜𝑠𝑠𝑀𝜙𝑖
=  ∑ [𝜇∅𝑖(𝑠𝑡

𝑁
𝑡=1  , 𝑎𝑡) − 𝑠𝑡+1  ]𝜎∅𝑖

−1(𝑠𝑡 , 𝑎𝑡)) − 𝑠𝑡+1  ] + log |𝜎∅𝑖(𝑠𝑡 , 𝑎𝑡) (14) 

end for 

end while 

Fine tuning 

For the new environment  

While t<T’ do 

 𝑝𝑜𝑙𝑖𝑐𝑦𝜋𝑖,𝜋𝑗 = 𝑐𝑜𝑛𝑐𝑎𝑣𝑒(||𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝜋𝑗(𝑎|0)] − 𝑒𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛(𝜋𝑖(𝑎|0)||2] (16) 

 

 𝑙𝑜𝑠𝑠𝑀𝜙𝑖
(𝑑𝑖𝑣)=𝑙𝑜𝑠𝑠𝑀𝜙𝑖

+ 𝛿𝑝𝑜𝑙𝑖𝑐𝑦𝜋𝑖,𝜋𝑗) (17) 

end while 

function dropout () 

Perform selection on model M with policy 𝜋𝜃  and get samples into batch 𝐵𝜋𝜃,𝑀 

Optimize policy 𝜋𝜃  in𝐷𝑎𝑡𝑎𝑟𝑒𝑎𝑙and 𝐷𝑎𝑡𝑎𝑠𝑢𝑏𝑠𝑒𝑡  

end main 

 

As mentioned in algorithm 1, the new environment basically gets trained with new policy obtained from the ensembled 

members thus improving the sample efficiency. The predictions for this ensemble model collection is obtained by choosing 

a model with probability mentioned in equation (12) 

 

 𝑃[𝑀 = 𝑀∅𝑖|𝑖~𝑃𝑚 , 𝑖 ∈ {1,2 … … … … . . 𝑁} … … … … … … … .12 (18) 

Then every model in M interact with varied policies and generates more growth samples on which the usual policy 

gradient approach is adopted for updating. 
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V. RESULTS AND DISCUSSION 

This section aims to give answers to the questions that were framed in Section 1.2, as below: 

• Does the reinforcement learning algorithm provide better robustness than the existing methods? 

• Do we have an option to make the reinforcement learning algorithm robust both in the training and evaluation 

conditions? 

• What is the contribution of the reinforcement algorithm to getting a better yield? 

• To answer these queries, the proposed system implementation details and the corresponding results are analysed. 

 

Dataset 

The greenhouse challenge dataset includes the details of six independent greenhouses, including the weather data, indoor 

greenhouse climate, resource consumption parameters, quality details of the tomatoes, and analysis data. Along with this, 

the price for the cost and net profit are also available. Based on these values, there are two datasets 𝐷𝑎𝑡𝑎𝑟𝑒𝑎𝑙and 

𝐷𝑎𝑡𝑎𝑠𝑢𝑏𝑠𝑒𝑡of tomato planting incorporated in the simulation experiment. 

 

Performance Analysis of the Model 

Analyzing the ensemble algorithm's impact in the greenhouse setting is crucial to comprehend how the reinforcement 

algorithm contributes to a higher yield. The prediction improves with increasing learning. The training curves and the 

model's efficiency with and without the drop-out mechanism are validated to comprehend the ensemble model's learning 

efficiency. Two versions of the training have been conducted: one with a sample dropout of 0.6 and the other without the 

dropout, with a value of 1. Fig 2, Fig 3, and Fig 4 demonstrate the convergence capacity of the method. As was noted, 

variation was reduced with the help of the drop-out mechanism. When this ensemble model is compared to the baseline 

SAC and PPO algorithms, it is shown that the ensemble model performs better than the baseline algorithms. The ensemble 

model's lower variance indicates that it places more emphasis on the worst-case scenarios. Better sample efficiency is the 

cause of this improved performance, and as a result, even with small sample sizes, learning is improved. Thus, this satisfies 

our goal of increasing sampling efficiency while using fewer training examples. 

Fig 3 and Fig 4 demonstrate a steady reduction in the critic loss and the maximum reward, respectively, confirming 

high-quality Q network optimization. As Fig 2 illustrates, learning has occurred more effectively with lower values thanks 

to the ensemble model's assurance that the reward is maximized. Fig 5 illustrates the outcomes of a comparison study using 

PPO and SAC, which was done to compare the performance of the ensemble method with the baseline. 

 
Fig 2. Learning Curve Showing the Ensembled Algorithm Average Score. 

             

Fig 3.  The Actor Loss Value Dynamics of The Proposed Ensembled Algorithm. 
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Fig 4. The Critic Loss Value Dynamics of The Proposed Ensembled Algorithm. 

 

 

Fig 5. Comparative Curve Showcasing the Rewards for the PPO, SAC and Ensemble Learning. 

 

The solid lines show the mean of the trails with different seed values, and the shaded region denotes the standard 

deviation of the plot. Green indicates the performance of SAC, orange indicates the performance of PPO, and blue shows 

the ensemble algorithm. This performance analysis allows us to conclude that training performs better with fewer samples, 

and a comparison with baseline algorithms demonstrates the robustness of this approach over the state-of-the-art 

reinforcement algorithms, thereby providing an answer to question 1 under section 1.2. 

 

Robustness Analysis 

This study is done to understand the robustness of the proposed approach both at the training and testing phase and thus 

giving justification to the question 2 under section 1.2. In the proposed system, dropout mechanism is the one added for 

ensuring the robustness. So, the benefits of dropout is analyzed with different environment. The different environment is 

achieved with the inclusion of outside weather conditions. This is manually set for the parameters like outside solar 

radiation (Iglob), greenhouse humidity and temperature. Since these parameters do have direct relationship to the growth 

of the plants these are set to represent the different environment and observe the model’s behaviour. Since this setting up 

parameter takes up newer values that are not a part of the dataset, this is considered to be a new environment and the 

parameters here are anomalous parameters. These experimental results are tabulated in Table 4 and Fig 6. The Table 4 

shows the crops weights and retention rate under the new environment. 

 

Table 4. Robustness Analysis with New Environment 

Parameter 

Crop Weight Crop Retention Rate 

Without 

Dropout 

With 

dropout 

Without 

dropout 

With 

Dropout 

Air temperature (35,40) for maximum and 

(-2,10) for minimum 
32.78 46.23 80.32% 87.62% 

Air Humidity (75) 39.63 42.31 81.32% 89.43% 

Solar Radiation (null) 42.17 49.26 74.23% 86.21% 

 

Based on the findings shown in Table 4, the ensemble approach that incorporates the dropout has a higher crop weight 

and retention rate. As a consequence, the suggested model is sufficiently resilient to manage the updated set of anomalous 
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parameters. Analysis was done on the net profit that resulted from setting the dropout parameter p to various values, such 

as 0.8, 0.9, etc. Fig 6 presents the findings as a heatmap. 

 

 

Fig 6. Heat Maps Showing the Robustness Performance Under Varied Environments with Different Drop-Out Values. 

 

 
Fig 7. Performance Comparative Analysis of The Different Algorithmic Approaches. 

 

As seen in Fig 7, the ensemble approach shows superior performance in terms of yield and profit; however, the cost 

imposed to get this yield is slightly higher in the proposed approach. The main reason for this could be because the 

reinforcement learning algorithms considered the finer details. There is a direct relationship between yield and profit, 

denoting the ensemble approach taking care of short-term and long-term optimization.  

 

VI. CONCLUSION 

An ensembled reinforcement learning model is presented in this study to address sample efficiency and robustness issues 

in tomato production under greenhouse conditions. Specifically, our approach learns the various conditions using the 

greenhouse challenge tomato dataset, and even in brand-new situations, the policy is optimized. The evaluation of the 

experiment is completed and shown to address the questions posed in Section 1.2. Different experimental configurations 

are constructed for each topic, and the outcomes are assessed to demonstrate the robustness and efficacy of the suggested 

approach in addressing the sample efficiency issue. The results indicate that the yield-to-cost ratio is comparatively lower, 

which paves the way for further advancements in this area of study. Therefore, in our next effort, we want to enhance this 

algorithm's ability to generalize with a larger range of crops. To more effectively balance return and cost, a new set of 
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algorithmic combinations must be assessed. The online RL approaches need to be evaluated in a real greenhouse, and their 

impact on training time and cost has to be examined. 
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