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Abstract – The Intelligent Infrastructure Monitoring System (IIMS) is a data-driven approach that uses Artificial 

Intelligence (AI) and the Internet of Things (IoT) to enhance civil engineering Disaster Management (DM). To predict 

future disasters, the system uses a Multi-Tiered Model (MTM) to integrate real-time data from IoT sensors, such as stress, 

vibration, temperature, humidity, and corrosion levels. The Temporal Graph Convolutional Network Model (TGCNM) 

processes this data to capture spatial and temporal dependencies across structural components, enabling proactive 

maintenance and risk mitigation. The TGCNM outperforms baseline models by a significant margin, and hyperparameter 

sensitivity analysis identifies the optimal configuration for enhanced performance. This data-driven approach is vital for 

monitoring and securing key infrastructure and enhancing civil engineering DM with AI and IoT. 

 

Keywords – Intelligent Infrastructure Monitoring System, Temporal Graph Convolutional Network, Internet of Things, 

Artificial Intelligence, LSTM, Accuracy. 

 

I. INTRODUCTION 

As the probability of disasters caused by nature continues to increase and as vital infrastructure continues to fail, civil 

engineering professionals have come to understand the vital significance of cutting-edge predictive monitoring [1-2]. The 

infrastructure maintenance approaches frequently ignore unavoidable hazards, resulting in disastrous failures and 

implications [3]. Novel advances in Artificial Intelligence (AI) and the Internet of Things (IoT) have enabled it to monitor 

and evaluate infrastructure scenarios in real-time while simultaneously [4-6]. Data on stress, vibration, temperature, 

humidity, and corrosion, among additional key parameters, can be collected via IoT sensor networks connected to 

buildings. AI can subsequently employ this data to predict when infrastructure will deteriorate [7-8]. This work employs a 

proactive model to enhance Disaster Management (DM) and infrastructure adaptability, significantly developing predictive 

maintenance [9–10]. 

The primary disadvantage of civil engineering persists in its inability to monitor reliable and periodic infrastructure 

[11]. Conventional methods find it particularly challenging to identify preliminary evidence of decomposition in highly 

intricate and large buildings [12]. This drawback impedes proper actions, contributing to increased hazards and 

maintenance costs. Primarily for buildings susceptible to maintenance and natural disasters, the demand for data-driven, 

real-time models has increased in the context of outdated infrastructure [13–14]. Architectural tests alone are insufficient 
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to promote DM; research requires implementing a more complex model connecting IoT and AI to attain data in real-time 

and make change predictions [15–16]. 

Several researchers have studied methods such as Long Short-Term Memory (LSTM) and Autoregressive Integrated 

Moving Average (ARIMA) for infrastructure durability prediction and monitoring purposes in the past [17–19]. Although 

these models effectively identify differences over time, they frequently fall short regarding the complex spatial 

relationships found in massive infrastructures. Although Graph Convolutional Networks (GCN) are helpful for spatial 

modeling, they cannot handle time-dependent tasks discretely [20]. 

While the Spatial-Temporal Graph Convolutional Network (ST-GCN) can address spatial and temporal features, it 

might have trouble with long-term temporal relationships [21]. This is because it enhances the accuracy of predictions. 

Attention-based Temporal Graph Convolutional Networks (A3T-GCN) make it easier to select features, but they can make 

simulations difficult without continuously assuming predictions are more accurate [22]. This work must develop an 

improved model considering spatial and temporal dependencies to overcome these drawbacks and make accurate 

predictions for infrastructure resilience applications. 

Accurately measuring Building Sectors (BS) is the primary objective of this paper's predictive monitoring system, 

which will do this by monitoring the temporal dynamics and real-time spatial dependencies among BS. This study has 

developed a model to address the shortcomings of modern methods in predictive DM, applying a model that combines AI 

and IoT for constant monitoring. The investigation revolves around developing a Temporal Graph Convolutional Network 

(T-GCN) that can continuously integrate infrastructure data points to provide accurate and timely predictions regarding the 

integrity of the infrastructure [23]. 

A multi-tiered Intelligent Infrastructure Monitoring System (IIMS) that employs IoT sensors for monitoring 

environmental variables like corrosion, stress, and vibration in real-time procedures is an element of the study objective 

[24]. Implementing Edge Computing (EC) to process these data flows reduces delay and enhances real-time decision-

making. The key objectives of this research involve implementing the T-GCN on the buildings to recognize their spatial-

temporal dependencies, verify their accuracy using standard models, and determine the optimal parameters for the proposed 

model. This article applies IoT sensors and analytics to predict results, highlighting an IIMS that enables real-time problem-

solving and BS testing. The suggested infrastructure comprises multiple layers: one for collecting data in real-time using 

sensors, one for preliminary analysis by an EC unit, possibly another for recent predictive modeling by an IoT server, and 

finally, a cloud gateway for archived data and processing. Graph-based spatial analysis and recurrent neural networks 

(RNN) are used in the T-GCN to predict infrastructure health metrics in various settings accurately. The resulting model 

is essential to the system's predictive performance. 

Firstly, below are the Key Objectives of This Study: 

• The objective is to develop an IIMS that relies on the IoT and has the potential for perpetual data collection and 

real-time infrastructure condition monitoring. 

• This study will deploy the T-GCN to perform accurate spatial-temporal analysis. This proof required the following 

data to accurately predict the adaptability of infrastructures under various environmental factors and functioning 

states. 

• The research aims to compare the outcomes of the T-GCN to other models to determine whether there are any 

developments in prediction accuracy and computational performance. 

• In order to maximize the performance of the model, it is essential to execute a hyperparameter sensitivity analysis. 

This study should confirm the accuracy and efficiency optimization of the Mean Squared Error (MSE), Mean 

Absolute Error (MAE), and Root Mean Squared Error (RMSE) performance metrics. 

Here is the outline of the article: Section II lays out the recommended IIMS, separated data collection, analysis, and 

storage functions of each layer. In Section III, the researchers determine the basics of the T-GCN and how it integrates into 

the IIMS. The researcher also found out about its spatial-temporal modeling features. Section 4 provides details of the 

experiment, including dataset information, baseline models, evaluation metrics, and hyperparameter settings. The results 

and analysis will be presented in Section 5. This section will compare how well T-GCN predicts with standard models, 

check the effect of spatial and temporal layers, and rate the model's sensitivity. This article reaches its conclusion in Section 

6. 

 

II. PROPOSED ARCHITECTURE 

The primary objective of the envisaged IIMS is to permit real-time decision-making by building conditions, vibration 

levels, and environmental variables such as temperature and humidity. A practical application of electrical power, this 

model triggers sensors selectively. By regulating maintenance expenses and life expectancy, the mathematical model of 

the network optimizes the application of sensors. Important buildings may currently experience real-time risk assessment 

along with predictive maintenance proposals according to the IIMS, which takes responsibility for the cause of remote 

building monitoring. A secure gateway integrates several key elements, including communication channels, sensor 

networks (external and internal), an IoT server, and cloud storage. Intelligent systems application, management, network, 

and device-level monitoring and management are all components of this model. The building design of the proposed system 

is illustrated in Fig 1. Disaster prevention and response involving IoT sensors and Decision Support Systems (DSS) 

presents an original viewpoint on improving building adaptability, particularly within remote and highly susceptible areas. 
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This Multi-Tiered Model (MTM) is portrayed in Fig 1, and it features the following key elements: 

• Sensor Interface Layer: For the intent of monitoring building parameters such as stress, vibration, and environmental 

variables, a network of intelligent sensors that are embedded within the building's design. 

• Data Processing Unit: A tool that performs edge processing, including a Raspberry Pi Portenta H7, is responsible 

for collecting and preliminary processing sensor data in order to obtain real-time information. 

• IoT Server with Predictive Analytics: To assess the building design strength of a building and anticipate possible 

hazards, a central server that hosts complex neural network models must be installed. 

• User Interface on Mobile Device: A mobile application for smartphones that keeps users up to date in real-time on 

the condition of the building and presents ideas that can be adopted. 

• Cloud Gateway and Server: A secure cloud-based setting for storing data for extended time, significant analytics, 

and combining DM on a larger scale. 

 

 
Fig 1. Proposed IoT Model. 

 

The initial layer of the architecture is known as the Sensor Interface Layer, and it contains a network of integrated smart 

sensors that actively collect building information. This data usually involves stress levels, vibrations, and factors related to 

the environment. This layer communicates real-time data from the buildings to the next tier through Bluetooth Low Energy 

(BLE) and Low Power Wide Area Network (LPWAN). An edge device, including the Arduino Portenta H7, assumes 

responsibility for the preprocessing and filtering of the data collected by the sensors within the Data Processing Unit. This 

device has been provided with wireless communication features, which make it possible to communicate with a central 

server by any of the following types of networks: Wi-Fi, 5G, and LPWAN. This third layer, the IoT Server with Predictive 

Analytics, collects data from a local database and correlates it with a MySQL database located in a cloud environment 

through encrypted channels. The data is evaluated by machine learning (ML) algorithms, which apply predictive models 

to assess the building design integrity of the building and determine any possible hazards. Integrating multiple sensors 

within this system enables it to collect an array of key data across several parameters, enhancing the accuracy of monitoring 

tasks. By providing immediate data collection and predictive analysis across an array of buildings, this multi-sensor 

methodology improves the system's applicability, presenting reliable data about the physical condition of the building.  

This work aims to develop a framework that can detect and monitor building designs located remotely in real-time. 

This model will assist with approaches to durability and predictive maintenance. 

 

Stress Sensor 

New load sensors based on Micro-Electro-Mechanical-Systems (MEMS) provide decades of durability and accurate 

estimation of stress distribution across important building parts. This work was decided on these sensors because they 

perform accurately, are affordable, and are suitable for low-power device protocols like Bluetooth Low Energy (BLE), so 

we can keep track of things all day without connecting them. Their adaptability to environmental variations reduces the 

probability of inaccurate readings. 

 

Vibration Sensor 
Applying the ADXL1002 high-sensitivity MEMS acceleration sensors, data from vibration may be collected and remotely 

transmitted. The type of sensor was selected because the device is simple to install, portable, and has a long functioning 

lifetime. If it senses anomalous vibrations in the building, which might result from physical use, it will capture the 

vibrations and send them remotely to a central system for testing. 
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Temperature Sensor 
The Sensirion SHT40 is a Bluetooth-enabled sensor that determines the outside temperature of the building's exterior. 

Important information about the long-term impacts of heat stress on building materials can be obtained by the real-time 

wireless data provided by the sensor and the computation device. 

 

Humidity Sensor 
Humidity is a further measurement that the Sensirion SHT40 measures since variations in this metric can impact the 

building design integrity of materials such as steel and concrete. Monitoring environmental variables that could impact 

building design integrity is optimal by low-noise signal processing and amplifying processes, which provide high precision. 

 

Corrosion Sensor 
New ultrasonic sound corrosion sensors maintain track of the level of corrosion, particularly on accessible steel buildings. 

These sensors may determine the layer thickness of materials and detect corrosion or degradation in early phases using 

ultrasonic sound waves. Proactive maintenance DSS is made feasible by sending data from the sensor to the central unit 

over an I2C connection. 

 

Arduino Portenta H7 

Several versions, such as the Arduino Due, Arduino Mega, Arduino Leonardo, and Arduino Portenta H7, have been 

released for use with the Arduino microcontroller chips. The Portenta H7, selected for this particular system, is suitable for 

processing real-time data from multiple sensors due to its robust processing speed and dual-core microcontrollers. This 

device is suitable with 5G, Wi-Fi, and LPWAN manufacturing communication protocols and features a range of 

input/output (I/O) based DSS, including analog and electronic inputs. Considering an emphasis on excellent performance 

edge computing, the Portenta H7 can preprocess data locally and significantly reduce delay, developing differentiates as 

opposed to previous versions. As the primary controller of the monitoring system, the Portenta H7 interfaces seamlessly 

with various sensors and serves as a bridge between the sensors and the IoT. This open-source microcontroller is 

programmable using the Arduino IDE and is critical in integrating real-time sensor data into the more significant IoT 

infrastructure for predictive DM. 

The sensor data collected by the IIMS provides the foundation for computing key functional parameters that support 

evaluating BS durability and predicting potential failures.  

 

Key Measurements Include 

Computation of Structural Stress and Load Distribution 

Structural stress (𝜎) across load-bearing components is estimated using data from strain and load sensors. The stress is 

typically calculated using Hooke's Law, assuming linear elastic behavior, Eq. (1) 

 

 𝜎 = 𝐸 ⋅ 𝜖  (1) 

 

where: 

• 𝜎 = Stress in the material (Pa), 

• 𝐸 = Modulus of elasticity of the material (Pa), 

• 𝜖 = Strain, obtained from strain gauge sensors. 

Load distribution (𝐹) is calculated based on the force (𝐹) exerted across cross-sectional areas (𝐴), providing insight 

into potential overloads or irregular stress concentrations, Eq. (2) 

 

 𝜎 =
𝐹

𝐴
  (2) 

 

Measurement of Vibration and Dynamic Response  

The BS's vibration response (𝑎(𝑡)) is measured using accelerometers to detect shifts in dynamic behavior due to 

environmental forces like wind, traffic, or seismic events.  

The natural frequency (𝑓𝑛) of a building design component can be calculated using the Eq. (3): 

 

 𝑓𝑛 =
1

2𝜋
√

𝑘

𝑚
  (3) 

 

where: 

• 𝑓𝑛 = Natural frequency (Hz), 
• 𝑘 = Stiffness of the building design (N/m), 
• 𝑚 = Mass of the building design (kg). 
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Real-time vibration data 𝑎(𝑡) from accelerometers can also detect unusual vibrations that may indicate damage or 

deterioration, Eq. (4). 

 

 𝑎(𝑡) = 𝐴 ⋅ sin(2𝜋𝑓𝑛𝑡 + 𝜙)  (4) 

 

where: 

• 𝑎(𝑡) = Acceleration at time 𝑡, 
• 𝐴 = Amplitude of vibration, 

• 𝜙 = Phase angle. 

 

Environmental Monitoring (Temperature and Humidity) 

Temperature (𝑇) and humidity (𝐻) levels are key factors influencing material properties. Sensors record these values 

continuously to monitor potential impacts on building design materials. Material expansion or contraction due to 

temperature can be estimated with the coefficient of thermal expansion (𝛼) as follows, Eq. (5) 

 

 Δ𝐿 = 𝐿0 ⋅ 𝛼 ⋅ Δ𝑇  (5) 

 

where: 

• Δ𝐿 = Change in length 

• 𝐿0 = Original length 

• 𝛼 = Coefficient of thermal expansion (∘C−1) 
• Δ𝑇 = Change in temperature 

 

Corrosion and Material Degradation Measurement 

Corrosion progression (𝐷) is monitored through ultrasonic measurements, which assess the thickness (𝑇) of steel 

components over time.  

The corrosion rate (𝑅) can be estimated as Eq. (6). 

 

 𝑅 =
Δ𝑇

𝑡
  (6) 

 

where: 

• 𝑅 = Corrosion rate (MM/Year), 

• Δ𝑇 = Change in thickness (MM), 

• 𝑡 = Time (Years). 

This helps predict the lifespan of BS and determine when maintenance is required. Real-time corrosion data supports 

decisions on material preservation and repair timelines, enhancing building design resilience against environmental 

impacts. 

 

III. PREDICTION MODEL FOR DM AND STRUCTURAL RESILIENCE 

In this study, infrastructure resilience prediction aims to assess the BS condition of critical infrastructure over a specified 

time using historical sensor data collected from various BS components. Building condition data encompasses load stress, 

vibration, environmental conditions (temperature, humidity), and corrosion levels. For illustration, this study uses load 

stress as an example of building condition data in the experiment section. 

 

Definition 1: Infrastructure Network 𝐺 

The infrastructure is represented as an undirected graph 𝒢 = (𝒱, ℰ), modeling the structural relationships among 

components. Each critical structural element is represented as a node, where 𝒱 = {𝑠1, 𝑠2, … , 𝑠𝑀} is the set of nodes, with 

𝑀 as the total number of nodes. ℰ represents the edges that define relationships (such as load distribution or adjacency) 

between nodes. The adjacency matrix A ∈ ℝ𝑀×𝑀 encodes these connections with elements where A𝑖𝑗 = 1 if nodes 𝑖 and 𝑗 

are connected, and A𝑖𝑗 = 0 otherwise. 

 

Definition 2: Feature Matrix 𝑋𝑀×𝑄 

The building condition data across the infrastructure network is represented by a feature matrix X ∈ ℝ𝑀×𝑄, where 𝑄 denotes 

the number of features or the length of the historical data sequence. X𝑡 ∈ ℝ𝑀×𝑗 represents a specific structural feature (e.g., 

load stress) at time 𝑗 for each node. Additional features could include vibration data, environmental metrics, or corrosion 

indicators. 
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The problem of predicting Spatial-Temporal BS can thus be formulated as learning a mapping function ′𝜙′, which, 

based on the network topology 𝒢 and feature matrix X, predictions the structural condition metrics over the following 𝑇 

time steps, as shown in Eq. (7): 

 

 [X𝑡+1, … , X𝑡+𝑇] = 𝜙(𝒢, (X𝑡−𝑛, … , X𝑡−1, X𝑡))  (7) 

 

where 𝑛 is the length of the historical data sequence, and 𝑇 is the forecast horizon. 

 

T-GCN 

The T-GCN is designed to capture spatial and temporal dependencies in complex datasets, making it highly suitable for 

infrastructure resilience prediction. The integration of GCN and Recurrent Neural Networks (RNN) allows them to 

accurately represent structural changes' sequential, time-dependent behavior and the spatial connections among correlated 

building blocks. A graph of data with nodes representing structural components and edges representing interactions 

between them is implemented by the GCN feature of the T-GCN to exploit the infrastructure network design. The GCN 

can understand its overall build concerning its spatial location by applying an adjacency matrix to collect data from all the 

nodes' interconnected neighborhoods’ nodes. Fig 2 shows T-GCN Model. 

 

 
Fig 2. T-GCN Model. 

 

Data in the temporal sequence is analyzed by the RNN portion of the T-GCN, which typically functions using GRU 

(or) LSTM cells. In this method, the mathematical model could select any patterns or trends, including the gradually 

occurring building of stress or the impact of external factors, that can identify hazards. With these layers collectively, the 

T-GCN becomes an effective tool for monitoring building conditions in real-time, and it helps in proactive maintenance 

and durability testing via the use of previously collected data for predicting a structural issue. 

 

Spatial Dependence Modeling 

The GCN segment of the T-GCN analyzes spatial reliance by identifying the structural connections between the physical 

network's different elements. The infrastructure is signified as a graph 𝒢 = (𝒱, ℰ), where every node 𝑣𝑖 ∈ 𝒱 matches 

complex building materials, and each edge 𝑒𝑖𝑗 ∈ ℰ epitomizes a link between two components, such as a load-bearing 

connection. The spatial design of the network is fixed in an adjacency matrix A ∈ ℝ𝑀×𝑀, where A𝑖𝑗 = 1 if nodes 𝑖 and 𝑗 

are linked and A𝑖𝑗 = 0 else, with 𝑀 instead of the complete nodes. 

For the time ′𝑡′, the feature matrix X𝑡 ∈ ℝ𝑀×𝑄 encompasses the features for all nodes, such as stress, vibration, and 

environmental factors, with 𝑄 as the number of features. The GCN layer then aggregates the data from all nodes' neighbors, 

rendering it to the adjacency matrix, permitting every node to integrate data about the structural environments of adjacent 

components.  

The propagation rule for the GCN is defined as Eq. (8). 

 

 H𝑡 = 𝜎 (D̃−
1

2ÃD̃−
1

2X𝑡W𝑔 + b𝑔)  (8) 

 

where: 

• H𝑡 ∈ ℝ𝑀×𝐹 is the matrix of node features after the GCN layer at time ′𝑡′, 
• Ã = A + I is the adjacency matrix with added self-loops (where I is the identity matrix), 

• D̃ is the diagonal degree matrix of Ã, with D̃𝑖𝑖 = ∑𝑗  Ã𝑖𝑗, 

• W𝑔 is a trainable weight matrix for the GCN layer, 
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• b𝑔 is the bias term, 

• 𝜎 is an activation function, typically ReLU. 

This normalization process (multiplying by D̃−
1

2 ) ensures that feature contributions from connected nodes are scaled 

by their respective node degrees, which prevents high-degree nodes from disproportionately influencing their neighbors. 

By applying this GCN layer, the model learns the spatial dependencies between structural components, integrating 

contextual information that reflects the connectivity and dependencies within the infrastructure network. This spatial 

feature extraction is crucial for accurately assessing the resilience of individual components based on the overall structural 

network. 

 

Temporal Dependence Modeling  

The temporal dependence modeling in the T-GCN is handled by the RNN component, which captures the sequential 

patterns and trends in the structural data over time. In the T-GCN, the temporal dependencies of each node's feature 

sequence are modeled using GRU (or) LSTM units. These recurrent layers allow the model to retain information about 

past states and identify temporal patterns essential for predicting future structural conditions. 

At each time step 𝑡, the 𝐺𝐶𝑁 output H𝑡 ∈ ℝ𝑀×𝐹, which represents spatially processed features for each node, is passed 

as input to the GRU. The GRU methods this temporal sequence of graph features, changing its hidden state Z𝑡 ∈ ℝ𝑀×𝐹 

based on the prior hidden state Z𝑡−1 and the new state of GCN output H𝑡. The GRU's updates are Eq. (9) and Eq. (12). 

 

 r𝑡 = 𝜎(W𝑟H𝑡 + U𝑟Z𝑡−1 + b𝑟) (9) 

 

 z𝑡 = 𝜎(W𝑧H𝑡 + U𝑧Z𝑡−1 + b𝑧)  (10) 

 

 Z̃𝑡 = tanh(WℎH𝑡 + r𝑡 ∗ (UℎZ𝑡−1) + bℎ)  (11) 

 

 Z𝑡 = (1 − z𝑡) ∗ Z𝑡−1 + z𝑡 ∗ Z̃𝑡  (12) 

 

where: 

• r𝑡 is the reset gate, controlling the impact of the previous hidden state, 

• z𝑡 is the update gate, determining the balance between the previous hidden state Z𝑡−1 and the current input, 

• Z̃𝑡 is the candidate's hidden state at time 𝑡, 
• W𝑟 ,W𝑧 ,Wℎ,U𝑟 , U𝑧, and Uℎ are trainable weight matrices, 

• b𝑟 , b𝑧, and bℎ are biased terms, 

• 𝜎 and tanh are the sigmoid and hyperbolic tangent activation functions. 

A GRU continually analyzes the spatially analyzed features at each time step, maintaining key details from previous 

phases for storing data temporal relationships. By applying structural condition measures' temporal motion, the T-GCN 

makes it possible to predict impending structural challenges by combining past data with recent advancements. Proactive 

DM and maintenance planning use this temporal Feature Extraction (FE) to assess the changing state of BS. 

 

Loss Function 

The T-GCN has been trained to determine the strength of buildings using the MSE loss function. To compute the MSE for 

a prediction radius of ‘T’ time steps, perform Eq. (13). 

 

 ℒMSE =
1

𝑇
∑  𝑇
𝑡=1 (𝑦𝑡 − �̂�𝑡)

2 (13) 

 

where: 

• 𝑦𝑡  is the actual structural metric at the time 𝑡 
• �̂�𝑡 is the predicted metric at time 𝑡, 
• 𝑇 is the forecast horizon. 

Reducing this loss is essential to maximize the T-GCN model's durability prediction precision. 

 

IV. EXPERIMENT ANALYSIS 

Data Description 

A significant open-source dataset for investigating building durability, Structural Health Monitoring (SHM), is used in the 

current research. It was generated by the Los Alamos National Laboratory (LANL). Strain, temperature, and acceleration 

are essential variables collected in the time series provided in real-world sensor data relating to various building elements. 

The data is collected from sensors embedded in buildings that respond to multiple functioning and environmental 

conditions. This data contains valuable information for determining the durability of the buildings. 

The SHM Dataset Includes 
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• Strain Measurements: Strain sensors attached to load-bearing elements to monitor stress distribution were employed 

to collect the data. 

• Acceleration Data: The data was collected using accelerometers to measure vibration and behavior under various 

loading conditions. 

• Temperature Data: Thermal sensors have been employed to monitor the material to find out how variations in 

temperature impact the quality of the material being monitored. 

A time-series model appropriate for spatial-temporal modelling can be attained by regular measurement logging of each 

sensor. Because of how this dataset is organized, the T-GCN can identify the spatial connections between several building 

elements and variations in that building's condition as time progresses. By implementing this data, the research study tests 

the T-GCN's prediction accuracy in predicting probable building problems. 

 

Metrics 

Researchers apply three standard regression metrics—MSE, MAE, and RMSE—to evaluate the T-GCN's predictive 

accuracy for predicting building durability. To determine how effectively the model performs, these data points to test the 

extent to which proposed actual building condition data are from predictions for the future. 

 

MSE 

MSE computes the average squared variance between predicted data (�̂�𝑡) and real data (𝑦𝑡), fining more important errors 

more severely, Eq. (14). 

 

 MSE =
1

𝑇
∑  𝑇
𝑡=1 (𝑦𝑡 − �̂�𝑡)

2  (14) 

 

where: 

• 𝑇 is the total time steps in the test set, 

• 𝑦𝑡  and �̂�𝑡 represent the real and predicted data at time ′𝑡′. 
 

MAE 

MAE measures the average absolute difference between predicted and actual data, providing an easy signal of prediction 

accuracy, Eq. (15). 

 MAE =
1

𝑇
∑  𝑇
𝑡=1 |𝑦𝑡 − �̂�𝑡|  (15) 

 

MAE is less complex to significant errors than MSE, making it cooperative in rendering general prediction accuracy. 

 

RMSE 

RMSE is the square root of MSE and signifies the prediction error in the same units as the real data, helping interpretability, 

Eq. (16). 

 RMSE = √
1

𝑇
∑  𝑇
𝑡=1   (𝑦𝑡 − �̂�𝑡)

2  (16) 

 

Significant errors possess a severe impact, and RMSE provides information about the scale of the median prediction 

error. 

 

Hyperparameter and Training 

Several hyperparameters require being optimized for the T-GCN to predict building durability accurately. The learning 

rate, batch size, number of training sessions, and number of GCN and GRU layers are key hyperparameters. These 

hyperparameters were selected and tuned using grid search to identify the optimal configuration for minimizing prediction 

error on the validation set. 

Table 1 shows Hyperparameter for Training. 

 

Table 1. Hyperparameter for Training 

Hyperparameter Description Value 

GCN Layers Number of graph convolution layers 2 

GRU Units Number of units in the GRU layer 64 

Learning Rate The initial learning rate for an optimizer 0.001 

Batch Size Number of samples per training batch 32 

Training Epochs Total number of training epochs 200 

Early Stopping Patience for stopping training early 10 
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      The training was performed using backpropagation with the Adam optimizer, which combines adaptive learning rates 

and momentum, enhancing convergence efficiency. The MSE loss function was used to minimize the discrepancy 

between predicted and actual values of structural health metrics. The model was trained for 200 epochs with early 

stopping based on validation loss to prevent overfitting. 

 

Hardware and Software Configuration 

The model training and evaluation were conducted on a machine with an Intel Core i7 processor, 16 GB RAM, and an 

NVIDIA GTX 1080 GPU to support efficient computation of graph convolutions and temporal dependencies in large 

datasets. Python and PyTorch were implemented to build models and training for the application environment. The model's 

efficacy was demonstrated using Matplotlib, while the Deep Graph Library (DGL) addressed graph-based data structures, 

and NumPy and Pandas were used for the manipulation of data and planning. 

 

Baseline Models for Comparison 

• ARIMA: A standard analytical model for predicting time series data; it considers dependencies spanning time but 

cannot account for spatial connections.  

• LSTM: An RNN that captures long-term temporal dependencies in sequential data. Although LSTM handles time-

series data effectively, it does not account for spatial dependencies between nodes. 

• GCN: A Deep Learning (DL) that captures spatial dependencies in graph-structured data. While GCNs spatial 

relationships, it lacks temporal modeling capabilities when used independently. 

• ST-GCN: Combines GCN for spatial modeling with temporal convolutional layers. It captures spatial and temporal 

dependencies but may have limitations in capturing complex temporal sequences compared to RNN. 

• Attention-based Temporal Graph Neural Network (A3T-GCN): By applying graph convolution and attention 

mechanisms to capture spatial and temporal dependencies. This model is known for focusing on key features in the 

sequence but may add computational complexity. 

 

V. RESULT ANALYSIS 

Predictive Accuracy of T-GCN vs. Baseline Models 

As shown in Fig 3, the T-GCN achieves the lowest MSE (1.42), MAE (0.92), and RMSE (1.19) values, demonstrating 

superior accuracy in predicting BS. The A3T-GCN closely follows MSE, MAE, and RMSE values of 1.58, 0.98, and 1.26, 

respectively, highlighting its effectiveness with slightly higher errors than T-GCN. ST-GCN shows moderate performance, 

with MSE of 1.97, MAE of 1.17, and RMSE of 1.40, benefitting from its spatial-temporal capabilities but lacking the 

temporal depth of T-GCN. The LSTM and GCN perform less accurately, with MSE, MAE, and RMSE values of 2.63, 

1.42, and 1.62 for LSTM and 2.91, 1.56, and 1.71 for GCN, reflecting limitations in handling combined spatial-temporal 

dependencies. ARIMA, a purely temporal model, has the highest errors with MSE of 3.57, MAE of 1.78, and RMSE of 

1.89, indicating its limited capability for complex spatial-temporal data. 

 

 
Fig 3. MSE, MAE, and RMSE Results for Each Model. 
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Fig 4. Temporal Prediction Horizon Analysis. 

 

Temporal Prediction Horizon Analysis 

The T-GCN demonstrates the highest accuracy across all prediction horizons Fig 4. For the 1-day horizon, T-GCN achieves 

an MSE of 1.38, MAE of 0.89, and RMSE of 1.17, outperforming A3T-GCN, which has MSE, MAE, and RMSE values 

of 1.54, 0.98, and 1.24, respectively. ST-GCN follows with higher errors (MSE of 1.92), while LSTM, GCN, and ARIMA 

show progressively worse performance, with ARIMA showing the highest errors (MSE of 3.41, MAE of 1.76, RMSE of 

1.85). For the 1-week horizon, T-GCN maintains the lowest errors (MSE of 1.89, MAE of 1.12, RMSE of 1.37). A3T-

GCN and ST-GCN perform moderately well but have slightly higher errors (MSE of 2.02 and 2.41). LSTM, GCN, and 

ARIMA show further increases in error values, with ARIMA again demonstrating the highest errors (MSE of 3.76, MAE 

of 1.88, RMSE of 1.94). 

 

 
Fig 5. Impact of GCN and GRU Layer. 

 

At the 1-month horizon, T-GCN remains the most accurate, with an MSE of 2.51, MAE of 1.36, and RMSE of 1.58. 

A3T-GCN follows with slightly higher errors (MSE of 2.73, MAE of 1.43, RMSE of 1.65), while ST-GCN has an MSE 

of 3.06. The LSTM and GCN show further degradation in accuracy, while ARIMA records the highest error metrics (MSE 

of 4.29, MAE of 2.02, RMSE of 2.07), indicating limited capability for long-term temporal predictions. 

 

Impact of Spatial Dependence (GCN) and Temporal Dependence (GRU) Layer 

Including the GCN in the T-GCN significantly enhances accuracy Fig 5, achieving an MSE of 1.42, MAE of 0.92, and 

RMSE of 1.19. The GRU-only configuration (without GCN) has a higher MSE of 2.08, MAE of 1.32, and RMSE of 1.44, 

indicating that the GCN layer effectively captures spatial dependencies among structural components. This improvement 

demonstrates the GCN's contribution to reducing error by integrating spatial relationships within the model. Similarly, the 

GRU in the T-GCN enhances predictive accuracy by handling temporal dependencies, resulting in an MSE of 1.42, MAE 

of 0.92, and RMSE of 1.19. The GCN-only configuration (without GRU) shows increased error metrics, with an MSE of 
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2.37, MAE of 1.53, and RMSE of 1.54. This comparison underscores the GRU’s role in capturing sequential patterns over 

time, which is essential for accurate resilience predictions in dynamic structural environments. 

 

Hyper Parameter Sensitivity 

The optimal configuration for the T-GCN Fig 6, with 2 GCN, 64 GRU units, a learning rate of 0.001, and a batch size of 

32, achieves the lowest MSE (1.42), MAE (0.92), and RMSE (1.19), indicating balanced accuracy across all metrics and 

increasing the GCN to 3 results in slightly higher errors (MSE of 1.53, MAE of 0.98, RMSE of 1.24), showing diminishing 

returns across all metrics. Adjusting the GRU units from 64 to either 32 or 128 similarly raises errors across MSE, MAE, 

and RMSE, signifying that 64 units best balance complexity and error minimization. The learning rate of 0.001 minimizes 

MSE, MAE, and RMSE, with higher (0.005) and lower (0.0005) rates leading to increased errors due to convergence 

challenges. For batch size, 32 yields the lowest errors (MSE, MAE, RMSE), while smaller (16) and larger (64) batch sizes 

slightly increase all three error metrics, showing that 32 provides the most balanced update rate for optimized performance 

across MSE, MAE, and RMSE. 

 

 
Fig 6. Hyperparameter Sensitivity Results. 

 

 
Fig 7. Prediction Consistency Across Metrics. 
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Prediction Consistency Across Structural Health Metrics 

The T-GCN model shows strong consistency across structural health metrics Fig 7, with the lowest errors in stress 

prediction (MSE of 1.28, MAE of 0.83, RMSE of 1.13), indicating high accuracy in tracking stress variations. Vibration 

predictions also perform well, with an MSE of 1.37, MAE of 0.88, and RMSE of 1.17, suggesting reliable capture of 

dynamic structural responses. Temperature predictions exhibit slightly higher errors (MSE of 1.51, MAE of 0.96, RMSE 

of 1.23), reflecting the impact of environmental variations on model performance. Corrosion predictions have an MSE of 

1.45, MAE of 0.91, and RMSE of 1.20, demonstrating the model’s ability to forecast gradual changes in material 

degradation. 

 

 
Fig 8. Predicted vs. Actual Metrics. 

 

Predicted vs. Actual Metrics Over Three Months 

Over three months, the T-GCN maintains accuracy across metrics Fig 8 with slight deviations between actual and predicted 

values. For stress, the predicted values closely follow actual readings (e.g., Day 1: actual 50.2, predicted 49.7), showing 

consistent tracking of load distribution. Vibration predictions align with minor differences, reflecting accurate detection of 

frequency changes (e.g., Day 7: actual 0.46, predicted 0.44). Temperature predictions exhibit realistic deviations, as seen 

in daily values (e.g., Day 22: actual 23.0, predicted 22.7). Corrosion predictions capture gradual trends with minor 

variations (e.g., Day 60: actual 0.060, predicted 0.058), indicating reliable long-term monitoring. 

 

VI. CONCLUSION AND FUTURE WORK 

The study presents a robust model for predictive DM and BS in civil engineering, using AI and IoT to monitor structural 

factors. The IIMS uses real-time data from IoT sensors to provide proactive results for hazard assessment and maintenance 

planning. The TGCNN accurately predicts durability by collecting spatial and temporal links. The model outperforms 

standard and modern models in essential methods. Optimizing the model's accuracy and efficiency is easy by identifying 

suitable environments for GCN layers, GRU, learning rate, and batch size. The research supports combining AI-based 

predictive measures with IoT monitoring to manage infrastructure durability proactively. 

In the future, researchers prefer to develop the model further for more general use in structural engineering, explore 

adaptive methods to accommodate different environmental factors and render it even faster to compute for large-scale 

applications. 
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