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Abstract – Autonomous Vehicles (AV) are revolutionizing transportation, but real-time decision-making remains a 

challenge due to End-To-End Delay (EED introduced by Cloud Computing (CC) based processing. A 5G-enabled Edge 

Computing Model (5G-EECM) is proposed to address this problem by processing time-sensitive tasks at the network edge, 

closer to the AV, reducing EED and improving responsiveness. The architecture uses Machine Learning (ML) for Obstacle 

Detection (OD) and Reinforcement Learning (RL) for navigation, dynamically switching between Edge Computing (EC) 

EC and CC based on task demands. The study tested the system using a user-friendly AV on a controlled track, revealing 

increased response times, reduced average EED, reduced energy consumption, and improved OD accuracy. The results 

demonstrate that 5G-EECM significantly boosts AV systems' real-time safety and efficiency, making it reliable and 

scalable for next-generation AV systems. 

 

Keywords – Autonomous Vehicles, 5G Network, Machine Learning, Edge Computing, Cloud Computing, Energy 

Consumption. 

 

I. INTRODUCTION 

Researchers predict that introducing Autonomous Vehicles (AV) will transform the automobile sector by enhancing road 

safety, reducing the probability of human errors, and optimizing traffic flow [1-2]. Employing advanced technologies such 

as Machine Learning (ML) and Artificial Intelligence (AI) has provided AV with the ability to understand sensor data, 

make rapid decisions, and adapt to a constantly evolving environment [3]. The massive volume of data that AV requires to 

process rapidly while ensuring reliability and safety renders the real-time Decision-Making Process (DMP) problematic 

for success [4-5]. For the collection and analysis of data collected by AV, the present methods focus primarily on Cloud 

Computing (CC) [6-7]. By employing remote servers with significant computational resources, CC systems have 

effectively controlled large-scale operations, including environmental detection and navigation planning [8-9]. Although 

CC provides several benefits, the main disadvantage is the End-to-End Delay (EED) it imposes. This is especially 

noticeable in unpredictable states that require swift reactions, such as Obstacle Detection (OD) and Collision Avoidance 

(CA), where CC typically finds its application [10–11]. 
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Long-distance data communication presents an EED on the effectiveness of cloud-based AV systems for tasks requiring 

real-time execution despite advances in cloud computing [12–13]. These EEDs can result in slower response times, 

potentially compromising the safety and performance of AV [14]. Additionally, CC systems frequently face bandwidth 

constraints and network reliability OD, which can further degrade system performance in critical situations [15]. AV 

systems' primary challenge is reducing EED in real-time DMP while maintaining high computational performance [16-

17]. Traditional CCs have trouble meeting the low-EED needs for safety-critical tasks. This means we need a different 

method to process data faster and control AV more reliably [18–19]. Therefore, there is a gap in existing AV, as high-EED 

cloud-based solutions are lacking for real-time operations. 

This article recommends a 5G-enabled Edge Computing Model (5G-EECM) to solve the challenges integrated with CC 

in real-time AV management. Edge Computing (EC) performs primary tasks like OD and dynamic navigation at the 

network's edge, closer to the AV. This enhances the performance of safety-related tasks and decreases data transmission 

time. An AI-powered DMP is a vital component of the model; it applies ML to OD and Reinforcement Learning (RL) 

toCA that have occurred. The model dynamically switches between on-premises and CC based on the complexity of the 

task and the level of connectivity available. The CC can manage high-performance tasks like large-scale data analysis and 

long-term planning, while the edge can perform time-sensitive tasks [20]. The resulting combination makes achieving both 

ends of the radio spectrum feasible. Finding out how effectively 5G-EECM performs in monitoring AVs in real-time is the 

primary objective of the current research. This study investigates the effectiveness of CC and EC in terms of EED, reaction 

time, CA, track change, and energy consumption. The primary objective of the research is to demonstrate how EC might 

enhance AV tasks in real-time [21]. The proposed model predicts a significant improvement in real-time responsiveness 

for AV systems, particularly in low-EED-DMP environments [22]. This model could boost the scalability, efficiency, and 

safety of AV-driving technologies by integrating 5G-EECM and AI. The findings of this research can lead to the 

development of more reliable AV systems that operate in dynamic environments with minimal EED [23]. 

The rest of this paper is organized as follows: Section 2 presents the system architecture, detailing the Edge Control 

Unit (ECU), Cloud Control Unit (CCU), and the 5G network integration. Section 3 describes the experimental setup, 

including the AV and performance metrics used in the study. Section 4 presents the results and analysis, comparing the 

performance of EC and CC. Finally, Section 5 concludes the paper and discusses the implications of the results for future 

research and development. 

 

II. METHODOLOGY 

Proposed Architecture 

As demonstrated by Fig 1, the 5G-EECM relies upon several features. This section provides an overview of every element. 

 

 
Fig 1. Proposed Architecture. 

 

ECU 

A vital component of the approach is that the ECU has been designed to control neighborhood real-time DMP. An edge 

server, typically associated with nearby networks or a mobile base station, performs the demonstration in the vehicle's 

closest proximity. The vehicle connects to this server via 5G and transmits raw data from its sensors, comprising video 

cameras, Light Detection and Ranging (LiDAR), and radar. The decreased EED between data collecting and control 

implementation results from the edge server's proximity to the data origin. 

Processing tasks that involve rapid responses, including OD, changing routes automatically, and responding to disasters, 

are where this unit performs. Due to the edge server's real-time data processing features, the AV sends control commands, 

including speed or steering angle changes. The neighborhood vehicle controller is also included in the ECU; it is responsible 
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for implementing the selections obtained from the edge server while ensuring the vehicle drives accurately and on time. 

To keep things safe and dependable, the unit can hand off control to the vehicle's internal functions or a controller based 

on the outside environment in the case of a system failure [24]. 

 

CCU 

As opposed to the nearness of the EC, the CCU employs cloud servers set up at a greater distance from the actual vehicle. 

EED increases due to the longer distances required when transmitting sensor data from the vehicle over the internet. The 

data is transmitted to a server in the cloud, which then utilizes neural networks to analyze the environment or performs 

high-level planning with multiple automobiles or longer paths, both of which can be computationally demanding. 

Despite its processing power, the CC server introduces delays that make it less suitable for tasks requiring split-second 

decisions. However, it is ideal for applications that do not demand immediate feedback, such as optimizing traffic 

management over a broader area, conducting large-scale data analysis, or managing the vehicle fleet's long-term behavior. 

The CC-based vehicle controller sends the processed data back to the vehicle, but the time taken to transmit this data over 

the network can impact its effectiveness for real-time actions. 

 

5G Network 

The 5G network is the system's backbone, connecting the vehicle to the EC and CC. It ensures high-speed, low-EED data 

transmission between the vehicle and the edge server, enabling real-time processing and control. The network's ultra-low 

EED and high bandwidth are critical for ensuring the vehicle can operate smoothly in dynamic environments, mainly when 

relying on the edge for DMP. 

5G is essential for transmitting data to cloud services because it enables faster transfer than previous-generation 

networks. Nevertheless, EED continues to be caused by traveling long distances, so CCU is more appropriate for processes 

that are not time-sensitive. 5G can cope with both simple, rapid responses and more complex, highly resource-intensive 

tasks due to its capabilities to facilitate real-time and large-scale data transfer. 

 

Vehicle Sensors 

The computer network depends on the AV's collection of sensors, which collect real-time data about the vehicle's settings. 

Cameras collect visual data, LiDAR, and radar generate 3-D maps, and OD and global positioning systems assist with 

navigating around. Every DMP is developed based on sensor data, giving the vehicle the starting point to analyze the 

environment and design its subsequent motion. 

A within-proximity edge server deals with the data and transforms it into actionable commands in an EC. In a CC 

environment, the same data is transmitted to a remote server to be analyzed on an increased or more complex volume. For 

the system to effectively allow AV driving, the data processing area is less significant than the accuracy and timeliness of 

the sensor readings. 

 

Vehicle Control Data 

The commands dealt with and transmitted to the AV by edge or cloud servers are called AV control data. With this data, 

the vehicle may respond to its environment by actively pivoting, stopping, or driving up in response to decisions made by 

its control systems. In most instances, the edge control data performs larger-scale commands more quickly and efficiently, 

like changing the vehicle's speed to OD or navigating traffic. On the other hand, CCU data could involve higher-level 

DMP, such as how to best communicate with other AVs or maximize the vehicle's route over a long time. 

The command data from any source is vital for maintaining the system's performance, efficiency, and safety control by 

synchronizing the vehicle's operations with the surrounding environment. 

 

Error Handling and Hybrid Control 

The design includes a robust error-correcting mechanism to maintain the model's reliability. The result is that even if the 

ECU or CCU fails, the system continues to function without losing safety. If there's a problem with the edge server, the 

cloud server can temporarily take over, but there will be more EED. On the contrary, if the cloud server falls, the edge 

device may assume real-time tasks, maintaining the AV's operation. 

A remote control unit based on the infrastructure is employed when neither the edge servers nor the cloud servers 

provide significant control. This component is fail-safe, ensuring the vehicle can be managed remotely despite significant 

system errors, preventing dangerous situations. 

 

Switching Method 

In the proposed 5G-EECM, switching between the ECU and CCU is critical for ensuring the AV maintains optimal 

performance and responsiveness in different operating conditions. The system is designed to make decisions dynamically, 

selecting between EC and CC processing based on EED, task type, and network conditions. The key goal is to ensure low-

EED responses for time-critical tasks while leveraging the cloud for more computationally intensive tasks that are not time-

sensitive. 
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Latency Monitoring and Decision Criteria 

EED is the primary factor that dictates switching. The system continuously monitors the total EED, which consists of the 

communication EED 𝐿comm  and processing EED 𝐿𝑝𝑟𝑜𝑐. The total EED 𝐿total  is calculated as, Eq. (1) 

 

 𝐿total = 𝐿comm + 𝐿proc   (1) 

 

where: 

•  𝐿comm 
𝑒𝑑𝑔𝑒

 is the time required to transmit data between the vehicle and the edge server. 

• 𝐿comm 
cloud  the time to transmit data between the vehicle and the cloud server is generally higher due to longer 

transmission distances. 

•  𝐿𝑝𝑟𝑜𝑐
edge 

 and 𝐿𝑝𝑟𝑜𝑐
cloud  represent the processing times for the edge and cloud servers. 

The vehicle will prefer the ECU as long as the edge EED 𝐿total 

edge 
 is within a predefined threshold for real-time processing, 

𝑇𝑟, which represents the maximum acceptable latency for real-time tasks like OD and emergency braking.  

The decision criteria are Eq. (2). 

 

 If 𝐿total 

edge 
≤ 𝑇𝑟 , use ECU.   (2) 

 

However, if the edge processing becomes overloaded or network conditions degrade, leading to higher EED, the system 

will switch to the CCU, Eq. (3). 

 

 If 𝐿total 

edge 
> 𝑇𝑇 , switch to CCU.   (3) 

 

In scenarios where tasks are less time-sensitive, such as route planning or data analysis, the cloud can be used 

regardless of edge server EED. 

 

Error Condition-Based Switching 

Besides EED, the system monitors the health of the edge and cloud servers. Let 𝐸edge  and 𝐸cloud  be binary indicators 

representing whether there is a failure (1) or normal operation (0) in the respective servers. If the edge server encounters a 

failure or performance degradation (e.g., hardware fault, overheating, or processing errors), the system immediately 

switches to the cloud, even if the EED is acceptable, Eq. (4). 

 

 If 𝐸edge = 1, switch to CCU.   (4) 

 

Similarly, if the cloud server experiences problems and the edge is operational, the system returns to the edge for real-

time control, Eq. (5) 

 

 If 𝐸cloud = 1 and 𝐸edge = 0, switch to ECU.  (5) 

 

Task-Based Switching 

Not all tasks in an AV system require real-time execution. For time-critical tasks such as emergency braking or CA, the 

system will prioritize the edge server for processing to ensure minimal delay. Tasks that are more computationally intensive 

but less sensitive to EED, such as long-term navigation planning, can be offloaded to the cloud. The system uses the task 

time-sensitivity function 𝑡(𝑥), where 𝑡(𝑥) ≤ 𝑇𝑟 indicates a time-critical task. 

If a task is time-sensitive, the system ensures that it is processed at the edge, Eq. (6). 

 

 𝑓(𝑥) →  ECU if 𝑡(𝑥) ≤ 𝑇𝑟  (6) 

 

For tasks where 𝑡(𝑥) > 𝑇𝑟, indicating that real-time execution is not critical; these tasks are sent to the cloud for 

processing, Eq. (7). 

 

 𝑓(𝑥) →  CCU If 𝑡(𝑥) > 𝑇𝑟   (7) 

 

Network Condition-Based Switching 

The switching also accounts for network conditions. If the network connection to the edge server degrades, such as when 

experiencing high packet loss or network congestion, the system will automatically switch to the cloud server to maintain 

vehicle control. This is especially important in scenarios where the vehicle may move out of the range of an edge server or 

when network disruptions occur. 
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Let 𝑄edge  represent the quality of the network link to the edge server. If the link quality falls below a certain threshold 

𝑄min , the system switches to the cloud server, Eq. (8). 

 

 If 𝑄𝑒𝑑𝑔𝑒 < 𝑄min, switch to CCU.   (8) 

 

Similarly, if network conditions in the cloud deteriorate and the edge network is better, the system will switch back to 

the edge server, Eq. (9). 

 

 If 𝑄cloud < 𝑄min and 𝑄𝑒𝑑𝑔𝑒 ≥ 𝑄min, switch to ECU.  (9) 

 

5G Network Architecture  

This system's 5G network model enables low-EED communication between the AV, edge servers, and the CC. As shown 

in the diagram, the model is designed to support real-time, reliable data transmission for time-critical tasks in AV, with 

EED being minimized by purposefully deploying edge servers closer to the AV. 

 

Vehicle Communication with 5G Access Network 

In this setup, each AV communicates wirelessly with the 5G access network using a connection established via enhanced 

NodeBs (eNBs). These base stations handle communication between the vehicles and the 5G core network. The 

communication is optimized to minimize delay, with the EED between the vehicles and the edge server being less than 1 

ms. This ensures that data such as vehicle sensor readings (e.g., Cameras, LiDAR) is transmitted to the edge servers with 

minimal EED, allowing real-time DMP and control. 

 

Deployment of Edge Servers 

Edge servers are deployed within the access network, typically co-located or very close to the eNBs, to process vehicle 

data locally. This reduces the need for long-distance communication with the cloud and helps achieve the low-latency goals 

required for real-time AV operations. With an access network EED ranging from 13 ms to 24 ms, the edge server can 

quickly analyze data and return control commands to the AV, significantly improving reaction times for CA and speed 

adjustments. 

 

Internet and Cloud Server Communication 

For less time-critical tasks, such as long-term route planning, data analytics, or Deep Learning (DL) updates, the 

architecture relies on cloud-based processing. The cloud servers are located remotely and accessible via the Internet. Data 

transmission from the AV to the cloud incurs a higher EED than EC, with the internet delay ranging from 15 to 150 ms. 

This added EED makes cloud processing unsuitable for real-time control but ideal for handling more computationally 

intensive, non-time-sensitive tasks. 

 

5G Core Network 

The 5G core network forms the backbone connecting the access network (eNBs and edge servers) to the internet and cloud. 

The core network components, such as the Serving Gateway (S-GW) and Packet Gateway (P-GW), manage data traffic, 

ensuring that packets are efficiently routed between the access network and the cloud. These elements are necessary to 

maintain the proper Quality of Service (QoS) for real-time AV communication. They ensure that the edge of the cloud 

consistently and rapidly receives high-priority data from the AV based on the task demands. 

 

Network Slicing and QoS 

This architecture additionally references a 5G network, which utilizes network slicing, which divides the network into 

virtual segments that can be reconfigured depending on particular requirements. The frequency of tasks controls which 

QoS parameters can be implemented in each segment. For instance, the network may prioritize important navigation and 

safety tasks by providing a segment with minimal EED for communication between AV and the edge. However, additional 

segments can be employed for tasks that do not require high time sensitivity, such as sending data to the public cloud. 

 

Vehicle Control and Internal States 

This section describes how the control system works within the proposed design, focusing on the internal conditions and 

DMP that allow the vehicle to operate autonomously while maintaining safety and efficiency. In order to make 

recommendations from real-time sensor data and internal states, the engine control system dynamically interfaces with the 

EC and CC units. This makes sure the vehicle tracks its surroundings with precision. 

 

Vehicle Control System (VCU) 

The VCU performs control signals computed locally on the vehicle or in the data center. Acceleration, slowdown, steering, 

and other actuator controls are all under the control of the VCU. The primary data it collects is from the vehicle's sensor 
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suite, such as video cameras, LiDAR, radar, and Global Positioning System (GPS), and it provides current data about the 

vehicle's surrounding environment. 

In a Feedback Loop, The Vehicle Functions in a Particular Method 

• In the initially occurring position, sensor data is consistently collected. 

• The edge server is used for decisions made in real-time, and the remote cloud server is used for more advanced 

tasks to transmit control commands to the VCU. 

• The system monitors the vehicle's internal functioning and adapts activity once those commands are implemented. 

 

Internal States and State Estimation 

The vehicle's interior conditions are current operational and physical variables.  

These scenarios are vital for driving stability and navigating around. 

The key Internal States Include 

• Position (𝑃): The vehicle's location via GPS and sensor fusion. 

• Velocity (𝑉): Vehicle speed and direction vital to navigational instruction and CA. 

• Acceleration (𝐴): Tracked for comfortable driving and emergency stopping. 

• Heading (𝐻): Navigation and controlling the steering require vehicle position. 

• Yaw Rate (𝑌): A metric used to determine the vehicle's vertical rotation helps with balance throughout positions. 

• Steering Angle (𝑆): To CA and drive turns, the angle of the steering wheel must be proper. 

The AV's control system uses these internal variables to update behavior and constantly adapt to environmental changes. 

For instance, the system can modify the vehicle's speed and steering position to CA while preserving stability if it senses 

an OD. 

 

State Transition and DMP 

Sensor data and control signals upgrade the vehicle's internal configurations. The state transition function 𝛿(𝑥) governs 

how the vehicle travels from one state to another based on the control inputs 𝑢 it receives, Eq. (10). 

This Can Be Expressed as 

 

 𝑥(𝑡 + 1) = 𝛿(𝑥(𝑡), 𝑢(𝑡))  (10) 

 

where: 

• 𝑥(𝑡) Represents the current state of the vehicle at time ′𝑡′. 
• 𝑢(𝑡) represents the control input, such as adjustments to velocity, steering angle, or acceleration. 

• 𝑥(𝑡 + 1) is the updated vehicle state after executing the control input. 

In reply to an obstacle, the edge server decreases speed and changes steering angle. The AV will transition from its 

present state 𝑥(𝑡) (e.g., moving at a positive velocity and heading) to a new state 𝑥(𝑡 + 1) where it has slowed down and 

altered its path to CA. 

 

Real-Time Control via EC 

The edge server achieves the AV’s control functions. Using low-EED communication, the edge server processes data from 

the vehicle’s sensors and sends control commands to adjust the vehicle’s internal states. For example, when the vehicle is 

navigating a busy intersection, the edge server may receive live video feeds and LiDAR data, process this information in 

real-time, and send commands to adjust the vehicle’s velocity and steering angle to ensure it navigates safely through the 

environment. 

 

High-Level Decision-Making Via CC 

While the edge handles immediate control tasks, the CC unit assists with high-level DMP based on the vehicle’s overall 

internal state and long-term objectives. For example, the cloud may generate the optimal route for the vehicle to take over 

a long distance, considering current traffic patterns, road conditions, and fuel efficiency. Although less time-sensitive, these 

higher-level decisions are based on a holistic view of the vehicle’s internal states and external data sources. 

 

Internal State Monitoring and Error Handling 

The vehicle continuously monitors its internal states for abnormalities or errors. If key states (e.g., velocity, acceleration, 

or steering angle) deviate significantly from expected values, the system triggers an error response.  

 

This Could Result in 

Switching to a Safe State 

For instance, reducing speed if an unexpected OD or the vehicle’s yaw rate indicates instability during a turn. 
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Failover to Local Control 

If the EC or CC communication fails, the vehicle’s internal control unit can take over, using pre-programmed algorithms 

to ensure safe navigation based on real-time sensor data and internal states. 

The AV's ability to manage internal state errors ensures its resilience and safety, even in challenging environments or 

in case of network failures. 

 

 
Fig 2. CNN Model. 

 

CNN for OD  

The OD for the AV leverages the Convolutional Neural Network (CNN) architecture, as depicted in Fig 2. The model 

consists of several convolutional layers for Feature Extraction (FE), pooling layers for dimensionality reduction, and Fully 

Connected (FC) layers for classification.  

 

The Key Steps Involved in This CNN are Outlined Below 

Input Layer 

The input to the CNN consists of images from the vehicle's camera capturing the race track and surrounding environment. 

The input image is input into the CNN for processing. Let's denote the input image as 𝐼, with dimensions 𝐻 × 𝑊 × 𝐶, 

where 𝐻 is the height, 𝑊 is the width, and 𝐶 is the number of color channels. 

 

Convolution Operation 

The input image is convolved with a set of learnable filters (kernels) in the convolution layers. Let the filter 𝑊𝑐𝑜𝑛𝑣 ∈
ℝ𝑘×𝑘×𝐶  represent the weights, where 𝑘 × 𝑘 is the size of the filter, and 𝐶 matches the number of input channels.  

The convolution operation at each layer is expressed as Eq. (11). 

 

 𝑂𝑐𝑜𝑛𝑣(𝑥, 𝑦) = ∑  𝑘−1
𝑖=0 ∑  𝑘−1

𝑗=0 ∑  𝐶−1
𝑐=0 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗, 𝑐)𝑊𝑐𝑜𝑛𝑣(𝑖, 𝑗, 𝑐) + 𝑏  (11) 

 

where 

• 𝑂𝑐𝑜𝑛𝑣(𝑥, 𝑦) is the output of the convolution at position (𝑥, 𝑦). 

• 𝑊conv (𝑖, 𝑗, 𝑐) is the value of the filter at position (𝑖, 𝑗) for channel ′𝑐′. 
•  𝑏 is the bias term, a learnable parameter added to the output. 

•  𝐼(𝑥 + 𝑖, 𝑦 + 𝑗, 𝑐) is the pixel value from the input at position (𝑥 + 𝑖, 𝑦 + 𝑗) in channel 𝑐. 

The convolution results in a feature map representing different aspects of the input, such as edges, textures, and shapes. 

 

Activation Function (ReLU) 

After the convolution, a non-linear activation function is applied to the feature map. The ReLU (Rectified Linear Unit) is 

used in this case, Eq. (12). 

 

 𝑂ReLU(𝑥, 𝑦) = max(0, 𝑂conv (𝑥, 𝑦))  (12) 
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ReLU helps introduce non-linearity into the network, allowing it to learn more complex features. 

 

Pooling Operation 

The feature map is subsequently down-sampled utilizing a pooling operation, decreasing its spatial dimensions while 

deleting significant data. This scenario calls for max pooling, whereby each local region of the feature map has the highest 

possible value selected.  

For a pooling window of size 𝑝 × 𝑝, the max pooling function is specified by Eq. (13). 

 

 𝑂𝑝𝑜𝑜𝑙(𝑥, 𝑦) = max
0≤𝑖<𝑝,0≤𝑗<𝑝

 𝑂ReLU (𝑥 + 𝑖, 𝑦 + 𝑗)  (13) 

 

This reduces the size of the feature map while retaining essential features. 

 

Second Convolution + ReLU 

Before ReLU activation, an additional convolutional layer sends the initial pooling layer's data. Using the pooled feature 

maps, this procedure duplicates the first convolution layer but retrieves additional complicated features, Eq. (14). 

 

 
𝑂conv 2(𝑥, 𝑦) =  ∑  𝑘−1

𝑖=0  ∑  𝑘−1
𝑗=0  ∑  𝐶′−1

𝑐=0  𝑂pool (𝑥 + 𝑖, 𝑦 + 𝑗, 𝑐)𝑊conv 2(𝑖, 𝑗, 𝑐) + 𝑏

𝑂𝑅𝑒𝐿𝑈2(𝑥, 𝑦) = Max(0, 𝑂conv 2(𝑥, 𝑦))
  (14) 

 

where 𝑊𝑐𝑜𝑛𝑣2 and 𝑏 are the weights and biases of the second convolution layer. 

 

Flattening 

After applying convolution and pooling layers, the resulting feature maps are flattened into a single vector that can be input 

into FC layers. Let the output feature map have dimensions 𝐻′ × 𝑊′ × 𝐶′. The flattening operation transforms this 3D 

tensor into a 1D vector of length 𝐻′ × 𝑊′ × 𝐶′, denoted as Eq. (15). 

 

 𝑂flat = Flatten (𝑂ReLU2 )  (15) 

 

FC Layers 

Each neuron in one FC layer becomes linked to all neurons in the subsequent layer as the flattened vector travels by layers. 

For a FC with 𝑛 units, the output is computed as follows, Eq. (16) 

 

 𝑂𝐹𝐶 (𝑖) = ∑  𝐻′𝑊′𝐶′−1
𝑗=0 𝑂𝑓𝑙𝑎𝑡(𝑗)𝑊𝐹𝐶(𝑖, 𝑗) + 𝑏𝐹𝐶(𝑖)  (16) 

 

where, 𝑂𝐹𝐶(𝑖) is the output of the 𝑖-th unit in the FC layer, 𝑊𝐹𝐶(𝑖, 𝑗) is the weight connecting the 𝑗-th input to the 𝑖-th 

unit, 𝑏𝐹𝐶(𝑖) is the bias for the 𝑖-th unit. 

 

SoftMax Layer (Classification) 

The output of the final FC is passed through SoftMax to convert the raw scores into probabilities for classification. The 

SoftMax is given by, Eq. (17). 

 

 𝑃(𝑦 = 𝑖 ∣ 𝑥) =
𝑒𝑧𝑖

∑  𝑗  𝑒
𝑧𝑗

  (17) 

 

where 𝑧𝑖 is the raw score for class 𝑖; the denominator sums the exponentials of the raw scores for all classes to normalize 

the output. This gives a probability distribution over all possible classes (e.g., obstacle or non-obstacle), with the class 

having the highest probability selected as the predicted class. 

 

Final Classification 

The final output of the network is the class label 𝑦̂, predicted based on the highest probability from the SoftMax output, 

Eq. (18). 

 

 𝑦̂ = arg max
𝑖

 𝑃(𝑦 = 𝑖 ∣ 𝑥)  (18) 

 

This indicates the class to which the input image belongs, enabling the system to determine whether the detected object 

is an OD or CA. 
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RL Model for CA 

The CA in the AV is modeled using RL, where the vehicle learns an optimal policy for CA by interacting with its 

environment. In RL, an agent (vehicle) learns to act in an environment to maximize cumulative rewards based on 

experience. In the context of CA, the agent’s goal is to navigate safely while OD.  

 

 
Fig 3. a) Experiment AV Model, B) Circuit Diagram, C) Race Track. 

 

Problem Formulation 

In the RL, the CA is represented as a Markov Decision Process (MDP), defined by the following components: 

 

State Space 

The state 𝑠 ∈ 𝑆 represents the environment's current condition, including the vehicle's internal states (position, velocity, 

acceleration, heading) and OD (location, size, distance from the vehicle). 

 

Action Space 

The action 𝑎 ∈ 𝐴 is the set of possible actions the vehicle can take to CA. These actions include adjusting the steering 

angle, changing speed (accelerating or decelerating), or applying the brakes. 

 

Transition Function (𝒔′ ∣ 𝒔, 𝒂)  

The probability of transitioning from the current state 𝑠 to a new state 𝑠′ after taking action 𝑎. The environment is stochastic, 

meaning that the vehicle's actions may have probabilistic results due to uncertainties in the real world (e.g., friction, road 

conditions). 

 

Reward Function (𝒔, 𝒂) 

The reward function provides feedback to the agent after taking an action. The reward is positive for actions that lead to 

CA and negative for actions that result in a collision. The goal is to maximize the cumulative reward. 

The agent learns an optimal policy 𝜋(𝑠), which defines the best action in each state to CA. 

 

State Representation 

The first component of the RL is defining the state space.  

The State 𝑠𝑡 at Time 𝑡 Captures the Following Information 

• 𝑥𝑡 : The current position of the vehicle. 

• 𝑣𝑡 : The velocity of the vehicle. 

• 𝜃𝑡 : The heading angle of the vehicle. 

• 𝑑𝑡 : The distance between the vehicle and the nearest obstacle. 

Thus, the state vector at time 𝑡 is represented as Eq. (19). 

 

 𝑠𝑡 = [𝑥𝑡 , 𝑣𝑡 , 𝜃𝑡 , 𝑑𝑡]  (19) 

 

Action Representation 

Once the agent clearly understands its state, the next step is to define its actions to CA. The action 𝑎𝑡 taken by the vehicle 

can be one of several discrete or continuous selections that control its movement.  

Common Actions Include 

• Adjusting the steering angle Δ𝜃 (e.g., turning left or right). 

• Modifying the speed Δ𝑣 (e.g., accelerating or decelerating). 

• Applying the brakes if necessary. 

The action vector at is represented as, Eq. (20) 

 

 𝑎𝑡 = [Δ𝜃, Δ𝑣]  (20) 
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Reward Function 

The reward function 𝑅(𝑠, 𝑎) is designed to encourage the agent to CAs and maintain safe driving behavior. The reward 

structure is as follows: 

• A positive reward +𝑅safe  is given to CA and moves safely toward the goal. 

• A negative reward −𝑅collision  is given for colliding with an OD. 

Thus, the reward function can be expressed as Eq. (21) 

 

 𝑅(𝑠𝑡 , 𝑎𝑡) = {
+𝑅safe  if 𝑑𝑡 > 𝑑safe 

−𝑅collision  if 𝑑𝑡 ≤ 𝑑collision 
  (21) 

 

Where: 

• 𝑑safe  is a safe distance threshold from obstacles. 

• 𝑑collision  is the minimum distance where a collision is detected. 

 

Policy and Value Function 

The policy 𝜋(𝑠) represents the agent's strategy, mapping states to actions. The goal of the RL agent is to learn an optimal 

policy 𝜋∗(𝑠) that maximizes the expected cumulative reward. The value of a state under policy 𝜋, called the value function 

𝑉𝜋(𝑠), is the expected total reward starting from state 𝑠 and following the policy 𝜋 after that.  

It is defined as Eq. (22) 

 

 𝑉𝜋(𝑠) = 𝔼𝜋[∑  ∞
𝑡=0   𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡)] (22) 

 

where: 

• 𝛾 ∈ [0,1) is the discount factor that gives more importance to immediate rewards than future rewards. 

• 𝑅(𝑠𝑡 , 𝑎𝑡) is the reward received at time step 𝑡. 

Similarly, the Q-value function 𝑄𝜋(𝑠, 𝑎) represents the expected cumulative reward for taking action 𝑎 in state 𝑠 and 

following policy 𝜋 after that, Eq. (23) 

 

 𝑄𝜋(𝑠, 𝑎) = 𝔼𝜋[∑  ∞
𝑡=0  𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡) ∣ 𝑠0 = 𝑠, 𝑎0 = 𝑎]  (23) 

 

The optimal Q-function 𝑄∗(𝑠, 𝑎) is given by Eq. (24) 

 

 𝑄∗(𝑠, 𝑎) = max
𝜋

 𝑄𝜋(𝑠, 𝑎)  (24) 

 

Bellman Equation 

The correlation between the values of a state and the resulting states is outlined by the Bellman equation. For the value 

function 𝑉𝜋(𝑠), the Bellman Eq. (25) and Eq. (26) are: 

 

 𝑉𝜋(𝑠) = ∑  𝑎 𝜋(𝑎 ∣ 𝑠) ∑  𝑠′ 𝑃(𝑠′ ∣ 𝑠, 𝑎)[𝑅(𝑠, 𝑎) + 𝛾𝑉𝜋(𝑠′)]  (25) 

 

For the Q-Function Qπ(s, a), the Bellman Equation is 

 

 𝑄𝜋(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑  𝑠′ 𝑃(𝑠′ ∣ 𝑠, 𝑎)max
𝑎′

 𝑄𝜋(𝑠′, 𝑎′)  (26) 

 

This equation recursively updates the value of each state-action pair based on the expected future rewards. 

 

Q-Learning Algorithm 

The Q-learning continuously improves the Q-values based on the observed state changes and rewards, enabling the learning 

agent to learn the most effective policy. 

The Q-Value Update Rule Is Given by Eq. (27). 

 

 𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 [𝑅(𝑠𝑡 , 𝑎𝑡) + 𝛾max
𝑎′

 𝑄(𝑠𝑡+1, 𝑎′) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (27) 

 

where: 

• 𝛼 is the learning rate that controls how much new data overrides old data 

• 𝛾 is the discount factor. 

• 𝑠𝑡+1 is the next state after taking action 𝑎𝑡 in state 𝑠𝑡. 

• 𝑎′ is the action reserved in the next state. 
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• The agent updates its Q-values as it detects the environment, progressively converging to the optimal policy 

𝜋∗(𝑠). 

 

Action Selection (Exploration vs. Exploitation) 

The agent uses an epsilon-greedy strategy to balance exploration and exploitation: 

• With probability 𝜖, the agent takes a random action (exploration). 

• With probability 1 − 𝜖, the agent selects the action with the highest Q-value (exploitation). 

The action selection is formalized as Eq. (28) 

 

 𝑎𝑡 = {
 Random Action  With Probability 𝜖

Arg_Max
𝑎

 𝑄(𝑠𝑡 , 𝑎)  With Probability 1 − 𝜖  (28) 

 

As the agent learns more about the environment, 𝜖 is gradually reduced to prioritize exploiting the learned policy. 

 

Final Policy for CA 

The learned optimal policy 𝜋∗(𝑠) the agent can take the best action in any assumed state to CA. Safely navigating around 

obstacles while maximizing the reward is achieved by modifying the Q-values based on their interactions with the 

surrounding atmosphere. 

 

III. EXPERIMENT DESIGN  

Testing Setup 

The performance of the 5G-EECM was tested using a custom-built AV (RV) on a controlled track. The goal was to compare 

EC and CC for real-time DMS. 

The RV (Fig 3 (a)) has essential components, including an ultrasonic sensor for OD, a fisheye camera for capturing the 

surroundings, and GPS and IMU sensors for tracking location and orientation. The vehicle's on-board control (Fig 3 (b)) 

is handled by an Arduino microcontroller, which interfaces with the sensors and motors. The Arduino receives commands 

from the edge or cloud servers via 5G and translates them into motor control using PWM signals. A Li-ion battery powers 

the vehicle, with EC monitoring system efficiency. The 5G network setup included a 5G base station operating on the n78 

band (3.5 GHz), facilitating communication between the RV and the edge server—the edge server processed sensor data 

with low latency, handling tasks like OD and CA. The same data was processed in the cloud mode on a remote cloud 

server, which introduced additional EED. Both setups were used to compare the real-time processing capabilities of EC vs 

CC. The software implemented in the testing setup included a CNN for OD, which processed the visual data captured by 

the camera. The CNN was trained on a dataset of track images and obstacles, with real-time inference handled by the edge 

server. In the cloud mode, the same CNN ran on the cloud server. The RL managed the vehicle’s navigation decisions, 

using sensor data to predict optimal paths. 

 

Experiment Method 

The tests were conducted on a 30-meter track (Fig 3 (c)), including straight sections and a mix of 90° and 180° turns. 

Obstacles were placed at varying intervals along the track to evaluate the vehicle’s ability to detect and avoid them. Each 

test consisted of five continuous laps around the track in a counterclockwise direction, as shown in the images. The 

experiments were conducted in two modes: EC and CC. Each mode was tested five times, and the modes were alternated 

between trials to mitigate the impact of battery levels and environmental changes. The parameters for the vehicle, including 

maximum speed, were held constant throughout all trials.  

Multiple Metrics Were Recorded During Each Test to Evaluate the System’s Performance 

• Latency: The time taken from transmitting sensor data to the reception of control commands from the server. 

• Response Time: The time between receiving control commands and the vehicle executing those commands, such 

as braking or turning. 

• CA Success: The number of times the vehicle OD and CA along the track. 

• Track Deviation: The degree to which the vehicle stayed on the intended path, measured by deviation from the 

centerline. 

• Energy Consumption: The battery usage during each trial to determine the impact of computational load on power 

efficiency. 

• Network Quality: Packet loss, transmission EED, and overall network stability during communication between the 

vehicle and servers. 

• Processing Load: The computational load on the edge and cloud servers is recorded to compare resource usage in 

each mode. 

These data were collected throughout the trials and used to compare the performance of the two modes under identical 

conditions. Each trial’s results were logged, and statistical analysis was conducted to determine the impact of computing 

mode on real-time AV control and navigation. 
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IV. RESULTS AND ANALYSIS 

The latency results from Table 1 and Fig 4 (a) indicate that EC consistently shows significantly lower EED than CC across 

all trials. The EED for EC ranged between 8.76 ms and 12.09 ms, while CC exhibited much higher latencies, ranging from 

36.87 ms to 53.21 ms. The difference in EED demonstrates the impact of communication distance and server proximity, 

with EC performing better for tasks requiring low-EED processing. In Table 2 and Fig 4 (b), the response time for EC is 

also notably lower than that of CC. EC response times range from 17.22 ms to 24.47 ms, while CC times are between 63.54 

ms and 85.21 ms. The results show that EC allows faster reactions to control inputs, which is critical for real-time AV 

operations. The higher response times in CC reflect the EED associated with processing data on a remote server, leading 

to delays in vehicle control. 

 

 
   (a)       (b) 

Fig 4. a) EED Comparison, B) Response Time Comparison 

 

Table 1. EED Results 

Trial EC based EED (ms) CC based EED (ms) 

1 9.67 38.85 

2 12.09 36.87 

3 11.17 53.21 

4 10.61 47.84 

5 8.76 50.82 

 

Table 2. Response Time Results 

Trial EC based Response Time (ms) CC based Response Time (ms) 

1 24.03 78.74 

2 21.64 85.21 

3 24.47 68.07 

4 17.22 63.54 

5 18.52 69.78 

 

 
   (a)     (b) 

Fig 5. a) CA Comparison b) Track Deviation Comparison. 



 

ISSN: 2788–7669                                                                                         Journal of Machine and Computing 5(2)(2025) 

 

1096 
 

Table 3. CA Success Results 

Trial 
EC based CA  

(Out of 10) 

CC based CA  

(Out of 10) 

1 9 5 

2 9 7 

3 9 5 

4 8 6 

5 9 5 

 

Table 4. Track Deviation Results 

Trial EC-based Track Deviation (cm) CC-based Track Deviation (cm) 

1 4.49 9.49 

2 3.77 7.74 

3 4.06 8.56 

4 2.46 7.41 

5 2.33 8.57 

 

Table 3 and Fig 5 (a) show that EC consistently performs better in CA than CC across all trials. In EC, the vehicle 

successfully avoided 8 to 9 obstacles out of 10, while in CC, the success rate ranged from 5 to 7. This indicates that the 

lower EED in EC allows for more timely and accurate responses to OD, leading to higher CA success. In Table 4 and Fig 

5 (b), track deviation results further demonstrate the advantage of EC. The track deviation for EC was consistently lower, 

ranging from 2.33 cm to 4.49 cm, compared to CC, where deviations were between 7.41 cm and 9.49 cm. The more 

significant deviations in CC recommend that the increased EED negatively impacted the vehicle’s ability to maintain its 

path, while EC enabled more precise navigation. 

 

 
   (a)     (b) 

Fig 6. a) Energy Consumption, B) Network Quality. 

 

Table 5. Energy Consumption Results 

Trial EC based EC (Wh) CC based EC (Wh) 

1 2.26 3.95 

2 2.31 3.48 

3 1.83 4.07 

4 1.95 3.85 

5 2.42 3.37 

 

Table 6. Network Quality Results 

Trial 
Edge Packet 

Loss (%) 

Cloud Packet Loss 

(%) 

Edge Network 

EED (ms) 
Cloud Network EED (ms) 

1 0.17 1.26 5.67 28.83 

2 0.18 1.28 4.09 21.67 

3 0.39 0.89 3.68 26.82 

4 0.43 1.45 2.41 18.68 

5 0.44 0.99 3.68 28.81 
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The EC results in Table 5 and Fig 6 (a) indicate that EC is more efficient in terms of EC than CC. Across all trials, EC 

had less EC, ranging from 1.83 to 2.42 Wh, while CC's EC was higher, ranging from 3.37 Wh to 4.00 Wh. The higher EC 

in CC can be attributed to the additional processing time and communication overhead required for remote data 

transmission. In Table 6 and Fig 6 (b), network quality results show that EC had significantly lower packet loss and 

network EED than CC. EC packet loss ranged from 0.17% to 0.40%, while CC exhibited higher packet loss between 0.89% 

and 1.45%. Similarly, network delay for EC was consistently low, between 2.41 and 5.67 ms, while CC showed much 

higher EED, ranging from 18.68 to 28.83 ms. The higher packet loss and network EED in CC reflect the additional 

challenges associated with longer communication distances, affecting the reliability and timeliness of data transmission. 

 

 
Fig 7. Processing Load Comparison. 

 

Table 7. Processing Load Results 

Trial Edge Processing Load (%) Cloud Processing Load (%) 

1 45.28 71.44 

2 36.04 65.09 

3 41.35 69.52 

4 46.47 67.68 

5 42.74 75.35 

 

The processing load results from Table 7 and Fig 7 demonstrate that CC consistently has a higher processing load than 

EC. For EC, the processing load ranged from 36.04% to 46.47%, whereas cloud computing exhibited a higher load, between 

65.09% and 75.35%. Due to a higher data transfer rate and remote processing, the need for computational resources in CC 

has increased. EC, on the other hand, direction, is more effective for real-time tasks because it processes data locally while 

requiring fewer resources for processing. 

 

V. CONCLUSION AND FUTURE WORK 

The paper introduces a 5G-EECM system that enhances the real-time DMP of AV systems. It uses AI and RL to design 

time-critical tasks like OD and CA at the edge. The system switches between CC and edge processing when the network 

is busy or complex. The experiment shows that EC significantly boosts response times, reduces average EED, improves 

CA by 40%, reduces path errors by 58%, and reduces energy consumption by 35%. The model balances real-time timeliness 

with CC performance by automatically switching between EC and CC. 

Future work will scale this model for smart city deployment and improve AI to improve DMP accuracy and reliability 

in complex circumstances. 
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