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Abstract – Accurate analysis of complex imaging data is crucial in regenerative science, where precision is essential. 

However, challenges such as noise, anatomical variations, and low contrast regions hinder effective image interpretation. 

This paper introduces MATHSegNet, a Multi-Scale Adaptive Transformer-Enhanced Deep Neural Network, designed to 

enhance image analysis efficiency and accuracy. MATHSegNet integrates CNNs for fine-grained local feature extraction 

with Transformers to capture global dependencies and spatial relationships. Multi-scale feature extraction ensures precise 

representation at different spatial levels, while attention mechanisms highlight key regions for improved analysis. A hybrid 

loss function combining Dice Loss and Unified Focal Loss effectively addresses class imbalance, improving segmentation 

of smaller structures. Developed using PyTorch and TensorFlow, MATHSegNet offers fast training and adaptability. 

Experimental results demonstrate a 7–10% improvement over existing models, validated using metrics such as Dice 

Similarity Coefficient, IoU, Sensitivity, and Specificity, making MATHSegNet a scalable and interpretable solution for 

regenerative imaging tasks. 

 

Keywords – Attention Mechanisms, Convolutional Neural Networks, Deep Learning, Image Segmentation, Multi-scale 

Future Extraction, Regenerative Medicine, Transformers. 

 

I. INTRODUCTION 

Regenerative medicine is an emerging domain aimed at replacing or restoring damaged organs and tissues, offering 

groundbreaking treatments for diseases that were once deemed incurable. Medical imaging is crucial in this field as it 

facilitates diagnosis, guides therapy planning, and monitors the effects of treatments [1].  High-resolution imaging 

modalities such as CT, MRI, and fluorescence microscopy are some of the imaging techniques commonly utilized to obtain 

precise pathological and anatomical information [2]. All the above modalities are, however, faced with several limitations 

such as noise, non-homogeneous resolution, and patient anatomical variability [3]. Moreover, multi-modal imaging where 

data fusion of two or more than two imaging modalities is a necessity makes things worse with the requirement that the 

techniques needed are ones that are capable of handling heterogeneous data and delivering high accuracy [4]. 
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Comparison of brain imaging methods (MRI, CT, and fluorescence microscopy) is shown in Fig 1, with the strength 

and limitation of each. Despite yielding useful information, these imaging methods cannot differentiate between brain 

tumors because of anatomical heterogeneity, overlapping tissues, and low contrast [5]. Traditional segmentation methods, 

such as region advancement, edge detection, and thresholding, are not usually able to yield the precision needed in 

regenerative medicine [6]. Separation of intricate biological structures by these methods becomes problematic, especially 

when high-dimensional, noisy, or low-contrast imaging data are involved [7]. 

 

 
Fig 1. Comparison of Brain Imaging Methods: MRI, CT, and Fluorescence Microscopy. 

 

Convolutional Neural Networks (CNNs), in particular, have transformed medical image analysis through large datasets 

and multi-level feature extraction in deep learning models. With the assistance of multi-level feature extraction and context, 

models such as U-Net [8] and DeepLab [9] have attained significantly improved segmentation accuracy. Despite all these 

improvements, existing models have the tendency to neglect global context and long-range relationships, which are crucial 

to correctly segment small or intricate anatomical structures, e.g., brain tumors. 

Transformer-based models, originally introduced to natural language processing, are the promising remedy for medical 

image segmentation due to novel breakthroughs in deep learning [10]. Transformers outshine conventional CNN-based 

models in the ability for capturing long-range dependencies as well as understanding global context [11]. By adopting 

advantages from global attention mechanisms [12] as well as local feature extraction [13], hybrid models integrating CNNs 

and transformers are a highly efficient solution to solving segmentation. 

Through enhanced feature extraction at various scales and dynamic focus on the most important image regions, multi-

scale feature extraction and attention mechanisms have further enhanced segmentation models [14]. In the case of brain 

tumor segmentation, where subtle differences in tissue size, shape, and texture play a major role in diagnostic precision, 

this comes in handy [15]. In addition, attention mechanisms facilitate high-priority processing of meaningful regions in 

multi-modal imaging data, guaranteeing accurate diagnosis and efficient treatment planning [16]. 

 

Motivation for MATHSegNet 

MATHSegNet was developed to address the overwhelming challenge of brain tumor segmentation, especially in the realm 

of regenerative medicine. Segmentation of tumors properly is essential in efficient treatment planning, diagnosis, and 

monitoring. Because of variation in tumor shape, size, and image with other imaging techniques, current methods are not 

always good enough. For these problems to be addressed, this study focuses on a hybrid architecture that brings together 

the benefits of transformers and CNNs. The advantages of the two are that they can identify localized fine features and 

detect global patterns as well as long-range relationships separately. Besides, multi-modal imaging data play an important 

role in regenerative medicine, which needs a platform capable of integrating and processing different information. For 

enhancing patient outcomes, MATHSegNet aims at resolving the aforementioned problems by offering medical 

professionals an accurate, sturdy, and adaptive solution. 

 

Main Contributions  

Innovative progress has been achieved through MATHSegNet model to counter traditional barriers in medical 

segmentation, especially recognizing brain tumors within regenerative medicine. 

 

CNN Integration 

MATHSegNet efficiently captures localized medical image features from Convolutional Neural Networks (CNNs). The 

feature aids the model to accurately detect brain tumors by grabbing subtle spatial patterns such as edges, textures, and 

small objects. 

 

Transformer 

Transformers help in encoding long-range dependencies and providing global context within the images. Transformers 

enable MATHSegNet to have a perception of the global structure and context through realizing relations among distant 

regions, thus providing precise even in complex or diverse regions. 

With these two approaches being combined, MATHSegNet forms an aptly proportioned hybrid architecture that 

combines global contextual perception with intricate local details. 
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Multi-Scale Feature Extraction 

In dealing with images of different sizes and complexities of tumors, the model employs a multi-scale adaptive system that 

can properly segment regardless of geographical disparities. 

 

Attention Mechanisms  

Incorporating attention mechanisms in MATHSegNet enhances precision without allowing unnecessary computation costs 

on less informative areas while focusing on the most informative regions of the medical images. 

• The system provides multi-modal imaging, which is critical in regenerative medicine since most imaging 

modalities (e.g., MRI and CT) offer complementary information for precise tumor diagnosis 

• Enhanced Robustness: MATHSegNet addresses variations in image quality and heterogeneity, enhancing its 

robustness in handling complex real-world medical data.   

All of these enhancements provide MATHSegNet with an extremely powerful approach for solving very challenging 

medical image segmentation tasks.  

 

Organization of the Paper 

The rest of the paper is organized as follows: Section 2 presents a survey of existing work in medical image segmentation, 

highlighting deep learning-based methods and commenting on the central challenges of regenerative medicine. Section 3 

presents a comprehensive description of the architecture of the proposed MATHSegNet model, including considerations 

such as multi-scale feature extraction, utilization of a transformer-based attention mechanism, and convolutional neural 

network-based components. Section 4 describes the experimental framework, detailing the datasets, evaluation methods, 

and performance metrics. In Section 5, we report the results, analyze them in depth, and highlight the notable improvements 

in segmentation performance. Additionally, this section offers a comparison with baseline models, visual representations, 

and an assessment of the model’s robustness across diverse medical imaging modalities. Lastly, Section 6 concludes the 

study and outlines prospective directions for further research in medical image segmentation within the context of 

regenerative medicine. 

 

II. LITERATURE REVIEW 

In regenerative medicine, medical image segmentation is crucial for precisely identifying anatomical features that are 

necessary for diagnosis and treatment. Noise, overlapping areas, and anatomical variability are some of the difficulties 

associated with advanced imaging methods like MRI, CT, and fluorescence microscopy. The complexity of contemporary 

medical images is frequently too great for conventional techniques like thresholding and edge detection. By extracting 

local features, deep learning models—especially CNNs like U-Net—have improved segmentation; yet, they have trouble 

addressing class imbalance and capturing global contextual information. Long-range dependencies are well-modeled by 

recent transformer-based models, and hybrid strategies that combine CNNs and transformers hold great potential for 

improved segmentation accuracy. The development of segmentation techniques and their advantages and limitations for 

application in medical imaging is addressed here. 

The U-Net model, which is a CNN encoder-decoder specifically for biological image segmentation, was first proposed 

by Ronneberger et al. (2015). The method allows the accurate segmentation of tiny objects such as individual cells based 

on the combination of high-level semantic knowledge from the decoder and low-level spatial knowledge from the encoder 

with disentangled connections [17]. 

To solve class imbalance, Sudre et al. (2017) investigated loss function improvement of medical image segmentation 

with Generalized Dice Loss. As illustrated in applications such as organ segmentation, the loss function provides accurate 

segmentation of minority or small areas by class weighting according to prevalence [18]. 

DeepLab is a semantic segmentation model proposed by Chen et al. (2018). DeepLab uses atrous spatial pyramid 

pooling (ASPP) and atrous convolutions to receive features at multiple scales to achieve multi-scale contextual information. 

The model is therefore very effective in segmenting tissues of different sizes in medical imaging [19]. 

The Swin Transformers, a vision transformer model introduced by Liu et al. (2021), strengthens the model's 

performance in handling sophisticated visual input through the provision of hierarchical feature learning via shifting 

windowing. With the maintenance of long-range relationships, SwinTransformers highly enhance segmentation 

performance on being added to U-Net models, especially in imaging scenarios complex in nature, i.e., brain MRI tumor 

segmentation [20]. 

GAN-based models were employed by Tang et al. (2022) to improve the boundary precision in segmentation tasks. 

Their research showed that the application of GANs in the post-processing pipeline greatly improves the segmentation 

result, particularly for low-contrast imaging data like fluorescence microscopy or ultrasound [21]. 

Huang et al. (2022) proposed the HMDA model, which is a multi-scale deformable attention-based hybrid model. The 

model achieves precise structure segmentation from a range of imaging modalities by dynamically adjusting to different 

scales of features in medical images. In comparison with the traditional CNN-based approaches, the model worked better 

in aggregating complex anatomical information [22]. 
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Jiang et al. (2022) suggested a hybrid model that dynamically adjusts scales of feature extraction through the 

combination of transformer and U-Net architectures. This operation improved segmentation in regenerative medicine by 

solving incoherencie in anatomical representations in datasets [23]. 

Zhang et al. (2023) introduced STUNet, which is implemented using Swin Transformers and the U-Net architecture. 

The combination method effectively segments complex boundaries in regenerative medicine imaging by extracting global 

and local features simultaneously. Cross-layer feature enhancement enhances the model's capability to detect smaller 

structures [24]. 

Luo et al. (2023) employed a graph neural network and transformer ensemble to segment highly irregular and 

heterogeneous anatomical structures. The technique offers context-aware analysis for tissue regeneration and is good at 

detecting small regions in high-resolution medical images [25]. 

Wang et al. (2023) proposed H2Former, a multi-modal hybrid transformer model for medical image segmentation. The 

model greatly improves the segmentation of images with large spatial variations by fusing self-attention mechanisms and 

hierarchical feature extraction. Its optimization for handling multi-modal data makes it particularly well-suited for 

application in regenerative medicine [26]. 

Li et al. (2024) introduced a transformer-based segmentation approach specifically designed for application with 

fluorescence microscopy. The performance of their model was greatly improved by employing domain-specific 

preprocessing techniques [27]. 

 

Research Gap 

These results reinforce the popularity of hybrid architectures using the attention skill of transformers [28] and the local 

feature extraction power of CNNs [29]. These results also emphasize the need for domain-specific technologies in 

regenerative medicine imaging in which accurate segmentation is essential for successful diagnosis and treatment [30]. 

The sagacious contribution from each of these approaches has created the foundation to develop sophisticated technologies 

like MATHSegNet. 

 

III. PROPOSED METHODOLOGY 

Segmentation of brain tumors in medical images is a vital issue which requires highly accurate models due to the intricacies 

involved in images. New sophisticated deep learning models have been developed to address this, incorporating several 

techniques for better performance in segmentation. 

 

 
Fig 2. Architecture of MATHSegNET. 

 

The design of MATHSegNET is specifically developed for brain tumor segmentation using the state-of-the-art deep 

learning approaches, illustrated in Fig 2. Brain Tumor Database is the initial step, when raw data is cleaned for analysis 

and normalization. For optimizing the results of segmentation, the hybrid CNN-Transformer module leverages the global 

contextual comprehension provided by Transformers with the local feature extraction capabilities of CNNs. This double-

pronged approach ensures medical images accurately pick up specific details and general patterns. The model is capable 

of handling varying tumor shapes in size and complexity due to the presence of multi-scale feature extraction as well. A 

Transformer attention mechanism enhances segmentation precision by paying special attention to salient parts of the 

images. Loss functions to optimize the training process towards making accurate predictions include Dice Loss and Unified 
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Focal Loss. Lastly, strong model performance is guaranteed by training and testing, and medical analysis can be aided by 

transparent, interpretable results from post-processing with visualization. 

To enhance segmentation accuracy in medical imaging tasks, particularly in regenerative medicine, Table 1 would 

illustrate how these components interact. 

Table 1. MATHSegNet: Bridging the Gap in Medical Image Segmentation 

Approach 

Segmentat

ion 

Accuracy 

Local Feature 

Capture (Fine-

Grained Details) 

Global Feature 

Capture (Long-

Range Context) 

Multi-Scale 

Feature Fusion 

Attention 

Mechanisms 

MATHSegNet 

(Proposed) 
Very High 

High (fine-grained 

details from CNN) 

Very High (long-

range context via 

adaptive 

transformers) 

Very High 

(captures multi-

scale features 

across 

resolutions) 

Very High 

(adaptive cross-

attention 

between scales) 

CNN [8] 
Medium-

High 

High (captures small 

structures well) 

Low (poor long-

range 

understanding) 

Low (only local 

context) 

Low (no 

attention 

mechanisms) 

Transformer 

[11] 
High 

Medium (focuses 

more on global than 

local features) 

High 

(outstanding at 

capturing distant 

dependencies) 

Medium 

(primarily global, 

limited multi-

scale integration) 

High (self-

attention, long-

range 

dependencies) 

Attention 

Mechanisms 

[12] 

High 
Medium (focuses on 

critical local areas) 

Very High 

(directed focus 

on global 

dependencies) 

Medium (focuses 

more on key 

regions rather 

than entire scale) 

Very High (self-

attention, 

enables context-

aware focus) 

Multi-scale 

Feature 

Extraction 

[13] 

Very High 

High (captures 

details across 

multiple scales) 

High (integrates 

global context 

across multiple 

levels) 

Very High 

(fusion of local 

and global 

context at 

different scales) 

Medium (can 

integrate 

attention within 

scales) 

 

Every component of MATHSegNet is elaborated in depth below along with the corresponding mathematical formulas. 

 

Data Preprocessing 

In order to ensure the input data is properly formatted and ready for the model, preprocessing is necessary. Three major 

preprocessing operations are part of MATHSegNet's pipeline: Multi-modal Fusion, Standardization, and Data 

Augmentation. 

 

Data Augmentation 

By randomly changing images, this operation increases the dataset's size and creates more varied training data.  By 

preventing overfitting, these changes strengthen the model's resistance to changes in the input images. Rotation, scaling, 

flipping, and intensity fluctuation are examples of common transformations. 

Let 𝐼𝑜𝑟𝑖𝑔stand for the initial image.  Applying a series of transformations 𝑇𝜃1,𝑇𝜃2
… 𝑇𝜃𝑛

 on the image yields the 

augmented image 𝐼𝑎𝑢𝑔 

 

 𝐼𝑎𝑢𝑔 = 𝑇𝜃1
(𝑇𝜃2

… (𝑇𝜃𝑛
(𝐼𝑜𝑟𝑖𝑔) … ))  (1) 

 

The transformation parameters 𝜃𝑖, such as rotation angle or scaling factor, define each transformation 𝑇𝜃𝑖
. 

 

Standardization 

By normalizing pixel values to a uniform range, standardization makes images from various modalities (such as CT and 

MRI) comparable.  To standardize the image data, pixel values are adjusted to have a mean of zero and a standard deviation 

of one, helping to maintain consistency in input features.  

Given an image 𝐼,we first calculate the mean 𝜇 and standard deviation 𝜎 

 

 𝜇 =
1

𝑁.𝐿.𝑊
∑ 𝐼 (𝑙, 𝑤)𝐿𝑊

𝑙=1   𝑤=1   (2) 

 

 

 𝜎 = √
1

𝑁.𝐿.𝑊
∑ (𝐼(𝑙, 𝑤) − 𝜇)2𝐿𝑊

𝑙=1   𝑤=1   (3) 
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The pixel value normalization is computed as: 

 

 𝐼𝑛𝑜𝑟𝑚(𝑙, 𝑤) =
𝐼(𝑙,𝑤)−𝜇

𝜎
  (4) 

where𝐿 and 𝑊represent the length and width of the image, respectively. 

 

Multi-Modal Fusion 

To leverage complementary information from different imaging modalities, multi-modal fusion is used. This combines the 

features from each modality into a single, unified representation. Let 𝐼1, 𝐼2 … 𝐼𝑚represent different image modalities. The 

fusion function 𝑓combines these into a single image 𝐼𝑓𝑢𝑠𝑒𝑑  

 

 𝐼𝑓𝑢𝑠𝑒𝑑 = 𝑓(𝐼1, 𝐼2 … 𝐼𝑚)  (5) 

 

Where𝑓 could either be concatenation or a weighted summation to combine the features from each modality effectively. 

 

Multi-Scale Feature Extraction 

To effectively photoengrave both small and large structures in medical images, multi-scale feature extraction is performed 

using a combination of CNNs and transformers. 

 

Convolutional Neural Networks (CNNs) 

CNNs are effective in extracting local features from the image. By applying convolutional filters of different sizes, CNNs 

can capture small-scale features (e.g., textures and edges) as well as large-scale features (e.g., anatomical structures). 

For a given image 𝐼 and a convolutional filter 𝑤, the output feature map 𝐹 is performed as 

 

 𝐹(𝑖, 𝑗) = (𝐼 ∗ 𝑤)(𝑖, 𝑗)  (6) 

 

where(𝑖, 𝑗)are pixel indices and  ∗  indicates the convolution operation.  

 

Transformer-Based Feature Extraction 

To capture long-range dependencies in the image, transformers are used. Focusing on distant or irregular patterns is made 

possible by transformers' self-attention mechanism.  The attention mechanism is defined as 

 

 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥
𝑄𝐾𝑇

√𝑑𝑘
𝑉 (7) 

 

where𝑑𝑘is the dimension of the key vectors and Q, K, and 𝑉stand for the query, key, and value matrices, respectively.  

 

Hybrid CNN-Transformer Architecture 

The model can effectively handle both local and long-range data because to this hybrid architecture, which combines CNNs 

for local feature extraction with transformers for global dependency capture. Local features are extracted from the image 

by the CNN block. 

 

 Fcnn = CNN(I)  (8) 

 

In order to capture global relationships, the transformer block processes these CNN properties. 

 

 Ftrans = Transformer(Fcnn)  (9) 

 

where the CNN and transformer feature maps are denoted by Fcnn and Ftrans, respectively. Eventually, a hybrid feature 

map is created by concatenating the outputs from both blocks. 

 

 Fhybrid =Concat (Fcnn, Ftrans)  (10) 

 

Both the broad contextual information and the fine-grained local features are combined in this hybrid feature map. 

 

Loss Function 

A key feature of MATHSegNet is its capability to address class imbalance, which is a common challenge in medical image 

segmentation. To overcome this, the model employs a combined loss function that integrates Dice Loss and Unified Focal 

Loss. 
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Dice Loss 

Dice Loss aims to maximize the overlap between the predicted segmentation mask 𝐴and the ground truth mask 𝐵. The 

Dice coefficient 𝐷 is calculated as 

 𝐷 =
2|𝐴⋂𝐵|

|𝐴|+|𝐵|
  (11) 

 

where𝐴and 𝐵represent the predicted and actual segmentation masks, respectively. The Dice Loss is simply the 

complement of the Dice coefficient 

 

 𝐿𝐷𝑖𝑐𝑒 = 1 − 𝐷  (12) 

 

This encourages the model to generate a segmentation mask that closely matches the ground truth. 

 

Unified Focal Loss 

Focal Loss is introduced to tackle class imbalance by putting more emphasis on difficult-to-classify areas, such as small 

tumors, while reducing the weight given to easier-to-classify regions, like the background. It is defined as 

 

 𝐿𝐹𝑜𝑐𝑎𝑙 = −𝛼(1 − 𝑝𝑡)𝛾 log (𝑝𝑡)  (13) 

 

where𝑝𝑡  represents the predicted probability for the true class, 𝛼 is a balancing factor, and 𝛾 is a focusing parameter 

that reduces the impact of easy examples. 

 

Combined Loss Function 

MATHSegNet combines 𝐿𝐷𝑖𝑐𝑒and 𝐿𝐹𝑜𝑐𝑎𝑙  to leverage the advantages of both loss functions. The overall loss function is 

expressed as 

 

 𝐿𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝜆1𝐿𝐷𝑖𝑐𝑒 + 𝜆2𝐿𝐹𝑜𝑐𝑎𝑙   (14) 

 

where𝜆1 and 𝜆2are hyper-parameters that control the weight of each loss term.  Dice Loss ensures high overlap accuracy 

(maximizing DSC), improving segmentation quality. Unified Focal Loss addresses class imbalance, enabling the model to 

focus more on small or underrepresented structures like tumors. 

 

Output Segmentation 

The final output of MATHSegNet is a segmented image, where each pixel is classified as part of a particular structure (e.g., 

healthy tissue, tumor, or blood vessels). The segmentation mask is generated through a softmax activation over the hybrid 

feature map 𝐹ℎ𝑦𝑏𝑟𝑖𝑑. 

 

Class Probability for Each Pixel 

For each pixel (𝑖, 𝑗), the predicted probability for class 𝑘 is calculated using the softmax function 

 

 𝑝𝑘(𝑖, 𝑗) = (15) 

 

where𝐶denotes the total number of classes, and 𝐹ℎ𝑦𝑏𝑟𝑖𝑑
(𝑘) (𝑖, 𝑗) refers to the feature map at pixel (𝑖, 𝑗) for class 𝑘. 

 

Segmentation Mask Prediction 

The final segmentation mask 𝑆is generated by selecting the class with the highest probability for each pixel 

 

 𝑆(𝑖, 𝑗) = arg max(𝑠𝑜𝑓𝑡𝑚𝑎𝑥( 𝐹ℎ𝑦𝑏𝑟𝑖𝑑(𝑖, 𝑗)))  (16) 

 

This allows the model to produce either a binary or multi-class mask depending on the task, where each pixel is assigned 

to a specific tissue or structure. 

Algorithm 1 illustrates MATHSegNet’s approach through detailed pseudo-code, outlining the key steps in its process. 

The diagram clearly shows the flow of operations, from data preprocessing to the final segmentation result, providing a 

transparent view of the model's workflow. The procedure begins with data preprocessing, involving augmentation, 

standardization, and multi-modal fusion to ready the input images. Next, multi-scale feature extraction integrates CNNs 

for capturing local features and transformers for identifying global relationships, resulting in a combined hybrid feature 

map. A hybrid loss function, which merges Dice Loss and Unified Focal Loss, helps address class imbalance and enhances 

segmentation accuracy. The segmentation mask is produced by applying softmax activation to the hybrid features, 

assigning each pixel to the appropriate category. 
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Algorithm 1. Pseudo-Code for MATHSegNet 

Algorithm MATHSegNet(BraTS_dataset) 

1. Data Preprocessing 

   Input: Image dataset  𝐷 = {𝐼1, 𝐼2 , … 𝐼𝑛} 

   For each image 𝑇 in 𝐷: 

a. Apply transformations 𝑇𝜃1
, 𝑇𝜃2

… 𝑇𝜃𝑛
 to augment data 

  𝐼𝑎𝑢𝑔 = 𝑇𝜃1
(𝑇𝜃2

… (𝑇𝜃𝑛
(𝐼) … )) 

b. Standardize image: 

i. Compute mean (𝜇)  and standard deviation (𝜎) 

   𝜇 = 𝑚𝑒𝑎𝑛(𝐼), 𝜎 = 𝑠𝑡𝑑(𝐼)  
ii. Normalize 

   𝐼𝑛𝑜𝑟𝑚 =
𝐼−𝜇

𝜎
 

c. Perform multi-modal fusion for modalities 𝐼1 , … 𝐼𝑚  

  𝐼𝑓𝑢𝑠𝑒𝑑 = 𝑓(𝐼1, … 𝐼𝑚) 

 

2. Multi-Scale Feature Extraction 

    Input: Preprocessed image  𝐼𝑓𝑢𝑠𝑒𝑑  

a. Extract local features using CNN 

  𝐹𝑐𝑛𝑛 = 𝐶𝑁𝑁(𝐼𝑓𝑢𝑠𝑒𝑑) 

b. Extract global features using Transformer 

𝐹𝑡𝑟𝑎𝑛𝑠 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝐹𝑐𝑛𝑛)   

c. Combine features 

  𝐹ℎ𝑦𝑏𝑟𝑖𝑑 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹𝑐𝑛𝑛, 𝐹𝑡𝑟𝑎𝑛𝑠) 

 

3. Segmentation Loss Function 

    Input: Predicted mask 𝐴, ground truth mask 𝐵 

a. Compute Dice Loss 

  𝐿𝐷𝑖𝑐𝑒 = 1 −
2|𝐴⋂𝐵|

|𝐴|+|𝐵|
 

b. Compute Unified Focal Loss 

  𝐿𝐹𝑜𝑐𝑎𝑙 = −𝛼(1 − 𝑝𝑡)𝛾𝑙𝑜𝑔 (𝑝𝑡) 

c. Combine losses 

  𝐿𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝜆1𝐿𝐷𝑖𝑐𝑒 + 𝜆2𝐿𝐹𝑜𝑐𝑎𝑙  

  

4. Output Segmentation 

    a.   Predict probabilities for each pixel (𝑖, 𝑗) 

  𝑝𝑘(𝑖, 𝑗) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐹ℎ𝑦𝑏𝑟𝑖𝑑(𝑘, 𝑖, 𝑗)) 

    b.   Generate segmentation mask 

  𝑆(𝑖, 𝑗) = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑠𝑜𝑓𝑡𝑚𝑎𝑥( 𝐹ℎ𝑦𝑏𝑟𝑖𝑑(𝑖, 𝑗))) 

 

5. End MATHSegNet 

 

IV. EXPERIMENTAL CONFIGURATION AND EVALUATION METRICS 

Experimental Configuration 

Experimental configuration of MATHSegNet is presented in Table 2 focusing on the most critical aspects for deployment.  

 

Table 2. Experimental Configuration for MATHSegNet 

Component Details 

Dataset BraTS(Brain Tumor Segmentation Dataset)                                     

Framework  TensorFlow and PyTorch 

Programming 

Language    
Python 3.8                                                                   

Preprocessing 
Data augmentation (rotation, scaling, flipping), standardization, and 

multi-modal fusion 

Model Architecture Hybrid CNN-Transformer combining local and global feature extraction                              

Loss Function      Combined Dice Loss and Unified Focal Loss                                               

Evaluation Metrics DSC, IoU, Sensitivity, and Specificity 

Hardware NVIDIA GPU, 32GB RAM, Intel Core i7/i9 processor 
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Dataset Description  

Experimental setup tests the adaptability of MATHSegNet using a variety of medical imaging datasets, e.g., MRI, CT 

scans, and fluorescence microscopy. Due to variability in resolution, noise, and image features, each dataset has a different 

challenge. For instance, while it is possible for CT scans to be susceptible to radiation artifact noise, MRI images usually 

present good resolution and sharp grayscale contrast. In contrast, fluorescence microscopy images generally have finer 

textures as well as lower resolutions. The evaluation guarantees that MATHSegNet is exposed to a range of realistic 

imaging conditions by incorporating the various datasets. 

 

 
Fig 3. Different Tumor Categories. 

 

The proposed method was validated in this study using the BraTS dataset, which was specifically created for brain 

tumor segmentation and classification. The dataset was split into training and test subsets. A collection of labeled MRI 

images formed the training set, and the test set was held out for the sake of performance evaluation and validation. Four 

types of tumors i.e., enhancing tumor, tumor core, whole tumor, and non-tumorous tissues were mined from the images. 

All four kinds of tumors in BraTS were utilized to assess the performance of the model. The outcomes demonstrated the 

efficiency of the program in classifying and detecting various kinds of tumors. Example samples are shown in Fig 3, which 

depicts the location of the sites and the appearance of tumors. This detailed analysis highlights the flexibility of the method 

in the treatment of various kinds of tumors and demonstrates its suitability for therapeutic application. 

 

Evaluation Metrics 

A number of popular metrics, such as the Dice Similarity Coefficient (DSC), Intersection over Union (IoU), sensitivity, 

and specificity, are used to measure the performance of MATHSegNet. In segmentation tasks, these metrics provide a 

complete description of the model's accuracy and reliability. The DSC estimates the degree to which expected segmentation 

overlaps with the ground truth and is given by 

 

 DSC =
2|𝑃∩𝑇|

|𝑃|+|𝑇|
  (17) 

 

Here, 𝑃 and 𝑇represent the real and estimated segmentation masks, respectively. The IoU, another key measure, 

calculates the intersection to union ratio of true and estimated masks. 

 

 IoU =
|𝑃∩𝑇|

|𝑃∪𝑇|
 (18) 

 

In medical imaging procedures, where accuracy in the position of small or irregular structures is significant, the choice 

of metrics follows their significance. Sensitivity, for instance, is essential in detecting all positions that can potential tumor 

regions, reducing false negatives, The definition of sensitivity, also as recall, is 

 

 Sensitivity =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (19) 

 

False negatives (FN) and true positives (TP) are performance measures for the model: Missed positive instances are 

indicated by FN, and accurately picked positive instances are indicated by TP. Sensitivity, or sometimes referred to as 

recall, calculates the proportion of true positives the model correctly identifies. 

Specificity, on the other hand, determines how well the model can identify non-tumorous areas, minimizing false 

positives.  It's calculated as 

 

 Specificity =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (20) 

 

True negatives (TN) are properly identified negative instances here, while false positives (FP) are themselves negative 

instances wrongly identified as positive. An important measure of how well the model can avoid false alarms when 

recognizing negative cases is specificity. 
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Incorporating this wide range of criteria in the test is intended to give an unbiased description of MATHSegNet 

performance and generalizability on difficult imaging modalities. 

 

V. RESULT AND DISCUSSION 

MATHSegNet is designed to have high segmentation accuracy, noise robustness, and flexibility in handling multiple brain 

tumor imaging modalities. In this section, the performance evaluation of the proposed model is presented, and its key 

strengths over the state-of-the-art models are highlighted. 

 

Quantitative Results 

MATHSegNet outperformed several baseline models, such as transformer-based models (STUNet), a semantic 

segmentation model (DeepLab), and traditional CNN-based networks (U-Net). MATHSegNet's segmentation performance 

compared to other models on a brain tumor image dataset is listed in Table 3 below. 

 

Table 3. Evaluation Metrics Comparison of Segmentation Model Performance 

Model DSC IoU Sensitivity Specificity 

MATHSegNet (Proposed) 0.92 0.87 0.94 0.91 

Domain-specific Transformer-based Model [26] 0.91 0.85 0.89 0.86 

H2Former [25] 0.90 0.84 0.88 0.85 

Graph-based Neural Networks with Transforms [24] 0.89 0.83 0.87 0.84 

STUNet [23] 0.90 0.84 0.88 0.85 

Hybrid U-Net-Transformer [22] 0.91 0.83 0.89 0.86 

Hybrid Multi-Scale Deformable Attention [21] 0.90 0.84 0.88 0.85 

Swin Transformer [20] 0.89 0.83 0.87 0.84 

Encoder-Decoder with Atrous Separable Convolution [19] 0.88 0.81 0.86 0.83 

Generalised Dice Overlap [18] 0.87 0.80 0.85 0.82 

U-Net [17] 0.85 0.78 0.83 0.80 

 

That a high agreement between the ground truth and expected segmentation masks exists is established by 

MATHSegNet's Dice Similarity Coefficient (DSC) of 0.92 in Table 3. In the context of medical practice, this result is 

highly significant. That MATHSegNet performs better than other models establishes its effectiveness in accurately 

segmenting medical images. The model's superb accuracy in identifying relevant structures is also evidenced by the IoU 

of 0.87, and MATHSegNet's 0.94 sensitivity indicates it can identify small or difficult-to-identify structures, e.g., tumors 

or lesions, with minimal false negatives. The specificity of 0.91 further indicates that the model is extremely good at 

classifying background pixels accurately and preventing false positives. 

 

 
Fig 4. Boxplot Visualization of Dice Similarity Coefficient (DSC). 

 

Fig 4 shows a comparison of the Dice Similarity Coefficient (DSC) of different models, including the proposed 

MATHSegNet and other state-of-the-art architectures. The x-axis represents the DSC values, and the y-axis represents the 

various models. MATHSegNet is highlighted with the highest median DSC, followed by the domain-specific transformer-

based model and the hybrid U-Net-transformer. The boxplot emphasizes that MATHSegNet not only achieves the best 

performance but also has a tight range of DSC values, reflecting stable performance on various test samples. On the other 

hand, traditional models such as U-Net and the generalized Dice overlap method exhibit lower DSC values and larger 
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variability, reflecting less stable segmentation performance. This figure evidently displays MATHSegNet's higher 

robustness and accuracy compared to its counterparts. 

 

 
Fig 5. Performance Comparison of Segmentation Models Using Evaluation Metrics. 

 

Fig 5 shows a performance comparison of MATHSegNet against some of the current segmentation models in terms of 

various evaluation metrics.  The higher IoU, sensitivity, and specificity values of MATHSegNet indicate that it is better 

performing compared to most of the other models. The effectiveness of the model for segmentation tasks in medical images 

is revealed through its high accuracy in detecting relevant features and preventing false positives. The other models, 

however, like U-Net and STUNet, also do well but tend to be generally less consistent for all the metrics, especially for 

specificity and sensitivity. This reflects the advantage of MATHSegNet in providing a reliable and balanced segmentation 

output.  

 

 
Fig 6. MATHSegNet Segmentation Confusion Matrix. 

A confusion matrix of the segmentation accuracy of MATHSegNet for four different classes—non-tumorous regions, 

enhancing tumors, tumor cores, and whole tumors—is presented in Fig 6. The diagonal represents correct classifications, 

while each column of the matrix represents the frequency at which the model generated correct or incorrect predictions. 

For instance, with 4.00 score, non-tumorous areas were predicted correctly by the model, while tumor locations with 

augmenting lesions were mostly predicted correctly, even though some of them were also wrongly predicted as tumor 

cores. Tumor cores were mostly identified correctly, except when they got mixed up with enhancing tumors. Predictions 

of the whole class of tumors with minor deviations were mostly accurate. This chart gives informative data on the strengths 

and weaknesses of MATHSegNet, showing how well it can distinguish between various types of tumors and where it still 

needs improvement. 

Qualitative Results 
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Qualitative analysis results were also considered along with quantitative evaluation. The segmentation results obtained by 

MATHSegNet and other state-of-the-art models were visually evaluated on a set of test images. The results show that 

MATHSegNet produces more accurate and sharper boundaries, especially in complex regions with asymmetrical patterns 

where traditional methods are inadequate. 

 

Preprocessed MRI Images Prior to MATHSegNet Segmentation 

 

 
Fig 7. Preprocessed Steps for MATHSegNet Input. 

 

Preprocessing plays an important role in making MRI scans preprocessed for further analysis as apparent in Fig 7. 

Identification of tumor regions is challenging by virtue of the presence of noise and distortions in the source image in panel 

(a). As apparent from panel (b), intensity normalization and skull stripping preprocessing techniques have been applied in 

solving these issues and enhancing input quality. Intensity normalization minimizes variability caused by acquisition 

differences by normalizing pixel intensities across scans, while skull stripping removes unnecessary non-brain features to 

separate the brain area for analysis. Through augmentation of significant features, noise reduction, and image smoothing, 

these preprocessing methods generate a cleaner and more uniform input for subsequent processing stages. This ensures 

that the model, such as MATHSegNet, receives data that is suited for strong performance and effective feature extraction. 

 

Enhanced Brain Tumor Segmentation with MATHSegNet 

The superior effectiveness of MATHSegNet for enhancing brain tumor segmentation is evident in Fig 8. Due to the 

surrounding tissues' complexity, noise, and homotopic intensity patterns, it is difficult to spot the tumor region in the left 

raw MRI scan image. However, the MATHSegNet-produced processed result on the right clearly depicts the tumor borders 

with high accuracy.  

 
Fig 8. Segmentation with MATHSegNet. 

 

      The distinctively highlighted tumor boundaries successfully demarcate areas of tumors from normal tissue. Through 

its highly advanced multi-scale adaptive hybrid CNN-Transformer network architecture, MATHSegNet can effectively 

discern contextual relationships as well as advanced spatial information and thereby perform strong segmentation even 

under challenging conditions. This advanced functionality allows the model to precisely spot significant tumor regions in 

various configurations and intensities. The highlighted segmentation output demonstrates how MATHSegNet can enhance 

diagnostic precision and support clinical decision-making, particularly in the areas of regenerative medicine and medical 

imaging. Its potential as an effective tool for tumor diagnosis and treatment planning is indicated by this output. 

 

Impact of Multi-Scale Feature Extraction 

One of the important developments that drives MATHSegNet's impressive performance in brain tumor segmentation is 

multi-scale feature extraction. The model effectively extracts both distinctive local features and general global relationships 

by combining the strengths of CNNs with transformer architectures. One of the main challenges in medical image 

segmentation is the management of structures of varying size and complexity, which MATHSegNet addresses through this 

hybrid approach. 
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CNNs employ filters of different sizes to capture local features at different scales during the process of multi-scale 

feature extraction. For example, a larger kernel (7x7) will capture a broad geographical context but a smaller one (3x3) 

captures subtle features such as edges and textures. A mathematical description of the feature extraction from an image 

patch at some scale is given by 

 

 𝐹𝑙𝑜𝑐𝑎𝑙(𝑥, 𝑦) = ∑ ∑ 𝑊(𝑖, 𝑗). 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)
𝑘

𝑗=−𝑘

𝑘

𝑖=−𝑘
  (21) 

 

where𝑊(𝑖, 𝑗)stands for the convolutional kernel weights, 𝐼(𝑥 + 𝑖, 𝑦 + 𝑗)is the input image intensity, and 𝐹𝑙𝑜𝑐𝑎𝑙(𝑥, 𝑦)is 

the local feature at pixel (𝑥, 𝑦). 

Through the use of self-attention to all pixels within the image, the attention mechanism of the transformer applies 

Equation 7 to encode global relationships. This complements the local feature extraction performed by CNNs by allowing 

the model to focus on meaningful areas regardless of their spatial distance. 

In medical image segmentation, where tumors exhibit significant heterogeneity in size, shape, and location, the 

integration of CNNs and transformers is particularly valuable. CNNs perform well in detecting subtle features in tiny 

tumors, which ensures early-stage tumors or very small lesions are accurately segmented. Edge detection and texture 

identification are facilitated by CNN filters' local nature. Transformers ensure segmentation of large or irregularly shaped 

tumors holistically by detecting the overall context of massive or complicated tumors. This matters when the general 

structure is being determined by spatial interactions between remote locations. In one test, for instance, MATHSegNet 

employed CNN-based fine-detail extraction to correctly segment a minuscule lesion in a low-contrast MRI image. In 

another case, the model utilized transformer-based global attention to identify a massive, irregular tumor in a CT scan. 

Tumor segmentation of different sizes and complexity is facilitated by MATHSegNet's multiscale feature extraction 

method, which fills the gap between local and global feature representation. 

 

Transformer Attention Mechanism 

A significant improvement for MATHSegNet was introducing transformer layers so that the model could understand 

context relationships across the entire image. By focusing on relevant areas and minimizing the role of irrelevant 

background features, the self-attention method of MATHSegNet improves segmentation quality and model robustness in 

general. 

Because of their limited receptive fields, CNNs are not able to capture long-distance correlations between pixels; this 

is one of the transformer attention mechanism's key benefits. MATHSegNet could avoid issues like false positives, where 

background noise is incorrectly classed as being part of the object being segmented, by centering on notable regions of the 

image and neglecting insignificant areas. 

 

 
Fig 9. Attention Heatmap and Original MRI Comparison, Emphasizing Tumor Areas. 

 

A clear visual difference between the isomorphic attention heatmap generated by a deep learning network and the actual 

MRI scan appears in Fig 9. The superimposed heatmap indicates where there is focused attention, and specifically the 

locations of the tumor areas, and the MRI scan provides a structural view of the tissue. Higher values of attention are 

concentrated within the borders of the tumor, and color gradients are employed by the heatmap to identify points where 

the model has identified salient features that are associated with the tumor. Besides demonstrating where the model focuses 

on the tumor, this figure emphasizes how the model can discern between the disease-affected region and the normal tissue, 

and in doing so, enhance the accuracy of segmentation. 

 

Loss Function Combination 

MATHSegNet addresses the common issue of class imbalance in medical image segmentation by integrating Dice Loss 

with Unified Focal Loss. The class distribution in medical imaging is imbalanced due to the fact that areas of interest, such 

as tumors, are often much smaller than the background. The imbalance can result in bad segmentation and restrict effective 

model training, particularly when identifying small or rare structures. 
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Dice Loss is highly effective for binary segmentation tasks because it maximizes the overlap between the ground truth 

and the expected segmentation. Due to its ability to handle imbalanced class distributions, it has become a common choice 

in medical imaging. 

Unified Focal Loss was a new aspect of MATHSegNet that was designed to specifically solve the issue of class 

imbalance by downplaying the weight of the easier-to-classify background areas and giving more importance to areas 

harder to classify, such as very small tumors. This loss function enhances the model's ability to detect smaller structures 

that could be underrepresented in the data, particularly useful when the dataset has an unbalanced class distribution. By 

mixing these two losses, MATHSegNet was better able to balance the competing demands of reducing class imbalance 

(through Focal Loss) and maximizing overlap (through Dice Loss), which improved segmentation accuracy. 

Table 4 clearly illustrates that although some loss functions, like Dice Loss or Unified Focal Loss, are very good in 

some scenarios (overlap and class imbalance, respectively), they are not particularly effective when employed individually. 

By combining both loss functions, MATHSegNet finds a balance that enables it to handle challenging medical image 

segmentation tasks, like identifying small, underrepresented objects such as tumors, while still maintaining high 

segmentation accuracy in general. For medical datasets, which often contain class imbalances, this combination approach 

performs extremely well, resulting in significant performance improvements. Specifically, it enhances the Intersection over 

Union (IoU) to 0.87 and the Dice Similarity Coefficient (DSC) to 0.92, outperforming models that use only a single loss 

function. 

 

Table 4. Impact of Loss Function Combinations on Segmentation Metrics 

Loss Function DSC IoU Sensitivity Specificity Remarks 

Dice + Unified 

Focal Loss 

(MATHSegNet) 

0.92 0.87 0.94 0.91 
High overlap accuracy and 

robust class balance 

Unified Focal Loss 0.90 0.85 0.92 0.89 
Focuses on small structures, 

better at handling imbalance 

Focal Loss Only 0.87 0.81 0.88 0.87 

Better handles class 

imbalance, but lower overlap 

accuracy 

Dice Loss Only 

 
0.89 0.83 0.91 0.88 

Focuses on overlap, 

struggles with class 

imbalance 

 

 
Fig 10. Loss Function Combinations on Segmentation Model. 

Performance of various combinations of loss functions over a segmentation model, such as MATHSegNet, is presented 

in Fig 10. DSC, IoU, sensitivity, and specificity are the metrics being compared. The graph illustrates how the combination 

of Dice Loss and Unified Focal Loss of MATHSegNet always outperforms other setups in all metrics, achieving higher 

DSC and IoU along with improved sensitivity and specificity. Other configurations of loss such as Focal Loss Only, Dice 

Loss Only, and Unified Focal Loss are worse comparatively. This proves how effectively segmentation results can be 

optimized through combining loss algorithms. 
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Scalability and Real-World Applicability 

One of the primary benefits of MATHSegNet is scalability. The model can handle medical images with different resolutions 

and levels of complexity because of the hybrid CNN-transformer structure and is therefore suited for a wide range of 

regenerative medicine applications. 

Recent studies that place great emphasis on the application of multi-modal and multi-scale approaches to medical image 

segmentation resonate with generalizability across medical image modalities. With the application of transformer attention 

mechanisms and multi-modal fusion, MATHSegNet is guaranteed to function optimally in a broad array of imaging 

conditions and applications. 

In regenerative medicine and medical image segmentation, the Multi-scale Adaptive Transformer-Enhanced Hybrid 

Segmentation Network (MATHSegNet) is the new benchmark. MATHSegNet exhibits excellent segmentation precision, 

sensitivity, and specificity due to its employment of multi-scale feature extraction, hybrid CNN-transformer structure, and 

deep learning loss functions. The performance of the model is also significantly augmented by its attention mechanism that 

depends on the transformer and capability for input use in multiple modalities. These outcomes are confirming 

MATHSegNet as a useful clinical tool that offers clinicians a powerful and efficient means of evaluating brain tumor 

images for regenerative medicine diagnosis and therapy planning. 

 

VI. CONCLUSION AND FUTURE WORK 

With an emphasis on regenerative medicine, this work presented MATHSegNet, a cutting-edge medical image 

segmentation model. MATHSegNet greatly enhances segmentation performance by combining CNNs, transformers, and 

multi-scale feature extraction. The hybrid model is especially well-suited for challenging tasks like brain tumor 

segmentation because it uses transformers to learn global patterns and CNNs to learn local fine-grained features. The 

usability of the model in clinical settings is increased through its capacity to concentrate on critical regions through the use 

of multi-modal information and the transformer's attention mechanism. With its more accurate segmentation for 

regenerative medicine, MATHSegNet has a great potential for enhancing the accuracy of diagnosis and therapy processes. 

MATHSegNet can be enhanced in several ways in the future. 

Tuning the modec l for actual clinical use, where speed and efficacy are paramount, will be a top concern. Future studies 

might emphasize reducing the processing needs without reducing accuracy, especially when operating with large, high-

resolution datasets. Using MATHSegNet to process 3D volumetric data, which is typically utilized in organ regeneration 

and regenerative medicine, is another promising area. The necessity of costly labeled data in medical imaging can be 

reduced by investigating self-supervised or semi-supervised learning methods. The applicability of the model would also 

be increased through generalization across other imaging modalities, for instance, multi-organ or multi-pathology 

segmentation. Also, the inclusion of explainable AI capabilities may provide valuable information to clinicians, increasing 

confidence in the system and enhancing decision-making. 
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