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Abstract – The article discusses the Relentless Particle Swarm Optimization Repeated Routing Protocol (RPSORP), a new 

model to find the optimal methods to set up Smart Sensor Networks (SSN) using as little energy as possible. The Discrete 

Particle Swarm Optimization (DPSO) picks the least EC path that meets the best routing and covering requirements. The 

protocol contributes to efficiency in node energy use, network coverage, and connectivity range by including a fitness 

metric. Results indicate that RPSORP outperforms traditional routing methods regarding network lifetime, deployment 

efficiency, and EC. Fields such as environmental monitoring, innovative healthcare, and security systems, where energy-

efficient data communication is vital, can apply this scalable solution. The RPSORP presents a real-time and effective 

solution to energy management in SSN, making it more efficient and reliable. 

 

Keywords – Smart Sensor Networks, Energy Optimization, Routing Protocol, Particle Swarm Optimization, Node 

Deployment, Network Efficiency. 

 

I. INTRODUCTION 

Smart Sensor Networks (SSS) have attracted many researchers in the last few years because of their great value in the 

environment, healthcare, industrial automation, and security. SSNs contain remote distributed Sensor Nodes (SN) that 

monitor specific amounts of physical or environmental phenomena such as sound, temperature, pressure, or physical 

motion. One of the most essential problems in solving an SSN is energy efficiency. Since SNs are primarily deployed in 

distant places, wired power is impossible; hence, batteries mainly draw energy. Hence, optimizing energy consumption 

(EC) is essential to prolonging the network's functional lifespan through uninterrupted monitoring. 

Many industries, including defence, environmental safety, and security monitoring, may benefit from Wireless Sensor 

Networks (WSN) since they can self-organize, use little power, and are simple to expand [1-2]. By integrating physical 

data with theoretical physics, WSN revolutionized people's involvement in the real-time environment. Recognized as a 

crucial aspect of the information business's development in early 2006, WSN followed the national and medium-term 

scientific and technology planning and development recognized by the State Council. Massively deploying WSNs is the 

next big obstacle—significant transformations in human lifestyle and production methods [5]. Introducing Vehicular 

Sensor Networks (VSNET) stands out among these developments, offering exciting possibilities for leveraging safety-

related applications. VSNETs, or WSNs, are created when mobile nodes like computers, mobile phones, or vehicles connect 

wirelessly to share and exchange data [6]. WSN nodes may take in their surroundings, analyze the data collected, and send 

it to other network nodes. In order to achieve significant improvements in areas like interaction with digital electronics and 
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MEMS [7], a plethora of lightweight, inexpensive, and energy-efficient sensors have been developed. The SNs operate on 

a battery with limited capacity. Optimizing the performance of the SN in different applications requires minimizing their 

EC to the greatest extent possible. The amount of time a WSN can remain operational depends on how long the batteries 

last. A smart city monitoring system's foundation is a WSN. Data collection and analysis are the jobs of the many SNs that 

make up these networks. Various WSNs are used for different types of applications since SNs are tiny and inexpensive. 

Real-time data is essential for making educated decisions about comfort and safety in smart cities, and this is fundamental 

to the development of Internet of Things (IoT) technologies. Here is a visual representation of the architecture of the SSN, 

as depicted in Fig 1. 

WSNs continually introduce new applications that enhance the IoT vision. WSN nodes consume a significant amount 

of energy for communication, and the energy required to transmit packets disagrees based on the distance between sender 

and receiver nodes. As a result, multi-hop communication is recommended. The distinct difficulties brought about by 

acoustic signals and several communication layers render the WSN clustering and routing algorithms unsuitable to 

UWSNs. Consequently, researchers have shown much interest in creating clustering-based or route setup algorithms that 

consider the ocean properties of UWSNs [8-11]. 

Two significant obstacles to efficient EC and network communication in target tracking with WSN exist. These 

challenges must be addressed to process the data effectively. Due to its exceptional features, such as adaptability, 

performance, robustness, and flexibility, WSNs are highly regarded in many applications [12]. Considering the limited EC 

of SN and the constraints of unreliable electromagnetic transmissions, delays caused by packet transfer, and shared wireless 

medium, it is crucial to ensure the performance and stability of the control system in a WNCS. Communication and control 

systems must consider many critical aspects. These aspects include the sampling period of the network's SN, the needed 

delay, and the probability of packet errors. Optimizing these parameters enhances the efficiency of the control system. 

Conversely, when the SN's transmission power and communication rate drop, so does the energy required for wireless 

transmission.  

 

 
Fig 1. Architecture of the SSN. 

 

This paper proposes a novel routing protocol to address EC concerns in SSN: The Relentless Particle Swarm 

Optimization-based Routing Protocol (RPSORP). RPSORP employs the Particle Swarm Optimization (PSO) algorithm in 

order to facilitate the selection and usage of the most minor EC routing paths. RPSORP incorporates in its design a fitness 

function that assesses coverage area, node energy, and communication range so that it can effectively manage and distribute 

EC within the area of the network. This way, the operational period of the network is extended, thereby improving reliability 

and efficiency.   

With regards to this subject, it can be stated that the primary contributions of this research are as follows: 

• Design a new routing protocol, RPSORP, that generates routing decisions with the help of PSO, aiming to achieve 

further EC in SSN. 

• It developed a fitness function integrating node energy, coverage, and communication efficiency during network 

operation for the maximum network lifetime. 

• Comprehensive simulations and assessment of performed RPSORP highlight significant improvement over 

traditional routing regarding energy efficiency, operational longevity, and network coverage. 

The rest of the paper is organized into the following structures: In Section 2, the related works are defined, while Section 

3 elaborates on the approach taken, including the protocol design of the RPSORP and its corresponding fitness function. 

The outcome of the conducted simulation and the performance analysis is described in Section 4. The summary is presented 

in Section 5. 
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II. RELATED WORKS 

The Virtual Force-directed Particle Swarm Algorithm (VF-PSO) was suggested as a deployment technique [3]. Node 

density significantly impacts this method, which uses the link amongst nodes to compute the node mobility distance. Their 

distance from one another dictates the degree of mutual disagreement between nodes, and Virtual Force (VF) measures 

this interference. WSN comprises SSNs strategically placed and installed according to their specific applications. These 

sensors are accompanied by a washbasin conveniently located within or close to the radio range. When the sink needs data, 

it asks adjacent sensors to collect it [4]. The sensors then relay that information back to the sink. Several studies have 

examined the development of optimal controllers for WSN, considering factors such as delay and packet loss [13-14]. A 

wide range of applications has led to numerous protocols with many adjustable parameters. Nevertheless, specific 

parameters carry out a variety of tasks and are found in many applications, making them highly important. 

 Due to technological constraints, WSN relies on mobile energy sources and rechargeable batteries with a limited energy 

supply. Consequently, ensuring these networks utilize energy efficiently is vital [15]. In a study conducted by researchers 

[16], they introduced a routing approach called Clustering-Based Energy-Efficient Routing (CBEER), intending to prolong 

the lifespan of Underwater Wireless Sensor Networks (UWSNs). Performance was assessed through thorough simulations. 

In a different study, a technique for routing in UWSNs was introduced. This technique, known as EERBLC, focuses on 

energy efficiency and is based on layers and unequal clusters [17]. EERBLC was developed in three stages: the creation of 

layers and clusters with varying sizes, the routing of transmissions, and the ongoing maintenance and updating of clusters. 

In order to maximize the simultaneous deployment of gauges, the sensing field is partitioned. Energy metrics and radio 

range are considered during cluster formation. Parameters about coverage are handled by the grid exclusion method, 

whereas energy optimization is handled by the Dijkstra algorithm [18]. The use of D-S evidence theory in installing nodes 

for WSNs has garnered much attention and research. 

When evaluating a distribution system's dependability, [19] sought to reduce the influence of subjective or incomplete 

parameters. Due to the nature of WSNs, SNs are vulnerable to attacks. This susceptibility is exacerbated by factors such as 

interference between wireless links, applications used in warfare, and nodes that are not physically protected from the 

surroundings. A new algorithm, NBBTE, has been created to improve network security. This algorithm combines node 

behavioural approaches with evidence theory [20]. The sensors in the sensing region are used for sensing, processing, and 

communication purposes. The overall network lifetime depends on the factors mentioned above. One method to enhance 

the network lifetime is by preventing the sensor from transmitting raw data. This can be accomplished by consolidating the 

sensed data to remove unnecessary repetitions, reducing the number of control messages, and minimizing long-distance 

transmission. Considering the factors mentioned above can lead to an improvement in the overall network lifetime.  

Forests, rivers, and significant buildings are examples of demanding environments where WNS are frequently used, 

according to [21] and other researchers. In order to keep tabs on the physical world around them, SNs are frequently used 

as monitoring nodes. This involves taking readings of things like heat, sound, velocity, and the trajectory of objects in 

motion. Thanks to wireless self-organization, nodes can maintain labels on their environment without human intervention. 

WSNs have many uses [22], including data collecting, surveillance from afar, tracking targets, and continuous evaluation. 

They also noted that these networks are unusual because they span multiple disciplines. When determining the power 

transmission level for each SN, we considered various factors such as energy efficiency, PDR, distance, link quality, and 

neighborhood density. All nodes in the neighborhood are taken into account when forwarding the packets. The proposed 

results demonstrated superior performance in data delivery while effectively managing energy costs across all system 

levels. An algorithm called "FPT-Approximation Algorithm" was created to address the load balancing problem. 

Using the PSO technique in WSN has effectively addressed the clustering problem. The PSO-based algorithm aims to 

achieve energy balance in clustering by dividing the sensor field into clusters of varying sizes. As they approach the sink 

node, these clusters shrink in size. One thing to maintain in attention with inter-cluster relay communication is that the 

Cluster Heads (CH) energy level will be more significant. The cluster head SN'-EC is minimized by inter-cluster interaction 

employing a multi-hop energy-aware routing mechanism.  

Authors have created a new and improved clustering algorithm that considers energy economy and 

telecommunication distance when selecting SN to function as cluster heads. In order to reduce the CH-SN's power usage, 

relay SNs are selected from the pool of SN. To improve the sensing coverage, longevity, and implementation cost of WSN 

in practical buildings, [23] put up a theoretical framework. Using the sensor values as input data, the researchers employed 

a Building Information Modelling (BIM) database, which provides all the relevant building information. They used a 

Genetic Algorithm (GA), an evolutionary method, to resolve the optimization issue. Then, after incorporating all of the 

necessary sensors and barriers into a 3D building model, the enhanced solution will be shown using the BIM plugin tool. 

The determination variable vector in the optimization problem depicts the smart building's SN locations. The primary 

limitation is ensuring that every SN can communicate with the sink node. An adaptive multipath routing method is 

presented in the study [24] to minimize routing inefficiency and maximize EC. To improve the network's performance and 

increase the residual capacity in SN, the Competitive Clustering (CC) technique with sink mobility. The remaining energy 

and range of the competition radio are used to select the final head from among the competing contenders. The technique 

moves the head node closer to the BS by creating clusters at the fixed sink node. Consequently, less energy is needed to 

collect data amongst the clusters. Table 1 represents Related work Comparison. 
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Table 1. Related Work Comparison 

Reference 
Algorithm/ 

Technique 
Focus Key Features Limitations 

[3] 

Virtual Force-

directed Particle 

Swarm Algorithm 

(VF-PSO) 

Deployment 

technique using node 

mobility distance 

Utilizes virtual force to 

measure node 

interference 

Node density 

significantly 

impacts 

performance 

[4] - 
Data collection 

mechanism in WSN 

Strategic sensor 

placement with the 

adjacent sink node 

Limited to the 

proximity of 

sensors to the sink 

[13] 
Optimal 

Controllers 

Network performance 

in WSN 

Focus on delay and 

packet loss 

High complexity 

and parameter 

dependency 

[15] - 
Energy efficiency in 

WSN 

Use of mobile energy 

sources and 

rechargeable batteries 

Limited energy 

supply, 

necessitating 

efficient usage 

[16] 

Clustering-Based 

Energy-Efficient 

Routing (CBEER) 

Prolong UWSN 

lifespan 

Clustering technique 

for energy-efficient 

routing 

Performance 

dependent on 

simulation 

parameters 

[17] 

Energy-Efficient 

Routing Based on 

Layers and 

Clusters 

(EERBLC) 

Energy efficiency in 

UWSN 

Multi-stage approach: 

layer/cluster creation, 

routing, maintenance 

High complexity 

due to multiple 

stages 

[18] 

Grid Exclusion 

Method, Dijkstra 

Algorithm 

Cluster formation and 

energy optimization 

Considers energy 

metrics and radio range 

Complexity in real-

world applications 

[19] 
D-S Evidence 

Theory 

Node installation and 

network reliability 

Reduces the impact of 

subjective/incomplete 

parameters 

Complexity in 

parameter 

estimation and 

application 

[20] 

Node Behavioral-

Based Trust 

Evaluation 

(NBBTE) 

Network Security 

Combines node 

behavior with evidence 

theory 

Complexity in 

integration and 

implementation 

[23] 

Building 

Information 

Modelling (BIM), 

Genetic Algorithm 

(GA) 

Sensor placement 

optimization in smart 

buildings 

Uses BIM for 

information and GA for 

optimization 

Complexity in 

integrating sensors 

and barriers 

[14] 
Adaptive 

Multipath Routing 

Routing efficiency 

and EC 

Minimizes routing 

inefficiency with a 

multipath strategy 

Dependent on 

adaptive 

mechanism 

efficiency 

[05] 

Competitive 

Clustering (CC) 

with Sink Mobility 

Enhanced WSN 

performance 

Uses competition-

based clustering with 

mobile sink 

Potential overhead 

from sink mobility 

management 

 

III. METHODS AND MATERIALS 

Problem Formulation  

In the SSN, energy optimization is one of the most crucial challenges, mainly when nodes are battery-powered. Effective 

use of energy is an essential concern in increasing the working life of the network and helping to facilitate efficient data 

exchange. The typical routing protocols often do not account for energy management, resulting in inefficient EC and 

shortening the network’s lifespan. This work's main problem is the energy optimization in SSN using an efficient routing 

protocol. More specifically, we attempt to develop a protocol that reduces the EC at the onset of communication while 

ensuring maximum coverage and effective data transfer among the nodes. 
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Fig 2. Flowchart of the Routing Process in RPSORP. 

 

Let 𝑁 be the set of SN in the network, where each node 𝑖 ∈ 𝑁 has an initial energy𝐸𝑖. The routing path between nodes 

is represented as 𝑃,  Where each path consists of a sequence of SN responsible for forwarding data. The EC of a node 𝑖 for 

transmitting and receiving data is denoted as 𝐸𝑡𝑥(𝑖) and 𝐸𝑟𝑥(𝑖), respectively. The total EC along a routing path 𝑃 can be 

expressed as Eq. (1). 

 

 𝐸𝑡𝑜𝑡𝑎𝑙(𝑃) = ∑ (𝐸𝑡𝑥𝑖∈𝑃 (𝑖) + 𝐸𝑟𝑥(𝑟𝑖))  (1) 

 

where, 𝐸𝑡𝑥(𝑖) is the energy required to transmit data from node 𝑖, 𝐸𝑟𝑥(𝑖) is the energy required to receive data at node 𝑖. 
The objective is to minimize the total EC across all possible routing paths while maximizing network coverage and 

maintaining effective communication. This can be formulated as Eq. (2) an optimization problem: 

 

 𝑚𝑖𝑛 ∑ 𝐸𝑡𝑜𝑡𝑎𝑙𝑃 (𝑃)  (2) 

 

Subject to the following constraints  

The remaining energy at any node 𝑖 must not fall below a threshold 𝐸𝑚𝑖𝑛, Eq. (3) 

 

 𝐸𝑖 − 𝐸𝑡𝑜𝑡𝑎𝑙(𝑃) ≥ 𝐸𝑚𝑖𝑛       ∀𝑖 ∈ 𝑃  (3)  

 

In Coverage Constraint, the set of selected nodes 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 ⊆ 𝑁 must provide complete coverage of the target area 𝑁, Eq. 

(4). 

 

 ⋃ 𝐴𝑖𝑖∈𝑁𝑎𝑐𝑡𝑖𝑣𝑒
= 𝐴  (4) 

 

where 𝐴𝑖 is the area covered by node 𝑖. 
Communication Range Constraint is the distance between any two communicating nodes 𝑖 and 𝑗 on a path 𝑃 must not 

exceed the maximum communication range. 𝑅𝑚𝑎𝑥, Eq. (5) 
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 𝑑(𝑖, 𝑗) ≤ 𝑅𝑚𝑎𝑥  ∀𝑖, 𝑗 ∈ 𝑃  (5) 

 

where 𝑑(𝑖. 𝑗) is the distance between nodes 𝑖 and 𝑗. To solve this optimization problem, the RPSORP is employed to 

iteratively search for the optimal routing paths that minimize EC while satisfying the above constraints. 

 

Methodology 

Relentless Particle Swarm Optimization-Based Routing Protocol (RPSORP) 

The PSO is an approach that employs social intelligence of elements, such as bird flocks and fish schooling, to solve 

optimization problems with a fluctuating population. Due to this, it has been utilized to optimize particularly non-linear 

functions in high-dimensional spaces. Examples in this case include optimization of networks. In the context of RPSORP, 

the PSO finds the optimal routing paths that conserve the maximum energy in an SSN. 

In this algorithm, every particle is considered a potential solution; in this case, it is a routing path/Sensor routing path 

set in an SN. That is, the position of each particle can be treated as an n-dimensional vector in terms of search space, where 

n reflects the number of interrelated parameters that define the routing path. 

Let 𝑆 be the number of particles in the swarm. 𝑋𝑖  =  (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖3) be the position vector of the 𝑖-th particle. 𝑉𝑖  =
 (𝑣𝑖1, 𝑣𝑖2, … , 𝑣𝑖3). At each iteration 𝑡, the particles update their velocities and positions according to Eq. (6) and Eq. (7). 

 

 𝑉𝑖𝑗
(𝑡+1)

= 𝑤𝑖𝑗
(𝑡)

+ 𝑐1𝑟1 (𝑝
𝑖𝑗

(𝑡)
− 𝑥𝑖𝑗

(𝑡)
) + 𝑐2𝑟2 (𝑔

𝑗

(𝑡)
− 𝑥𝑖𝑗

(𝑡)
)   (6) 

 

 𝑋𝑖𝑗
(𝑡+1)

= 𝑥𝑖𝑗
(𝑡)

+ 𝑉𝑖𝑗
(𝑡+1)

  (7) 

 

where, 𝑉𝑖𝑗
(𝑡)

 is the velocity of particle 𝑖 in dimension 𝑗 at time t. 𝑥𝑖𝑗
(𝑡)

 is the position of particle 𝑖 in dimension 𝑗 at time 

𝑡 . 𝑤  is the inertia weight that controls the impact of the previous velocity. 𝑐1 and 𝑐2  are acceleration coefficients 

representing cognitive and social components, respectively. 𝑟1 and 𝑟1 are random numbers uniformly distributed in the 

range [0,1]. 𝑝
𝑖𝑗

(𝑡)
 is the personal best position of particle 𝑖 in dimension 𝑗 up to time 𝑡. 𝑔

𝑗

(𝑡)
 is the global best position found 

by the entire swarm in dimension j up to time t. The inertia weight 𝑤 balances the global and local exploration abilities of 

the swarm, Eq. (8). 

  

 𝑤 = 𝑤𝑚𝑎𝑥 − (
𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛

𝑇
) 𝑡  (8) 

 

where, 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛 are the initial and final inertia weights. 𝑇 is the maximum number of iterations. 𝑡 is the current 

iteration number. The fitness function evaluates the quality of each particle's position (routing path) based on Eq. (9) 

 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = 𝛼𝐸𝑡𝑜𝑡𝑎𝑙(𝑥𝑖) + 𝛽𝐶𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑥𝑖) + 𝛾𝐷𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥𝑖)  (9) 

 

where, 𝐸𝑡𝑜𝑡𝑎𝑙(𝑥𝑖) is the total EC of the routing path represented by particle 𝑖. 𝐶𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑥𝑖) measures how well the 

routing path covers the network area. 𝐷𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑥𝑖) is the total communication distance in the routing path. 𝛼, 𝛽, 𝛾 

are weighting factors that balance the importance of each term.  

The objective is to minimize the fitness function, Eq. (10) 

 

 min
𝑥𝑖

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖  (10) 

 

To incorporate constraints into the PSO, apply penalty functions or repair mechanisms, Eq. (11) 

 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 + 𝑃 × 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛  (11) 

 

where 𝑃 is a significant positive constant. 

In the case of the Relentless Particle Swarm Optimization based Routing Protocol (RPSORP), routing activities start 

from the initialization phase, where SN is placed within the designated area, and the parameters needed for the PSO are 

defined as shown in Fig 2. Afterwards, particle initialization occurs, producing a swarm of particles representing possible 

routing paths. The fitness of the particles is determined using a fitness function that factors in EC, coverage efficiency, and 

communication range, among other parameters. RPSORP incorporates iterative optimization as a vital element of the 

algorithm, where the velocities and portions of particles are refreshed to search through the available routing path space. 

After each such update, every particle fitness is recalculated, which enables the algorithm to look for the best possible 

routing path. When the optimization effort is over, the routing table update step takes the routing path from the best particle 

and refreshes the nodes' routing tables accordingly. The actual height of the sink node is taken as the anchor reference to 

which other nodes find their positions. With proper routing paths laid out, data transmission begins where information 
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packets from the SN towards the sink node are sent along the shortest or optimized routes. Following transmission, the 

energy update phase of the framework re-estimates the energy state of nodes involved in the active transmission and 

reception of data packets. 

In the last stage, the system goes into the repeat phase, progressing from the routing intervals and evaluating the routing 

paths from time to better cope with changing conditions in the network, such as energy depletion or node failure, so that 

efficiency can be maintained. Focusing on this process method indicates how RPSORP can impact computation processes 

in improving routing decisions and using energy in SSN. 

 

Proposed RPSORP Protocol  

The RPSORP aims to enhance SSN-based EC by automatically adapting the routing paths to be the most efficient. The 

PSO is used in the protocol to navigate amongst various possible routing paths and employ the least amount of energy 

possible while meeting the set requirements. Let 𝑁 =  { 𝑛1, 𝑛2, … , 𝑛𝑀} represent the set of ′𝑀′, SN deployed over an area 

A. Each node 𝑛𝑖 has Initial Energy, 𝐸𝑖
(0)

. Communication Range, 𝑅𝑖  . Coverage Range, 𝐶𝑖 . A routing path 𝑃𝑘   is 

represented as a sequence of nodes connecting a source node 𝑛𝑠  to the sink node 𝑛𝑠𝑖𝑛𝑘 :  

 

 𝑃𝑘  = ( 𝑛𝑠, 𝑛𝑘1, 𝑛𝑘2, … , 𝑛𝑠𝑖𝑛𝑘)  (12) 

 

The set of all possible routing paths is denoted as ′𝑃′. The fitness function in RPSORP evaluates the quality of routing 

paths based on three key factors: EC (𝐸𝑡𝑜𝑡𝑎𝑙), Coverage Efficiency (𝐶𝑒𝑓𝑓), Communication Distance (𝐷𝑡𝑜𝑡𝑎𝑙). The fitness 

function for a routing path 𝑃𝑘 is defined as: 

 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃𝑘) = 𝛼 ⋅ 𝐸𝑡𝑜𝑡𝑎𝑙(𝑃𝑘) + 𝛽 ⋅ (1 − 𝐶𝑒𝑓𝑓(𝑃𝑘)) + 𝛾 ⋅ 𝐷𝑡𝑜𝑡𝑎𝑙(𝑃𝑘)  (13)  

 

where 𝛼, 𝛽, 𝛾 are weighting coefficients satisfying 𝛼 + 𝛽 + 𝛾 = 1, and they determine the relative importance of each 

component. 

The total EC for transmitting data along the path 𝑃𝑘 is calculated as: 

 

 𝐸𝑡𝑜𝑡𝑎𝑙(𝑃𝑘) = ∑ (𝐸𝑡𝑥(𝑛𝑘𝐼
, 𝑛𝑘𝑖+1

) + 𝐸𝑅𝑥(𝑛𝑘𝑖+1
))

𝐿𝐾−1
𝑖=1   (14) 

 

where 𝐿𝑘 is the length (number of nodes) of the path 𝑃𝑘. 𝐸𝑡𝑥(𝑛𝑘𝐼
, 𝑛𝑘𝑖+1

) is the EC by the node 𝑛𝑘𝐼
 to transmit data to 

the node 𝑛𝑘𝑖+1
. 𝐸𝑅𝑥(𝑛𝑘𝑖+1

) is the EC by node 𝑛𝑘𝑖+1
 to receive data. The transmission energy is modelled as follows: 

 

 𝐸𝑡𝑥(𝑛𝑘𝐼
, 𝑛𝑘𝑖+1

) = Eelec ⋅ l + Eamp ⋅ l ⋅ d𝑘𝑖,𝑘𝑖+1

m   (15) 

 

where, Eelec is the energy dissipated per bit to run the transmitter or receiver circuit. Eamp is the energy dissipated per 

bit per 𝑚𝑚 by the transmitter amplifier. 𝑙 is the size of the data packet in bits.  d𝑘𝑖,𝑘𝑖+1

m  is the Euclidean distance between 

nodes 𝑘𝑖and 𝑘𝑖+1. 𝑚 is the path loss exponent (typically m=2). The reception energy is: 

 

 𝐸𝑅𝑥(𝑛𝑘𝑖+1
) = E𝑒𝑙𝑒𝑐 ⋅ l  (16) 

 

Coverage efficiency measures how well the routing path contributes to the overall network coverage 

 

 𝐶𝑒𝑓𝑓(𝑃𝑘) =
𝐴𝑟𝑒𝑎 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑛𝑜𝑑𝑒𝑠 𝑖𝑛 𝑃𝑘

𝐴
  (17) 

 

Alternatively, the formula can be adjusted if the coverage is represented in terms of coverage probability or the number 

of covered targets. The total communication distance along the path 𝑃𝑘 is: 

 

 𝐷𝑡𝑜𝑡𝑎𝑙(𝑃𝑘) = ∑ 𝑑𝑘𝑖,𝑘𝑖+1

𝐿𝑘−1
𝑖=1   (18) 

 

Minimizing 𝐷𝑡𝑜𝑡𝑎𝑙  helps reduce EC due to lower transmission distances. 

 

Algorithm 1 for RPSORP 

1. Initialization: 

   a. Deploy SN as 𝑁 =  {𝑛1, 𝑛2, . . . , 𝑛𝑀} in the target area A. 

      - Assign initial energy 𝐸𝑖
0 to each node 𝑛𝑖 . 

      - Define communication range 𝑅𝑚𝑎𝑥  and coverage range 𝐶𝑖  for each node. 
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   b. Initialize PSO parameters: 

      - Swarm size S (number of particles). 

      - Maximum number of iterations 𝑇. 

      - Inertia weight w, cognitive coefficient 𝑐1, social coefficient 𝑐2. 

      - Weighting factors 𝛼, 𝛽, 𝛾 for the fitness function. 

   c. Generate Initial Swarm: 

      FOR 𝑖 =  1 TO S DO 

         - Randomly generate a feasible routing path 𝑃𝑖 . 

           - Ensure 𝑃𝑖  connects source node 𝑛𝑠 to sink node 𝑛𝑠𝑖𝑛𝑘. 

           - Satisfies communication range and energy constraints. 

         - Initialize particle position 𝑥𝑖 to represent 𝑃𝑖  . 

         - Initialize particle velocity 𝑣𝑖  (could be zeros or small random values). 

         - Evaluate fitness Fitness (𝑥𝑖) using the fitness function. 

         - Set personal-best position 𝑝𝑖  =  𝑥𝑖. 

      End For 

   d. Determine the global best position: 

      - g = argmin(Fitness(𝑝𝑖)) FOR all particles i = 1 TO S. 

2. Iterative Optimization: 

   For t = 1 to T Do 

      For i = 1 to S Do 

         a. Update inertia weight (if using dynamic inertia): 

            - w = 𝑤𝑚𝑎𝑥- ((𝑤𝑚𝑎𝑥- 𝑤𝑚𝑖𝑛) * t) / T 

         b. Update particle velocity 𝒗𝒊 : 

            For each dimension d in particle i, Do 

               - Generate random numbers 𝑟1 and 𝑟2  uniformly distributed in [0, 1]. 

               - 𝑣𝑖[𝑑] =  𝑤 ∗  𝑣𝑖[𝑑]  +  𝑐1  ∗  𝑟1  ∗  (𝑝𝑖[𝑑]  −  𝑥𝑖[𝑑])  + 𝑐2  ∗  𝑟2  ∗  (𝑔[𝑑]  − 𝑥𝑖[𝑑]) 
            End For 

         c. Update particle position 𝒙𝒊: 

            - For discrete PSO, update 𝑥𝑖based on 𝑣𝑖 using a suitable method 

              (e.g., probability mapping, position swap operations). 

         d. Ensure particle position 𝒙𝒊represents a feasible routing path: 

            - If 𝑥𝑖violates communication range constraint: 

               - Repair 𝑥𝑖by adjusting node sequences to satisfy 𝑑{𝑘𝑖𝑘{𝑖+1}}  ≤  𝑅𝑚𝑎𝑥. 

            - If 𝑥𝑖 violates energy constraints: 

               - Remove nodes with 𝐸𝑖  <  𝐸𝑚𝑖𝑛   from 𝑥𝑖. 

               - Find alternative nodes with sufficient energy. 

         e. Evaluate fitness Fitness (𝒙𝒊): 

            - Compute 𝐸𝑡𝑜𝑡𝑎𝑙(𝑥𝑖), 𝐶𝑒𝑓𝑓(𝑥𝑖), 𝐷𝑡𝑜𝑡𝑎𝑙(𝑥𝑖) 

           - 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)  =  𝛼 ∗  𝐸𝑡𝑜𝑡𝑎𝑙(𝑥𝑖)  +  𝛽 ∗  (1 −  𝐶𝑒𝑓𝑓(𝑥𝑖)) +  𝛾 ∗  𝐷𝑡𝑜𝑡𝑎𝑙(𝑥𝑖)  

         f. Update personal best position 𝒑𝒊: 

            - If 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖)  <  𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖) Then 

               - 𝑝𝑖  =  𝑥𝑖 

            End IF 

      End For 

      g. Update global best position g: 

         - 𝑔 =  𝑎𝑟𝑔𝑚𝑖𝑛(𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑝𝑖)) FOR all particles i = 1 TO S. 

      h. Check termination criteria: 

         - If convergence is achieved (e.g., minimal improvement over several iterations) 

           OR t equals maximum iterations T, Then 

            - Break loop 

         End If 

   End For 

3. Update Routing Tables: 

   a. Extract optimal routing path 𝑃𝑏𝑒𝑠𝑡  from global best position ‘g’. 

   b. Update routing tables of SN: 

      - For Each node 𝑛𝑖 in 𝑃𝑏𝑒𝑠𝑡, update its routing information to forward data accordingly. 

4. Data Transmission: Nodes transmit data packets using the optimized routing paths in their routing tables. 

5. Adaptation and Iteration: 

   a. Periodically or upon significant network changes (e.g., node failure, energy depletion): 
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      - Return to Step 2 to re-optimize routing paths. 

End RPSORP Algorithm 

In the Relentless Particle Swarm Optimization based Routing Protocol, the algorithm for node selection, deployment, 

and distribution (the Relentless Particle Swarm Optimization based Routing Protocol) starts by setting the area of interest 

as well as the specific parameters concerning the SN like energy capacity, communication, and sensing range. Each node 

is scattered randomly among the appropriate zones and noted in its coordinates. The next step involves determining the 

effectiveness of the deployed nodes in terms of coverage areas by measuring the distances between the deployed nodes and 

identifying any zones that could be exposed. If these zones exist, these nodes will be relocated to reduce the number of 

uncovered areas. Now, the algorithm formulates a database of each deployed node and its corresponding attributes to 

achieve a desirable node density and energy distribution, preparing the ground for sound routing policies in RPSORP. 

Algorithm 2 for Node_Selection_Deployment_Distribution(A, N, 𝑬𝒊
𝟎, R_max, 𝑪𝒊 ): 

Step 1. Initialize NodeList = [ ] 

Step 2. For i from 1 to N: 

Step 3. Create node n_i with: 

E_𝑖0, C_i, R_max 

Step 4. Generate random coordinates (𝑥𝑖 , 𝑦𝑖) in A 

Step 5. Assign n_i.position = (𝑥𝑖 , 𝑦𝑖) 

Step 6. While NodeList is not empty: 

Step 7. For Each Node 𝑛𝑖 in NodeList: 

For Each Node 𝑛𝑗  in NodeList: 

Calculate distance 𝑑𝑖𝑗   = √((𝑥𝑖 −  𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

) 

Evaluate coverage and identify gaps 

If gaps exist 

Reposition 𝑛𝑖to a new random location, maximizing coverage 

Step 8. For Each node 𝑛𝑖: 

Step 9. Append 𝑛𝑖to NodeList with its final attributes 

Step 10. Return NodeList 

 

Simulation Setup 

Simulations performed extensive assessments to measure the effectiveness of RPSORP. This section briefly describes the 

simulation settings, parameters, and methodology adopted to compare RPSORP and traditional routing protocols. The 

simulations were conducted in MATLAB R2021a since it is a versatile tool that allows one to design WSN and implement 

advanced functions such as PSO. The simulation area is a model for the 2-D square area with randomly deployed SN. The 

network consists of ‘N’ as SN randomly distributed over 100×100 square meters. The sink node is deployed at the 

geographical centre of the entire deployment zone. The key network parameters are summarized in Table 2. 

 

Table 2. Network Parameters 

Parameter Symbol Value 

Deployment Area — 100×100 m² 

Number of SN N 100 

Initial Energy Per node 𝐸𝑖
(0)

 2 Joules 

Communication range 𝑅 𝑚𝑎𝑥 20 meters 

Sensing Range 𝐶𝑖 10 meters 

Data Packet Size l 4000 bits 

Sink Node Position — Centre of area 

Path Loss Exponent m 2 (Free space) 

 

The EC model is based on the first-order radio model, in which EC is used during the transmission and reception of 

data packets. Such parameters, which are found in the energy model, are presented in Table 3. 

 

Table 3. Energy Model Parameters 

Parameter Symbol Value 

EC Per Bit (Tx/Rx) 𝐸𝑒𝑙𝑒𝑐 50 nJ/bit 

Transmit Amplifier Energy 𝐸𝑎𝑚𝑝  100 pJ/bit/m² 

Data Aggregation Energy 𝐸𝐷𝐴 5 nJ/bit 

 

The parameters for the PSO used in RPSORP are listed in Table 4. 
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Table 4. PSO Parameters 

Parameter Symbol Value 

Swarm Size S 30 

Maximum Iterations T 100 

Inertia Weight w Linearly decreasing from 0.9 to 0.4 

Cognitive Coefficient 𝑐1 2.0 

Social Coefficient 𝑐2 2.0 

Velocity Clamping — Applied 

Position Update Method — Discrete PSO 

 

The inertia weight w decreases linearly over iterations to balance exploration and exploitation. The weighting factors 

in the fitness function balance the importance of different optimization objectives Table 5. 

 

Table 5. Fitness Function Weights 

Component Symbol Weight (α, β, γ, δ) 

EC α 0.4 

Coverage Efficiency β 0.3 

Communication Distance γ 0.2 

Energy Balance δ 0.1 

Total — 1.0 

 

Many simulation scenarios were designed to evaluate RPSORP comprehensively. Scenario A involved comparing 

traditional routing protocols, such as LEACH and AODV, under identical network conditions to assess relative 

performance. In Scenario B, the number of SN was varied (N=50,100,150N=50, 100, 150N=50,100,150) to assess the 

scalability of RPSORP in networks of different sizes. Scenario C examined the protocol's performance under different 

energy constraints by varying the initial node energy levels (𝐸𝑖
(0)

=1,2,3 Joules). Lastly, Scenario D tested the robustness 

of RPSORP against communication limitations by varying the communication range (𝑅𝑚𝑎𝑥=15,20,25meters). 

The simulation procedure proceeds with the initialization phase first. In this phase, SNs are uniformly placed over the 

designated area, and an initial energy is assigned to each node, which is 6 times the average amount from the previous 

section. The execution of the RPSORP follows this, and the first step is the initialization of the PSO. The swarm of particles 

is built, and routing paths are optimized with the help of the fitness function, which attempts to optimize the EC, coverage 

efficiency, communication distance, and energy balance of each node. After the optimization, each SN’s routing table is 

exemplified with the best routing paths obtained. In the data transmission phase, SN generates packets and sends the data 

to the sink node via the optimized routing paths. During the phase in which data are transmitted and received, EC for both 

acts is determined with a first-order radio model, and energy residues of the nodes are updated. 

The RPSORP algorithm runs periodically (e.g., after every 20 rounds) with repetitive execution so that the network can 

adjust to node energy exhaustion or even topological shifts. Throughout the simulation, primary performance indicators, 

including total EC, network lifetime, coverage ratio, PDR, and average energy reserve per node, are measured at the end 

of each round. Running the simulation continues until a stopping criterion is pointed out. An example could be energy 

depletion of specific nodes up to some preset level (e.g., 50%). In order to provide reliable results, the same scenario is 

repeatedly executed several times with different random seeds, and the performance metrics are averaged. 

 

IV. RESULT AND DISCUSSION 

This section of the paper discusses the results obtained during the evaluation of the routing protocol RPSORP and places 

the results in the context of the traditional routing protocols. Performance metrics that were measured include total EC, 

Network Lifetime (NL), Coverage Ratio (CR), Packet Delivery Ratio (PDR), and Average Residual Energy (ARE). It is 

evident from the results that RPSORP is well suited to promoting EC and increasing the useful lifetime of SSNs. 

 

Scenario A: Comparison With Traditional Routing Protocols 

The total EC of RPSORP was compared to LEACH and AODV's under the same networking conditions. These results for 

RPSORP are listed in Table 6, which indicates that RPSORP substantially decreases EC. Table 6 represents Total EC 

Comparison. 

 

Table 6. Total EC Comparison 

Protocol Total EC (Joules) 

RPSORP 120 

LEACH 180 

AODV 200 
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As seen in Fig 3, the EC by each protocol, the drug performs relatively better as time progresses than other protocols’ 

EC profiles. RPSORP exhibited decreased EC throughout the simulation period owing to its effective routing path, which 

reduces the distance to be covered and reclines the EC on nodes. 

 

 
Fig 3. Total EC Over Time. 

 

The number of rounds measures the network lifetime until the First Node Dies (FND) and until 50% of High Nodes 

Die (HND). As shown in Table 7, RPSORP extends the network lifetime significantly compared to LEACH and AODV. 

 

Table 7. Network Lifetime Comparison 

Protocol Rounds until FND Rounds until HND 

RPSORP 500 900 

LEACH 350 600 

AODV 300 550 

 

The extended network lifetime in RPSORP is featured in its energy-aware routing decisions, which prevent early energy 

depletion of critical nodes. The coverage ratio over time is depicted in Fig 4. RPSORP maintains a higher coverage ratio 

than LEACH and AODV, ensuring that the monitoring area remains effectively covered even as nodes deplete their energy.  

 

 
Fig 4. Coverage Ratio Over Time. 

 

As shown in Table 8, RPSORP achieves a higher PDR, indicating more reliable data transmission to the sink node. 

 

Table 8. PDR Comparison 

Protocol PDR (%) 

RPSORP 95 

LEACH 88 

AODV 85 

  

Scenario B: Scalability Analysis 

The performance of RPSORP was evaluated by variable the number of SN (N=50,100,150) to assess scalability. Fig 5 

shows that as the number of nodes increases, the total EC of RPSORP scales linearly, demonstrating its ability to handle 

more extensive networks efficiently. 
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Fig 5. Total EC vs. Number of Nodes. 

 

Table 9 presents the network lifetime for different network sizes. RPSORP consistently outperforms traditional 

protocols, with the network lifetime slightly decreasing as N increases due to higher energy demands. Despite the increase 

in network size, RPSORP maintains a high coverage ratio, as illustrated in Fig 6, due to its efficient routing and energy-

balancing mechanisms. 

 

Table 9. Network Lifetime with Varying Number of Nodes 

Number of Nodes 

(NNN) 

RPSORP Rounds until 

FND 

LEACH Rounds until 

FND 
AODV Rounds until FND 

50 550 400 350 

100 500 350 300 

150 450 300 250 

 

Despite the increase in network size, RPSORP maintains a high coverage ratio, as illustrated in Fig 4, due to its efficient 

routing and energy-balancing mechanisms. 

 

 
Fig 6. Coverage Ratio vs. Number of Nodes. 

 

Scenario C: Impact of Initial Node Energy 

By varying the initial node energy levels (𝐸𝑖
(0)

=1,2,3 Joules), the protocol's performance under different energy constraints 

was evaluated. Fig 7 shows that network lifetime increases proportionally with higher initial energy levels. RPSORP makes 

better use of the available energy, resulting in longer network lifetimes than LEACH and AODV at each energy level. 
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Fig 7. Network Lifetime vs. Initial Node Energy. 

 

The energy efficiency of RPSORP is highlighted by its ability to extend network lifetime without a proportional increase 

in total EC, indicating effective energy optimization. 

 

Scenario D: Robustness Against Communication Limitations 

The communication range (𝑅𝑚𝑎𝑥=15,20,25 meters) was wide-ranging to test the protocol's robustness. The PDR typically 

decreases as the communication range decreases due to limited connectivity. However, Table 10 shows that RPSORP 

maintains a higher PDR than traditional protocols, even at shorter communication ranges. 

Table 10 represents PDR with Variable Communication Range. 

 

Table 10. PDR with Variable Communication Range 

Communication Range (m) RPSORP (%) LEACH (%) AODV (%) 

25 96 90 88 

20 95 88 85 

15 92 80 78 

 

RPSORP adapts to reduced communication ranges by optimizing routing paths considering communication constraints, 

thereby maintaining network connectivity and performance. 

 

 
Fig 8. The Average Residual Energy of Nodes. 

 

At the end of the simulation for each protocol, Fig 8 presents the average residual energy of nodes. This visualization 

displays the energy efficiency level of the system during operation concerning the protocols. The bar chart shows that 

RPSORP performs well in energy efficiency among nodes by showing a higher average residual energy than the 

conventional routing protocols of LEACH and AODV. This points out that RPSORP reduces the total EC while 

simultaneously providing and maintaining better EC equilibrium among the nodes in the network, increasing the network 

lifetime. 
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According to the simulation results, RPSORP outperforms standard routing protocols such as LEACH and AODV 

regarding EC and prolonging network lifetime. RPSORP’s improved performance can be attributed to its succession of 

routing paths, which effectively shortens transmission distances and balances the EC on the networks’ nodes. Using PSO, 

RPSORP can determine paths that use less energy without exhausting some nodes faster than others. The lack of a dynamic 

average coverage ratio in standard protocols makes RPSORP significantly valuable for applications that need regularly 

located area tracking. Network protocols based on RPSORP and similar structures will use significant energy to avoid 

networking disparity and enhance productive domain coverage for extended periods. Run-of-the-mill interactions along 

these lines are featured by limited protocols that hardly deploy the global optimization approach elucidated above, and as 

such, shorter network lifespans are experienced. 

The RPSORP exhibits consistent strategic advantages as the network size increases, which points out its scalability. 

The efficiency of the PSO increases the size of the search space without increasing the level of computation, which proves 

helpful for RPSORP in large WSNs. It also adapts to different communication ranges and is still functional despite these 

communication limits. The routing paths disagree to enable communication and data transfer if these nodes' communication 

capabilities are lowered, thus still operating the network under communication constraints. Nevertheless, a few weaknesses 

of RPSORP, in particular, need to be addressed. These nodes are assumed to be other corresponding sensors executing the 

PSO, which adds unnecessary computations and can be a limiting factor for SN with low power or low resources. This 

problem, however, is countered by the extended network life. Networks cause this overhead and the implementation of 

efficient algorithms to execute our risk. Other molds made in the simulations, such as no movement of nodes and the 

existence of ideal scenarios, will hold in highly dynamic settings, such as moving node mobility or changing channel 

conditions where the protocol performance may suffer. Dealing with dynamics such as these will be the area of extending 

RPSORP and studying hybrid methods, which RPSORP will integrate with other optimization methodologies to alleviate 

UPR in future performance. 

As agreed in an earlier discussion, there are several developments where the use of RPSORP has practical consequences 

in such fields as environmental monitoring, smart healthcare, and security surveillance. Longer network lifetimes translate 

to lower operational expenditure as fewer batteries must be changed, hence a smaller infrastructure footprint. Furthermore, 

the protocol's effectiveness can be improved using adaptive parameter tuning and energy harvesting techniques. This would 

render RPSORP an up-and-coming, efficient energy management protocol solution for SSNs. To summarize, the presented 

results leave no doubt that RPSORP poses excellent potential in overcoming the limitations of the conventional routing 

method in the area of EC, network lifespan, extent of reach, and network durability. In the same method as routing 

figdecisions, which require the embedding of PSO, these aspects have been integrated into the optimization of the EC in 

RSOPRPM by RPSORP. 

 

 
Fig 9. Confusion Matrix. 

 

Fig 9 is the Confusion Matrix, which contains all-inclusive details of the classification of successful and failed data 

transmission with the RPSORP. The matrix summarizes the actual and percentage shares of TP and FN and open-handed 

ideas about RPSORP's performance in managing data packet classification. True Positive (TP) and True Negative (TN) are 

crucial determinants of protocol usability. Such high figures make it understandable that all the positive and negative 

attempts are captured. FP represents the unfortunate situation of a failed transmission being interpreted as a success, 

whereas the other method could enhance energy waste and lower efficiency. The same reasoning applies to FN, which 

refers to misclassifying a successful message transmission as a failure. The percentage reading on the confusion matrix 

makes drawing reports on the protocol's performance easy, as most percentages averaged out number nine as a balance. 

The more evenly spread the percentage was, the better the performance of the PSO algorithm in making routing decisions. 

 

V. CONCLUSION AND FUTURE WORK 

This paper introduces RPSORP, a technique that addresses energy efficiency in wireless SSNs. It integrates the advantages 

of PSO in routing decisions, allowing it to adaptively search for fewer ECs at any specified time while ensuring acceptable 
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network coverage and connectivity. In most performance parameters, RPSORP is more effective than traditional routing 

protocols like LEACH and AODV. It provides an energy-efficient network operation by routing communication distances, 

reducing communication travel distances, and evenly distributing energy depletion across nodes. It makes the operational 

time longer, increases the time constant area coverage ratio, and advances the over-percent PDR to the sink node, all of 

which means better data transfers. RPSORP is flexible and extendible, preserving performance benefits even when network 

sizes and conditions change. It can endure communication restrictions and promotes sustainability in the entire set-up by 

rerouting communication links.  

Future work should explore RPSORP's probable in dynamic networks, increasing its use in complex environments and 

encompassing its lifetime. When PSO is combined with other routing optimization methods, the result can be better routing 

solutions because these technologies can restore node energy and increase network lifetime. This method can enhance the 

network's performance. 
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