

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

933

Improved Real Time User Interaction in Extended

Reality Systems Using the Deployment of

Adaptive Intelligent Technologies

1,2Hayder M A Ghanimi, 3Sathvik Bagam, 4Shaishav Shah, 5Vedaraj M, 6Manjunath TC and
7Manoranjan Kumar Sinha

1Department of Information Technology, College of Science, University of Warith Al-Anbiyaa, Karbala, 56003, Iraq.
2Department of Computer Science, College of Computer Science and Information Technology, University of Kerbala,

Karbala, 56003, Iraq.
3Software Development Team Lead at Paycom, Masters in Computer Science, Oklahoma Christian University, Edmond,

Oklahoma, 73013, United States.
4Department of Computer Engineering, Government Engineering College, Dahod, Gujarat, India.

5Department of Computer Science and Engineering, R.M.D. Engineering College, RSM Nagar, Kavaraipettai,

Thiruvallur, Tamil Nadu, India.
6Department of Computer Science and Engineering, Dean Research (R&D), Rajarajeswari College of Engineering,

Bengaluru, Karnataka, India.
7Department of Electronics Engineering, Medi-Caps University, Indore, Madhya Pradesh, India.

1,2hayder.alghanami@uowa.edu.iq, 3sathvikbagam7@gmail.com, 4shaishav999@gmail.com, 5vedaraj84@gmail.com,
6tcmanju@iitbombay.org, 7sinhamanoranjan18@gmail.com

Correspondence should be addressed to Sathvik Bagam: sathvikbagam7@gmail.com

Article Info

Journal of Machine and Computing (https://anapub.co.ke/journals/jmc/jmc.html)

Doi: https://doi.org/10.53759/7669/jmc202505074

Received 14 March 2024; Revised from 29 June 2024; Accepted 26 February 2025.

Available online 05 April 2025.

©2025 The Authors. Published by AnaPub Publications.

This is an open access article under the CC BY-NC-ND license. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract - The Human-Computer Interaction (HCI) field has seen rapid growth in various industries due to the introduction

of Extended Reality (XR) environments. These environments require improved interface methods, real-time processing,

low latency, and integrated User Experience (UE) servicing. This work aims to improve user interactions in real-time XR

environments and introduces a new Hierarchical Adaptive System (HAS) to address these challenges. This study presents

a Real-Time Adaptation Model (RTAM) for XR interfaces, which combines adaptive optimized performance, Deep

Reinforcement Learning (DRL), and Fuzzy Logic (FL). The system addresses unpredictability, Dynamic Resource

Allocation (DRA), and parallel processing pipelines. HAS did better than the best methods by 46.3% in terms of Faster

Learning Integration (FLI), 63.2% in terms of Lower Error Rates (LER), and 37.4% in terms of Reduced Task Completion

Times (RTCT) in a study with 60 users in different interactive settings. Despite maintaining low adaptation latency, the

system achieves a score of 0.86 for resource utilization efficiency. The study also identified improvements in system

responsiveness and overall satisfaction. The results support that HAS effectively solves RTAM issues in XR settings, laying

the basis for next-generation immersive apps with more responsive and user-centered communication models.

Keywords – Extended Reality, User-Centric Interaction, Hierarchical Adaptive System, Human-Computer Interaction,

Latency, Deep Learning.

I. INTRODUCTION

The domain of Human-Computer Interaction (HCI) is currently experiencing a significant increase in the application of

Extended Reality (XR) environments, which integrate multiple types of Augmented Reality (AR) and Virtual Reality (VR)

[1-3]. Conventional and Adaptive Interface Systems (AIS) are in substantial demand due to the development of AIS in

sectors such as healthcare, educational institutions, design for manufacturing, and professional training [4-5]. Suboptimal

User Experiences (UE), reduced task performance, and the risk of user dissatisfaction result from the reasons that most

modern XR uses static interface models that cannot adapt to changing user knowledge, environmental factors, and the

complexity of tasks [6,7].

Although AIS has recently rendered significant progress in several domains, numerous challenges must be solved when

applying it to XR interactions [8–10]. The numerous demands of real-time multimodal input processing, ultra-low latency

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

934

maintenance of submerging, and adaptation to highly dynamic 3D interface spaces are the primary reasons for these

challenges. While traditional methods can provide some adaptability, they are typically unequipped to manage XR settings'

complexity and computational speed demands. Several types of research conducted [11-12] indicate that currently

developed systems have essential problems, specifically when it comes to adapting to different user behaviors, maintaining

performance consistently under many environments, and mitigating present interruptions over adaptation.

Intelligent systems that can manage multiple input sources simultaneously, learn from active user interactions and adapt

in real-time while maintaining the system's reliability and user-friendliness are important tasks to solve. Previous research

has used methods like rule-based systems, Fuzzy Logic controllers, and Reinforcement Learning to tackle XR interactions,

but these methods often focus on discrete adaptation elements, leading to incorrect adaptation or resource overuse due to

inadequate management [14-16].

Traditional HCI faces challenges due to the complexity of XR interactions, which require accurate monitoring and

decoding of user gestures, posture, gaze direction, and speech. Environmental factors like lighting, space limits, and

interruptions make AIS more challenging [17-19]. Additionally, user needs and abilities may revolutionize significantly,

demanding adaptable, adapted methods [20-21].

Implementing a Hierarchical Adaptive System (HAS) that involves Deep Reinforcement Learning (DRL), FL, and

adaptive optimization into a predictive model is the main focus of the present research. This is achieved to address the

problems that have been highlighted.

The recommended method proposes significant support to the domain.

• This scalable model uses an innovative parallel processing pipeline optimized for low-latency response, effectively

analyzing and adapting to real-time multimodal XR interactions.

• A new multilevel learning algorithm combines short-term optimization with long-term local adaptations, resulting

in rapid responses and continuous enhancement.

• Consistent performance over changing computational loads is provided by an intelligent resource management

system that optimizes and allocates resources periodically.

• A complete evaluation paradigm that integrates objective performance measures and qualitative UE factors to

measure the value of adaptation in XR environments.

• A reliable uncertainty behavior method that maintains the complete system reliability despite the conditions or user

behavior.

Significant user studies demonstrate that the proposed model substantially improves upon current methods, with task

completion times that are 37.4% faster and error rates that are 63.2% lower. The improvements stand out in complex

interaction circumstances with several input modalities, and the environment evolves constantly. When compared to state-

of-the-art solutions, the proposed model presented faster learning integration and higher Resource Utilisation Efficiency

(RUE) [22].

Here is how each section of the paper is organized: Details of the system design, algorithms, and execution problems

will be provided in Section 2 of the proposed methodology. The team of novel testing model is one of the evaluation metrics

and experimental design details provided in Section 3. Section 4 presents a complete analysis and results of performance

dimensions; Section 5 ends with recommendations for further research and prospective extensions of this work.

II. METHODOLOGY

System Architecture

Fig 1. Proposed XR-AIS Model.

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

935

The present research describes a complete model for developing Artificial Intelligence (AI) systems for XR environments

that address the essential problems of improving user interaction in real-time. Figs 1 and 2 implement a Closed-Loop

Adaptive Model (CLAM) that processes user inputs, analyses context and delivers real-time adaptations while maintaining

optimal system performance. The model Fig 1 starts a primary workflow where user interactions flow into a chain of

focused processing modules by the XR interface. This high-level organization demonstrates the system's core data route,

with compacted arrows representing direct data flow and dashed lines indicating RUE. The system employs four principal

components that work in concert to deliver adaptive responses: the Perception Engine (PE), Context Analyzer (CA),

Adaptation Controller (AC), and Interaction Manager (IM).

Fig 2 demonstrates each component's internal layout and connectivity based on this core. The PE initiates the processing

pipeline with three key elements: a Sensor Array (S) for capturing multimodal inputs, a Data Preprocessing module (D) for

signal conditioning, and a Feature Extraction unit (F) that distills relevant interaction features. This HAS ensured the

efficient processing of raw user inputs into meaningful feature sets.

Fig 2. Component-Level Model and Processing Pipeline.

The Details of Each Component are Presented Below

The PE, defined as 𝑃𝐸 = {𝑆, 𝐷, 𝐹}, acts as the primary input processing unit. Here, 𝑆 represents the sensor array responsible

for collecting multimodal input data, including user gestures 𝐺(𝑡), gaze vectors 𝑉(𝑡), and spatial positioning 𝑃(𝑡) at time

𝑡. The data preprocessing pipeline 𝐷 performs signal filtering and normalization to ensure data quality, while the Feature

extraction module 𝐹 employs a sliding window approach with window size 𝑤 and stride 𝑠 to extract meaningful features

from the input stream. The CA uses a HAS, represented as Eq. (1).

 𝐶𝐴 = {𝑀, 𝐶, 𝐻}, (1)

to derive contextual data. The context modeling function 𝑀 maps the raw feature space 𝑋 to a higher-level context

space 𝑌, while the context classification module 𝐶 employs a hybrid method combining rule-based heuristics 𝑅 and ML as

𝜃, trained on historical interaction data. To maintain continuity, a temporal context log buffer 𝐻 stores ℎ frames for constant

evaluation.

The AC, the core Decision-Making System (DMS), is represented as Eq. (2)

 𝐴𝐶 = {𝑄, 𝐴, 𝑂} (2)

The state-action mapping 𝑄(𝑠, 𝑎) determines optimal AC, governed by an adaptation policy 𝜋(𝑠) using a DRL with

learning rate 𝛼 and discount factor 𝛾. To minimize the adaptation error function 𝐸(𝜃), the optimization module 𝑂 adjusts

system parameters through gradient descent with motion 𝛽. The Interaction Manager (IM) coordinates the execution of

adaptation decisions and is defined as Eq. (3)

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

936

 𝐼𝑀 = {𝑇, 𝐼, 𝑈} (3)

It ensures temporal synchronization of adaptations within a maximum latency constraint 𝜆. The implementation module

𝐼 translates high-level decisions into concrete modifications within the XR environment, while the user feedback manager

𝑈 collects feedback and computes performance metrics at a sampling rate 𝑟.

The interaction among these components follows a defined protocol Eq. (4).

 𝑃 = {𝛿, 𝜏, 𝜔} (4)

Where,

𝛿→ the data flow pathways

𝜏→ synchronization mechanisms

𝜔→ communication protocols.

A global state vector Eq. (5).

 Ψ(𝑡) = [𝜓1(𝑡), 𝜓2(𝑡), … , 𝜓𝑛(𝑡)] (5)

It tracks the status of all subsystems at any given time. The procedure uses Dynamic Resource Allocation (DRA) to

optimize RUE, Eq. (6).

 𝑅(𝑡) = {𝐶𝑃𝑈(𝑡), 𝐺𝑃𝑈(𝑡),𝑀𝐸𝑀(𝑡)} (6)

This section determines it by the complexity of the link and the present load. The consistent operation under numerous

scenarios is provided by a fault-tolerance mechanism F(ε) with an error threshold ‘ε’.

Eq. (7) is a multi-objective function that optimizes performance.

 𝐽(𝜃) = 𝛼1𝐿adapt (𝜃) + 𝛼2𝐿latency (𝜃) + 𝛼3𝐿resource (𝜃) (7)

The design allows for component-wise updates and upgrades by an adaptable model, with the relative significance of

objectives determined by weights {α1, α2, α3}. It also features a setup database C = {c1, c2, …, ck} that stores all adapted

factors, enabling proactive system adaptation to deployment requirements and hardware features. The integrated design

enhances real-time user interaction in XR environments, ensuring its success, robustness, and adaptability.

Data Flow Design

The XR-AIS data flow design, consisting of PE, CA, AC, and Interaction Manager (IM), efficiently transfers data among

its four primary components, ensuring synchronization, resilience, real-time processing, effective communication, and

adaptive DMS. The data collection process starts at the PE, where the sensor array transmits the multimodal input data S=

{G(t), V(t), P(t)}. D is assigned to preprocessing the raw sensor data, encompassing features like spatial positioning, gaze

vectors, and user gestures. This module normalizes and filters the inputs to reduce noise and secure interoperability for the

following steps. Processed signals are then passed to the feature extraction module 𝐹, where meaningful features are

identified using a sliding window mechanism. Extracted features 𝑋𝑓 serve as the primary inputs for context analysis. The

extracted features 𝑋𝑓 are transmitted to the CA, where the context modeling function 𝑀 maps the features into the context

space 𝑌. The hybrid context classification module 𝐶, leveraging rule-based heuristics 𝑅 and ML as 𝜃, evaluates the user's

state and the XR environment conditions. The temporal context history 𝐻 stores recent context states {𝑌𝑡−1, 𝑌𝑡−2, … , 𝑌𝑡−ℎ},
enabling a continuous evaluation loop. The resulting contextual information 𝑌𝑐 is then sent to the AC.

Upon receiving 𝑌𝑐, the AC uses the state-action mapping 𝑄(𝑠, 𝑎) to identify the optimal AC. The current system state

𝑠 and context-derived action 𝑎 are evaluated by the adaptation policy 𝜋(𝑠), implemented through a reinforcement learning

model. Real-time adjustments to adaptation parameters are performed by the optimization module 𝑂, ensuring that the

system minimizes adaptation errors 𝐸(𝜃) while meeting latency constraints. The final adaptation decisions 𝐴𝑑 are then

passed to the Interaction Manager (IM). The Interaction Manager (IM) receives 𝐴𝑑 and translates these high-level

adaptation decisions into concrete XR environment modifications. The temporal synchronization module 𝑇 ensures that

the adaptations are aligned with the user's current interaction timeline, adhering to the latency constraint 𝜆. The

implementation module 𝐼 executes the modifications, such as adjusting visual elements, altering haptic feedback, or

triggering auditory cues. Simultaneously, the feedback manager 𝑈 collects user feedback 𝑈𝑓 and system performance

metrics, sampled at rate 𝑟, for evaluation.

User Feedback 𝑈𝑓 and performance metrics are returned to the CA and AC as part of a feedback loop. The CA uses this

data to refine its classification models 𝜃 and context history 𝐻, while the AC adjusts its policy 𝜋(𝑠) and optimization

parameters 𝑂. The feedback loop ensures continuous learning and system improvement, adapting to changing user behavior

and environmental conditions.

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

937

The interaction between components follows a defined communication protocol

 𝑃 = {𝛿, 𝜏, 𝜔} :
• 𝛿 : Specifies the data flow pathways, ensuring efficient transmission between subsystems.

• 𝜏 : Manages synchronization to align data processing across the closed-loop system.

• 𝜔 : Standardizes communication protocols to maintain compatibility and reduce latency.

The data flow design causes the use of DRA as R(t)= {CPU(t), GPU(t), MEM(t)} to ensure that data processing remains

continuous regardless of the changing computational loads. The reliable operation within an error threshold ‘ε’ has been

preserved by the fault-tolerance mechanism F(ε), which monitors and resolves data flow problems. A real-time image of

the condition of all subsystems can be attained by the framework's global state vector Ψ(t)=[ψ1(t),ψ2(t),…,ψn(t)]. Optimal

performance is assured with the help of this state vector, enabling the entire system to monitor and adaptive improvements.

 Integration Model

A unified framework can be found by the integrating model of the recommended XR-AIS, which ensures subsystems

interface effectively while maintaining performance, reliability, and adaptability at their optimal levels. This model,

illustrated by Figs 1 and 2, combines components, manages resources dynamically, synchronizes, and deals with errors

securely; it can be used in real-time XR environments because of its multilayer design.

The fundamental part of the model is the component connectivity layer, which measures the interface among the four

primary subsystems: the PE, CA, AC, and IM. A feature-transformed data interface, IF(Xf), allows the PE to transmit the

extracted features to the CA in a reliable and practical approach, processing the sensory inputs throughout the process. The

CA generates contextual data, Yc, and sends it to the AC via the interface IC(Yc), where the AC is specified. Through the

IA(Ad) input interface, the AC later transmits recommendations for adaptation to the IM. To complete the feedback loop,

the IM transmits the user's feedback data (Uf) back to the PE by the interface IU(Uf). Modular interaction is made probable

by providing these interfaces, meaning subsystems can be updated periodically without impacting the overall system's

functionality.

A focused resource management layer monitors the integration of resources and is responsible for the real-time

allocation and monitoring of memory, graphics processing unit (GPU), and CPU resources. This real-time demand and

load mapping, RM(t), allocates computing resources to subsystems. The Performance Optimiser J(Ϙ) manages the process

by monitoring performance metrics like adaptation accuracy, latency, and RUE. It adjusts resource allocation dynamically

while maintaining system functionality within predefined constraints. The model also features a global state management

mechanism for synchronization and coherence.

This is represented by the state vector Eq. (8)

 Ψ(𝑡) = [𝜓𝑃𝐸(𝑡), 𝜓𝐶𝐴(𝑡), 𝜓𝐴𝐶(𝑡), 𝜓𝐼𝑀(𝑡)], (8)

which is updated at 120 Hz to ensure optimal synchronization.

An internal priority queue divides system functions into critical, standard, and background forms, enabling better

integration of events and allowing the system to prioritize dynamic tasks while delaying less important ones, ensuring

responsiveness in high-demand environments.

The model's robust performance is backed by an advanced fault management system, which involves local elements

addressing problems individually before sending them to system-level processors. Recovery mechanisms, including retry

protocols, fallback methods, and system reset, ensure system security and minimize downtime in unpredictable situations.

The model's adaptability is achieved through a module-based framework, allowing new elements, adaptation rules, and

techniques to be implemented. All modules are tested for compatibility and version control, ensuring compatibility without

impacting current activities. This design allows for iterative updates and experimentation. Security measures, such as

encrypting communications and operating within restricted trust boundaries, are implemented using a multi-layered

approach. The system filters potential risks with automated integrity checks and real-time security event monitoring.

Implementation of AIS

Learning Algorithms

The XR system's AIS implementation uses a multi-layered approach, including optimization, uncertainty management, and

core AC, to quickly tune system parameters, adapt in real-time, and endure changing conditions, focusing on user

interaction, environmental unpredictability, and resource management.

Core Adaptation Algorithms: DRL

A DRL, including Proximal Policy Optimisation (PPO) or Deep Q-Networks (DQN), is a key tool for adaptive behavior.

The rule sets π(s) for state-action mappings Q (s, a) are optimized dynamically by these algorithms.

where:

• 𝑠 ∈ 𝑆→Represents the system's state,

• {𝐺(𝑡), 𝑉(𝑡), 𝑃(𝑡)} →encompassing user inputs

• 𝜓𝑃𝐸(𝑡), 𝜓𝐶𝐴(𝑡), 𝜓𝐴𝐶(𝑡), 𝜓𝐼𝑀(𝑡)→ subsystem statuses

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

938

• 𝑎 ∈ 𝐴→Adaptive actions may include modifying video and audio.

• 𝑄(𝑠, 𝑎)→ Computes the cumulative reward

𝑅𝑡 = ∑𝑘=0
∞  𝛾𝑘𝑟𝑡+𝑘, where 𝑟𝑡 is the immediate reward and 𝛾 ∈ [0,1] is the discount factor.

The PPO refines the policy 𝜋(𝑠) by maximizing the clipped surrogate objective Eq. (9)

 𝐿PPO(𝜃) = 𝔼𝑡[min(𝑟𝑡(𝜃)𝐴̂𝑡 , clip⁡(𝑟𝑡(𝜃),1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)] (9)

Where,

𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡∣𝑠𝑡)

𝜋𝜃old
(𝑎𝑡∣𝑠𝑡)

→probability ratio, 𝐴̂𝑡→reward function, 𝜖→ clipping parameter to prevent massive updates.

Alternatively, the DQN approximates the Q-value function 𝑄𝜃(𝑠, 𝑎) using a DNN, updated iteratively with the Bellman

Eq. (10)

 𝑄𝜃(𝑠, 𝑎) = 𝑟𝑡 + 𝛾max
𝑎′

 𝑄𝜃(𝑠
′, 𝑎′) (10)

where 𝑠′→is the next state.

This setup ensures dynamic adaptation to user behaviors and environmental shifts.

Uncertainty Management Algorithms: FL and Bayesian Networks

To handle uncertainties in user behavior and environmental conditions, the system incorporates FL and Bayesian Networks.

FL

FL represents imprecise inputs and outputs through membership functions 𝜇: 𝑋 → [0,1], where 𝑥 ∈ 𝑋 (e.g., gesture speed,

gaze angle). Fuzzy rules, such as:

IF 𝑥1 is 𝐴1 AND 𝑥2 is 𝐴2, THEN 𝑦 is 𝐵, infer appropriate adaptive actions 𝑦. These rules ensure smooth transitions

and robust handling of overlapping or vague user inputs.

Bayesian Networks

Bayesian Networks model probabilistic relationships among system variables. For a set of variables 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛},
the joint probability is expressed as:

 𝑃(𝑉) = ∏  𝑛
𝑖=1 𝑃(𝑣𝑖 ∣ Parents (𝑣𝑖)) (11)

Optimization Algorithms: Evolutionary Algorithms (GA and PSO)

Optimization of parameters, such as network weights 𝜃, adaptation policies 𝜋(𝑠), and resource allocations 𝑅(𝑡), is achieved

through Evolutionary Algorithms (EA), including Genetic Algorithms (GA) and Particle Swarm Optimization (PSO).

GA

GA evolves a population of candidate solutions {𝑥1, 𝑥2, … , 𝑥𝑛} through selection, crossover, and mutation.

The fitness function is Eq. (12)

 Fit (𝑥) = 𝛼1𝐿adapt (𝑥) + 𝛼2𝐿latency (𝑥) + 𝛼3𝐿resource (𝑥), (12)

where 𝐿adapt , 𝐿latency, and 𝐿resource measure adaptation accuracy, system latency, and resource efficiency, respectively.

The weights 𝛼1, 𝛼2, 𝛼3 balance these objectives.

Particle Swarm Optimization (PSO)

PSO optimizes a set of particles {𝑝1 , 𝑝2, … , 𝑝𝑛} in a search space. Each particle updates its velocity and position as follows:

Eq. (13) and Eq. (14)

 𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝best − 𝑝𝑖) + 𝑐2𝑟2(𝑔best − 𝑝𝑖) (13)

 𝑝𝑖(𝑡 + 1) = 𝑝𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (14)

where 𝑣𝑖 is the particle velocity, 𝑝best and 𝑔best are the personal and global best positions, respectively, and 𝜔, 𝑐1, 𝑐2

control the convergence behavior. This ensures efficient fine-tuning of system parameters.

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

939

Algorithm: Adaptive Intelligence Implementation in XR Systems

Input:

• User inputs 𝑆 = {𝐺(𝑡), 𝑉(𝑡), 𝑃(𝑡)} (Gestures, Gaze, Position).

• Environmental context data 𝐶(𝑡).
• Initial system parameters 𝜃0, 𝑅0 (network weights, resource allocation).

Output:

• Adaptation decisions 𝐴𝑑.

• Updated parameters 𝜃, 𝑅.

1. Initialize System:

Set initial states Ψ(0) = [𝜓𝑃𝐸(0), 𝜓𝐶𝐴(0), 𝜓𝐴𝐶(0), 𝜓𝐼𝑀(0)].
Load pre-trained policy 𝜋(𝑠), Q-values 𝑄(𝑠, 𝑎), and system configurations 𝐶 = {𝑐1, 𝑐2, … , 𝑐𝑘}.

2. Input Data Processing:

Step 2.1: Collect user inputs 𝑆 and environmental context 𝐶(𝑡).
Step 2.2: Perform signal filtering and normalization on 𝑆 and 𝐶(𝑡).
Step 2.3: Extract features 𝑋𝑓 using a sliding window approach (window size 𝑤, stride 𝑠).

3. Context Analysis:

Step 3.1: Map extracted features 𝑋𝑓 to context space 𝑌 using 𝑀:𝑋 → 𝑌.

Step 3.2: Use FL to compute membership values 𝜇: 𝑋 → [0,1] and infer possible actions 𝐴fuzzy based on fuzzy

rules.

Step 3.3: Apply Bayesian Networks to estimate the likelihood of contextual states 𝑃(𝑌 ∣ 𝑋) and refine possible

actions 𝐴bayesian .

4. Core Adaptation:

Step 4.1: Retrieve the current state 𝑠 from the global state vector Ψ(𝑡).
Step 4.2: Select action 𝑎 based on the policy 𝜋(𝑠) :
𝑎 = arg⁡max

𝑎′
 𝑄(𝑠, 𝑎′)⁡(DQN)⁡ or ⁡𝑎 ∼ 𝜋𝜃(𝑎 ∣ 𝑠)⁡(PPO)

Step 4.3: Execute action 𝑎 and observe the reward 𝑟𝑡 and next state 𝑠′.
5. Update Core Algorithm:

Step 5.1: Update Q-values (for DQN):𝑄(𝑠, 𝑎) ← 𝑟𝑡 + 𝛾max
𝑎′

 𝑄(𝑠′, 𝑎′).

Step 5.2: Update policy (for PPO):

Maximize Clipped Surrogate Objective: 𝐿PPO(𝜃) = 𝔼𝑡[min(𝑟𝑡(𝜃)𝐴̂𝑡 , clip⁡(𝑟𝑡(𝜃),1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)].

6. Optimization of Parameters:

Step 6.1: Optimize resource allocation 𝑅(𝑡) using PSO:

Update Velocity and Position:
𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝best − 𝑝𝑖) + 𝑐2𝑟2(𝑔best − 𝑝𝑖),

𝑝𝑖(𝑡 + 1) = 𝑝𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)

Step 6.2: Evolve adaptation parameters 𝜃 using GA:

• Select parents based on fitness fit (𝜃) = 𝛼1𝐿adapt (𝜃) + 𝛼2𝐿latency (𝜃) + 𝛼3𝐿resource (𝜃).

• Perform crossover and mutation to generate new offspring.

7. Decision Execution and Feedback Collection:

Step 7.1: Send adaptation decisions 𝐴𝑑 to the Interaction Manager (IM).

Step 7.2: Collect user feedback 𝑈𝑓 and performance metrics (e.g., latency, accuracy).

8. Feedback Integration and System Update:

Step 8.1: Update the CA (fuzzy rules 𝑅 and Bayesian probabilities 𝑃(𝑌 ∣ 𝑋)) using feedback 𝑈𝑓.

Step 8.2: Adjust resource mappings 𝑅(𝑡) based on observed system performance.

Step 8.3: Refine adaptation policy 𝜋(𝑠) and Q-values using updated reward signals.

9. Repeat:

Go to Step 2 for continuous adaptation in real-time.

Real-Time Processing Methods and DMS

The proposed XR-AIS integrates advanced real-time processing methods and hierarchical DMS to deliver contextually

appropriate adaptations while meeting strict temporal constraints. Although the system is in a continual state of change,

these methods ensure reliability and optimal adapting.

Real-Time Processing Pipeline

Real-time processing begins with parallel data streams that handle multimodal inputs through a multi-threaded architecture.

Input data is processed using a sliding window approach 𝑊(𝑡, Δ𝑡), where Δ𝑡 (window size) is dynamically adjusted based

on input complexity and current system load. Critical operations are prioritized through a preemptive scheduling

mechanism 𝑆(𝑝, 𝜏), where 𝑝 represents priority levels, and 𝜏 denotes timing constraints. This mechanism guarantees

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

940

bounded processing times such that 𝑇process ≤ 𝑇max with 𝑇max determined by the frame rate and the system's real-time

requirements.

Parallel data sets that analyze multimodal inputs employing a multi-threaded framework are the basis elements of

real-time processing. A sliding window method (𝑊(𝑡, Δ𝑡) is employed for analyzing the input data, with the size of the

window (Δt) being dynamically adapted based on the input complex and the current system load. The scheduling

preemptive mechanism S(p,τ)→essential tasks), with ‘p’(priority levels) and τ (time limitations). This system provides

that processing times are limited so that TProcess ≤TMax, where TMax→ the system's real-time demands and the frame rate.

The Data Preprocessing Stage Employs an Adaptive Filtering Scheme

 𝐹(𝑥, 𝑡) = 𝛼(𝑡)𝐹(𝑥, 𝑡 − 1) + (1 − 𝛼(𝑡))𝑥(𝑡) (15)

where 𝐹(𝑥, 𝑡)→filtered signal at time 𝑡; 𝛼(𝑡)→ signal's noise features. Feature extraction is carried out on these filtered

data streams through a HAS as 𝐻 = {ℎ1, ℎ2, … , ℎ𝑛}. Each level ℎ𝑖 extracts features of increasing abstraction, ensuring

temporal constraints are met with a total processing budget ∑𝑖  𝑇(ℎ𝑖) ≤ 𝑇budget .

Hierarchical DMS

To control proactive and reactive adaptations, the DMS uses a model defined as the Hierarchical Markov Decision Process

(HMDP) system.

Strategic Decisions

At the top level, high-level method decisions 𝐷𝑠 are made based on a policy function:

 𝜋𝑠(𝑠) = Arg_Max
𝑎

 𝑄(𝑠, 𝑎) (16)

Where,

𝑠→system state, incorporating the immediate context and historical patterns.

These decisions are computationally intensive but provide long-term adaptation methods.

Tactical Decisions

At a lower level, tactical decisions 𝐷𝑡 are derived from a faster, reactive policy:

 𝜋𝑡(𝑠local) = Arg_Max
𝑎

 𝑄(𝑠local , 𝑎) (17)

where,

𝑠local →localized state information for rapid response.

Reduced approach timeframes focus actions towards maximization of instant. The levels are incorporated in the end-

point adaption decision Dfinal(t) using dynamic weights {𝜔𝑠(𝑡), 𝜔𝑡(𝑡)} which are modified depending on decision

probability and timing limits:

 𝐷final (𝑡) = 𝜔𝑠(𝑡)𝐷𝑠(𝑡) + 𝜔𝑡(𝑡)𝐷𝑡(𝑡) (18)

Validation and Execution

Decisions involving real-time adaptation are rapidly examined for practicality before being put into action. Availability of

resources, timely delivery, and operational security are all validated by the feasibility check by Eq. (19).

 𝑉(𝑑) = { resource_check, timing_verify, constraint_validate }. (19)

A predictive execution model E(d,t) is employed by the model to prevent recurrent or uncertain behaviors by predicting

the result of adaptation ‘d’ at the time ‘t’. Estimated computing methods have been used to perform efficient but reliable

analyses when full validation requires too much time.

Decision Execution Follows a III-Stage Commit Protocol

• Preparation (P): Resource allocation and system setup for the decision.

• Validation (V): Confirmation of the feasibility and consistency of the decision.

• Execution (E): Implementation of the adaptation in the XR environment.

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

941

The Total Execution Time Constraint Bounds These Stages

 𝑇𝑃 + 𝑇𝑉 + 𝑇𝐸 ≤ 𝑇frame (20)

Execution priorities are managed through a dynamic queue 𝑄(𝑡) = {𝑞1, 𝑞2, … , 𝑞𝑘}, where each 𝑞𝑖 represents a decision-

execution pair with associated timing and resource requirements. For concurrent adaptations, a conflict resolution

mechanism 𝐶(𝐷1, 𝐷2) ensures decision compatibility. If decisions {D1, D2} are compatible, they are merged into a

composite decision:

An iterative list Q(t)={q1, q2,…,qk} is employed to control the order of execution, where each ‘qi’ → a decision-

execution pair that has equal time and resource requirements. A system for addressing conflicts, denoted as C(D1, D2),

provides decision consistency for parallel adaptations. A unified decision is made by integrating decisions {D1, D2} if they

are acceptable:

 𝑅(𝐷1, 𝐷2) → 𝐷Hybrid (21)

If conflicts exist, the system applies a prioritization function:

 𝑃(𝐷1, 𝐷2) → 𝐷Priority (22)

to prioritize adaptations and select the one that will maintain the system functioning without interruption.

III. EXPERIMENTAL DESIGN

Test Environment Setup

This study conducted our XR-AIS test results in a monitored lab environment that matched real-world use cases. The

hardware configuration consisted of a high-end XR headset (Meta Quest Pro) with integrated eye-tracking capabilities (90

Hz Refresh Rate, 96° Horizontal FOV) paired with precision-tracked controllers (6DoF, 1000 Hz Sampling Rate). The

system ran on a dedicated workstation (AMD Ryzen 9 5950X, NVIDIA RTX 4090, 64 GB DDR4-3600) connected via a

low-latency wireless link (Wi-Fi 6E, <20ms round-trip latency).

The software implementation used Unity 2023.1 as the primary development platform, with our custom adaptive model

implemented in C++ (core algorithms) and C# (Unity integration). The ML components were developed using PyTorch

2.0, with CUDA 12.0 optimization for GPU acceleration. Real-time data processing pipelines were implemented using

Intel's oneAPI toolkit for CPU optimization and NVIDIA's RAPIDS suite for GPU-accelerated analytics.

System calibration followed a three-phase protocol. Initial hardware calibration included eye-tracker calibration (9-

point method, <0.5° accuracy), controller alignment (6DoF space mapping, ±1 mm precision), and display calibration (color

accuracy ΔE<2.0, latency <5 ms). Software calibration encompassed algorithm parameter initialization (Learning Rates,

Adaptation Thresholds) and performance baseline establishment. Integration calibration verified system-wide latency

bounds and synchronization across all components.

User Study Design

Participant selection employed stratified sampling to ensure demographic representation across age groups (20-50 years),

XR experience levels (Novice to Expert), and relevant physical characteristics (IPD range 58-72 mm, with/without vision

correction). The final cohort comprised 60 users (33 Male, 27 Female) divided into three experience categories: novice

(<10 Hours XR Experience), intermediate (10-100 Hours), and expert (>100 Hours).

Test scenarios were designed to evaluate system performance across three primary interaction categories. The Spatial

Manipulation scenario required participants to perform precise object manipulation tasks with varying complexity levels.

The Navigation scenario evaluated movement through virtual environments with dynamically changing complexity. The

Multi-modal Interaction scenario combined gesture, voice, and gaze inputs in collaborative tasks. Each scenario included

controlled variations in environmental conditions (Lighting, Noise) and cognitive load (Single vs. Dual-Task Paradigms).

Data collection employed a multi-modal approach. Quantitative data included raw sensor inputs (Position, Orientation,

Eye-Tracking) sampled at 1000 Hz, system performance metrics (Frame Times, Adaptation Latencies), and physiological

measures (heart rate variability, GSR). Qualitative data was gathered through standardized questionnaires (NASA-TLX,

System Usability Scale) and semi-structured interviews. Environmental conditions (Ambient Light, Noise Levels,

Temperature) were monitored to ensure session consistency.

Performance Metrics

The evaluation model utilized three categories of metrics. System Performance metrics included Adaptation Latency (AL),

measured from trigger detection to adaptation completion, RUE across CPU, GPU, and memory, and algorithm

Convergence Rates (CR) for learning components. User Performance metrics encompassed Task Completion Time (TCT),

Error Rates (ER), and Learning Curve Progression (LCP). UE metrics included Perceived System Responsiveness (PSR),

Adaptation Appropriateness (AA), and Overall Satisfaction Scores (OSS).

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

942

Baseline Models

To evaluate the effectiveness of our proposed adaptive XR system, we implemented four baseline models, each representing

a distinct AC in XR environments:

Static Rule-Based System (SRBS)

The SRBS employs traditional predefined rules for adapting XR interactions. It uses a decision tree with fixed thresholds

𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛} for user interaction parameters. The rule set 𝑅 = {If⁡condition⁡⁡𝑖 ⁡Then⁡⁡
−10𝑐𝑡𝑖𝑜𝑛⁡𝑖} Maps specific

interaction conditions to predetermined responses.

For Example, a Rule 𝑅1 Could State

 If (gesture_speed > 𝑡speed) Then (adjust_sensitivity = 0.8). (22)

SRBS represents conventional non-learning AC. Its static nature makes it efficient for simple, predictable scenarios but

limits its effectiveness in dynamic or complex environments.

Fuzzy Logic-Based Adaptive System (FLAS)

The FLAS leverages conventional fuzzy inference techniques to adapt XR interactions. FLAS employs membership

functions 𝜇(𝑥) to represent input variables and uses a rule base for making adaptation decisions. It defines three fuzzy sets

(Low, Medium, High) for each input dimension and applies Mamdani inference with center-of-gravity defuzzification to

compute outputs. Adaptation rules are defined as

 𝑅fuzzy = {𝜇input → 𝜇output }, (23)

where the truth values of rules lie in the range [0,1].

DRL-Without Hierarchical Processing (DRL-WH)

The DRL-WH implements a standard Deep Q-Network (DQN) architecture for end-to-end learning of adaptation policies.

The neural network 𝐷 comprises four fully connected layers with sizes [512,256,128,64] and ReLU activation functions.

It is trained using the standard Q-learning update rule:

 𝑄(𝑠, 𝑎) = 𝑟 + 𝛾max
𝑎′

 𝑄(𝑠′, 𝑎′) (24)

where 𝑄(𝑠, 𝑎) represents the Q-value for state 𝑠 and action 𝑎𝑡𝑟 is the immediate reward, and 𝛾 is the discount factor.

DRL-WH maintains an experience replay buffer of size 105 and uses an 𝜖-greedy exploration strategy with 𝜖 = 0.1.

Event-Driven Reactive System (EDRS)

The EDRS adapts interactions through immediate responses to detected events. It maintains an event queue 𝐸(𝑡) =
{𝑒1, 𝑒2, … , 𝑒𝑘} with priority-based processing, where priorities 𝑝𝑖 range from [1,5]. Adaptations are triggered using event-

response mappings 𝑀(𝑒) → 𝑎, ensuring responses are executed within temporal bounds 𝜏response ≤ 20 ms.

All baseline models were implemented using identical hardware configurations and tested in the same XR environment

to ensure a fair comparison.

Consistent Input Processing Pipelines Were Maintained Across All Systems

• Gesture Sampling Rate: 1000 Hz

• Eye-Tracking Rate: 90 Hz

• Position Tracking Rate: 1000 Hz

• Processing Latency Bound: 20 ms

Each baseline was standardized using standardized procedures to ensure optimal operation under the same resource

constraints as the proposed adaptive XR system. This setup provides a comprehensive evaluation of different adaptation

paradigms and highlights the relative strengths and weaknesses of the proposed system.

IV. RESULT ANALYSIS

System Performance Metrics

AL comparison analysis of Table 1 (Fig 3) demonstrates significant performance advantages of our proposed HAS across

multiple metrics. The results reveal that HAS achieves superior performance with a mean AL of 4.8 ms (±0.7 ms),

substantially outperforming traditional approaches. This represents a 61% improvement over SRBS (12.3 ms ±1.4 ms) and

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

943

notable advantages over FLAS (8.9 ms ±1.1 ms) and DRL-WH (6.7 ms ±0.9 ms). The 95th percentile latency of 5.9 ms for

HAS indicates consistent performance even under stress conditions, whereas other systems show more substantial

degradation, with SRBS reaching 14.8 ms and FLAS 10.7 ms.

Table 1. Comparison of AL Cross Different Systems

System Type Mean AL (ms) Std Dev (ms) 95th Percentile (ms) Peak AL (ms)

HAS (Proposed) 4.8 ±0.7 5.9 7.2

SRBS 12.3 ±1.4 14.8 18.5

FLAS 8.9 ±1.1 10.7 13.4

DRL-WH 6.7 ±0.9 8.2 10.8

EDRS 5.9 ±1.2 7.8 11.3

Fig 3. AL Analysis Across Systems.

Analysis of Table 2 (Fig 4) shows that HAS maintains its performance advantage across all categories. Particularly

noteworthy is its performance in gesture input processing (3.2 ms ±0.4 ms) and gaze tracking (4.1 ms±0.5 ms), showing

improvements of 63% and 64%, respectively, compared to SRBS. Even in more complex multi-modal interactions, HAS

maintains a relatively low latency (6.6 ms±0.8 ms), demonstrating robust performance under increased computational

demands.

Table 2. AL Across Different Interaction Types (ms)

System
Gesture

Input

Gaze

Tracking

Object

Manipulation

Multi-

modal

Overall

AL

HAS (Proposed) 3.2 ±0.4 4.1 ±0.5 5.3 ±0.6 6.6 ±0.8 4.8 ±0.7

SRBS 8.7 ±1.2 11.5 ±1.3 14.2 ±1.5 15.8 ±1.6 12.3 ±1.4

FLAS 6.8 ±0.9 8.2 ±1.0 9.7 ±1.2 10.9 ±1.3 8.9 ±1.1

DRL-WH 4.9 ±0.7 6.3 ±0.8 7.2 ±0.9 8.4 ±1.1 6.7 ±0.9

EDRS 4.1 ±0.8 5.5 ±1.0 6.8 ±1.3 7.2 ±1.5 5.9 ±1.2

The analysis of RUS in Table 3 (Fig 5) reveals an interesting trade-off pattern. While HAS shows moderate resource

consumption (CPU: 28.4% ±3.2%, GPU: 32.6% ±2.8%), it achieves the highest RUE score of 0.86, indicating more

efficient use of allocated resources. This contrasts with DRL-WH, which, despite higher resource consumption (CPU:

35.8% ±3.9%, GPU: 41.2% ±3.6%), achieves a lower RUE score of 0.74. SRBS, while consuming fewer resources,

demonstrates poor efficiency with the lowest RUE score of 0.52, suggesting underutilization of available computational

capacity.

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

944

Fig 4. AL Across Different Interaction Types.

Table 3. RUE Analysis

System CPU Usage (%) GPU Usage (%)
Memory Usage

(GB)

GPU

Memory

(GB)

RUE

Score*

HAS (Proposed) 28.4 ±3.2 32.6 ±2.8 4.2 ±0.3 2.8 ±0.2 0.86

SRBS 15.2 ±1.8 12.3 ±1.5 2.1 ±0.2 1.4 ±0.1 0.52

FLAS 22.7 ±2.5 18.9 ±2.1 3.3 ±0.3 1.9 ±0.2 0.71

DRL-WH 35.8 ±3.9 41.2 ±3.6 5.8 ±0.4 3.9 ±0.3 0.74

EDRS 19.5 ±2.2 15.7 ±1.8 2.8 ±0.2 1.6 ±0.1 0.65

Fig 5. RUE.

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

945

The convergence analysis in Table 4 (Fig 6) over 200 epochs reveals HAS's superior learning capabilities. Starting

from a comparable baseline (3.2 ±0.4 at epochs 1-20), HAS demonstrates rapid improvement, reaching 8.0 ±0.2 by epochs

81-100, and achieving near-optimal performance (9.8 ±0.1) by epochs 181-200. This convergence rate significantly

outpaces other approaches, with FLAS and DRL-WH reaching only 7.7 ±0.1 and 8.5 ±0.1, respectively, in the final epoch

range. The consistent reduction in standard deviation (from ±0.4 to ±0.1) also indicates increasing stability as training

progresses.

Table 4. Algorithm Convergence Analysis Over First 200 Epochs (10-point Scale)

Epoch Range HAS (Proposed) FLAS DRL-WH EDRS

1-20 3.2 ±0.4 2.1 ±0.5 2.4 ±0.6 2.0 ±0.5

21-40 4.8 ±0.3 2.8 ±0.4 3.2 ±0.4 2.6 ±0.4

41-60 6.1 ±0.3 3.5 ±0.4 4.1 ±0.3 3.2 ±0.4

61-80 7.2 ±0.2 4.2 ±0.3 4.9 ±0.3 3.8 ±0.3

81-100 8.0 ±0.2 4.9 ±0.3 5.7 ±0.2 4.3 ±0.3

101-120 8.6 ±0.2 5.5 ±0.2 6.4 ±0.2 4.8 ±0.3

121-140 9.1 ±0.1 6.2 ±0.2 7.0 ±0.2 5.4 ±0.2

141-160 9.4 ±0.1 6.8 ±0.2 7.6 ±0.2 5.9 ±0.2

161-180 9.7 ±0.1 7.3 ±0.2 8.1 ±0.2 6.3 ±0.2

181-200 9.8 ±0.1 7.7 ±0.1 8.5 ±0.1 6.7 ±0.2

Fig 6. Algorithm Convergence Analysis.

User Performance Metrics

Analysis of Task Performance Metrics in Table 5 (Fig 7) reveals substantial improvements in user performance with the

HAS system. Task completion times show a significant reduction with HAS (12.4 s ±1.2 s) compared to traditional SRBS

(19.8 s±2.1 s), representing a 37.4% improvement. Error rates with HAS (3.2% ±0.4%) are notably lower than all other

systems, showing a 63.2% reduction compared to SRBS (8.7% ±1.2%) and maintaining better accuracy than DRL-WH

(4.8% ±0.6%). The learning curve score for HAS (0.89±0.03) indicates superior user adaptation capabilities, significantly

outperforming other approaches.

Table 5. Task Performance Metrics Across Different Interaction Tasks

System Task Completion Time (s) Error Rate (%) Learning Curve Score*

HAS (Proposed) 12.4 ±1.2 3.2 ±0.4 0.89 ±0.03

SRBS 19.8 ±2.1 8.7 ±1.2 0.62 ±0.05

FLAS 16.3 ±1.8 6.5 ±0.8 0.73 ±0.04

DRL-WH 14.2 ±1.5 4.8 ±0.6 0.81 ±0.03

EDRS 15.7 ±1.7 5.9 ±0.7 0.75 ±0.04

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

946

Fig 7. Task Performance Metrics.

UE metrics results in Table 6 (Fig 8 and Fig 9) demonstrate strong user preference for the HAS system across all

experiential dimensions. System responsiveness scores for HAS (8.9 ±0.3) show a marked improvement over SRBS (6.2

±0.6) and FLAS (7.4 ±0.5) while maintaining an edge over DRL-WH (8.1 ±0.4). AC appropriateness ratings reveal similar

patterns, with HAS scoring 8.7 (±0.4) compared to lower ratings for alternative systems. The overall satisfaction scores

consolidate these advantages, with HAS achieving 8.8 (±0.3), significantly higher than SRBS (6.0 ±0.6), and maintaining

a clear lead over DRL-WH (7.9 ±0.4).

Table 6. UE metrics (Scale: 1-10)

System System Responsiveness AC Appropriateness Overall Satisfaction

HAS (Proposed) 8.9 ±0.3 8.7 ±0.4 8.8 ±0.3

SRBS 6.2 ±0.6 5.8 ±0.7 6.0 ±0.6

FLAS 7.4 ±0.5 7.1 ±0.5 7.2 ±0.5

DRL-WH 8.1 ±0.4 7.8 ±0.5 7.9 ±0.4

EDRS 7.6 ±0.5 7.3 ±0.6 7.4 ±0.5

Fig 8. UE on System Responsiveness.

The temporal progression analysis in Table 7 (Fig 10) highlights the rapid AC capabilities of HAS. In the initial 0–5-

minute period, HAS demonstrates superior early performance (0.65 ±0.05) compared to other systems, particularly SRBS

(0.42 ±0.06). The learning progression shows consistent improvement, with HAS reaching near-optimal performance (0.95

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

947

±0.02) in the 35–45-minute period, while other systems show more modest improvements, with SRBS achieving only 0.61

(±0.04) and DRL-WH reaching 0.86 (±0.02) in the same timeframe.

Fig 9. a) UE on AC Appropriateness, b) UE on Overall Satisfaction.

Table 7. Learning Curve Progression Over Time (Efficiency Score)

Time (Min) HAS (Proposed) SRBS FLAS DRL-WH EDRS

0-5 0.65 ±0.05 0.42 ±0.06 0.51 ±0.05 0.58 ±0.05 0.53 ±0.05

5-15 0.78 ±0.04 0.48 ±0.05 0.62 ±0.04 0.69 ±0.04 0.64 ±0.04

15-25 0.86 ±0.03 0.52 ±0.05 0.70 ±0.04 0.77 ±0.03 0.71 ±0.04

25-35 0.92 ±0.02 0.58 ±0.04 0.75 ±0.03 0.83 ±0.03 0.76 ±0.03

35-45 0.95 ±0.02 0.61 ±0.04 0.79 ±0.03 0.86 ±0.02 0.79 ±0.03

Fig 10. Learning Curve Progression.

The most striking aspect of these results is the consistent performance advantage of HAS across objective and subjective

measures. The system emphasizes rapid user learning and adaptation, boosts task completion, and reduces error rates. The

learning curve evolution indicates that standard deviations have become reduced over time, ranging from ±0.05 to ±0.02,

which implies that user proficiency and system stability are improving. This significant efficiency boost demonstrates that

the HAS addresses XR environments' short - and long-term user interaction and learning objectives.

V. CONCLUSION AND FUTURE WORK

The study presents a real-time solution for AIS in XR settings using a new method called HAS. This HAS improved

performance metrics, maintained low latency, and presented complex adaptation mechanisms. It's appropriate for real-

world XR uses due to its fast convergence and high RUS. The system enhances user satisfaction and performance metrics.

However, more research is required in multimodal communications, modern prediction models, and adapted service

methods. These areas include the healthcare, manufacturing, and educational sectors. Integrating advanced haptic feedback

systems with new sensor technology could enhance the immersive experience. As XR advances, further research is required

on cross-platform adaptation methods and managing high scenarios and failure types. This approach to researching adaptive

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

948

XR interaction proves significant improvements in HCI. Future developments in adaptive XR could expand on this model,

leading to more user-friendly and efficient HCI. This field is vital for future technological advancements in AIS.

CRediT Author Statement

The authors confirm contribution to the paper as follows:
Conceptualization: Hayder M A Ghanimi, Sathvik Bagam, Shaishav Shah, Vedaraj M, Manjunath T C and Manoranjan

Kumar Sinha; Methodology: Sathvik Bagam and Shaishav Shah; Software: Shaishav Shah, Vedaraj M, Manjunath T C

and Manoranjan Kumar Sinha; Data Curation: Shaishav Shah, Vedaraj M, Manjunath T C and Manoranjan Kumar Sinha;

Writing- Original Draft Preparation: Hayder M A Ghanimi, Sathvik Bagam, Shaishav Shah, Vedaraj M, Manjunath T

C and Manoranjan Kumar Sinha; Visualization: Shaishav Shah, Vedaraj M, Manjunath T C and Manoranjan Kumar Sinha;

Investigation: Hayder M A Ghanimi, Sathvik Bagam, Shaishav Shah, Vedaraj M, Manjunath T C and Manoranjan Kumar

Sinha; Supervision: Sathvik Bagam and Shaishav Shah; Validation: Shaishav Shah, Vedaraj M, Manjunath T C and

Manoranjan Kumar Sinha; Writing- Reviewing and Editing: Hayder M A Ghanimi, Sathvik Bagam, Shaishav Shah,

Vedaraj M, Manjunath T C and Manoranjan Kumar Sinha; All authors reviewed the results and approved the final version

of the manuscript.

Data Availability

No data was used to support this study.

Conflicts of Interests

The author(s) declare(s) that they have no conflicts of interest.

Funding

No funding agency is associated with this research.

Competing Interests

There are no competing interests.

References
[1]. A. Alhakamy, “Extended Reality (XR) Toward Building Immersive Solutions: The Key to Unlocking Industry 4.0,” ACM Computing

Surveys, vol. 56, no. 9, pp. 1–38, Apr. 2024, doi: 10.1145/3652595.

[2]. A. Alnagrat, R. Che Ismail, S. Z. Syed Idrus, and R. M. Abdulhafith Alfaqi, “A Review of Extended Reality (XR) Technologies in the Future

of Human Education: Current Trend and Future Opportunity,” Journal of Human Centered Technology, vol. 1, no. 2, pp. 81–96, Aug. 2022,

doi: 10.11113/humentech.v1n2.27.

[3]. “An E-Commerce Based Personalized Health Product Recommendation System Using CNN-Bi-LSTM Model,” International Journal of

Intelligent Engineering and Systems, vol. 16, no. 6, pp. 398–410, Dec. 2023, doi: 10.22266/ijies2023.1231.33.

[4]. B. R. R. Reddy and R. L. Kumar, “A Fusion Model for Personalized Adaptive Multi-Product Recommendation System Using Transfer

Learning and Bi-GRU,” Computers, Materials & Continua, vol. 81, no. 3, pp. 4081–4107, 2024, doi: 10.32604/cmc.2024.057071.

[5]. H. Allioui and Y. Mourdi, “Exploring the Full Potentials of IoT for Better Financial Growth and Stability: A Comprehensive Survey,” Sensors,

vol. 23, no. 19, p. 8015, Sep. 2023, doi: 10.3390/s23198015.

[6]. S. Kunjiappan, L. K. Ramasamy, S. Kannan, P. Pavadai, P. Theivendren, and P. Palanisamy, “Optimization of ultrasound-aided extraction of

bioactive ingredients from Vitis vinifera seeds using RSM and ANFIS modeling with machine learning algorithm,” Scientific Reports, vol.

14, no. 1, Jan. 2024, doi: 10.1038/s41598-023-49839-y.

[7]. X. Wang, L. Shen, & L. H. Lee, “A Systematic Review of XR-based Remote Human-Robot Interaction Systems,” arXiv preprint

arXiv:2403.11384, 2024.

[8]. N. Krishnadoss and L. K. Ramasamy, “Crop yield prediction with environmental and chemical variables using optimized ensemble predictive

model in machine learning,” Environmental Research Communications, vol. 6, no. 10, p. 101001, Oct. 2024, doi: 10.1088/2515-7620/ad7e81.

[9]. P. Krishnamoorthy et al., “Effective Scheduling of Multi-Load Automated Guided Vehicle in Spinning Mill: A Case Study,” IEEE Access,

vol. 11, pp. 9389–9402, 2023, doi: 10.1109/access.2023.3236843.

[10]. M. Hoover and E. Winer, “Designing Adaptive Extended Reality Training Systems Based on Expert Instructor Behaviors,” IEEE Access, vol.

9, pp. 138160–138173, 2021, doi: 10.1109/access.2021.3118105.

[11]. T. Gopalakrishnan, P. Sengottuvelan, A. Bharathi, R. Lokeshkumar, "An Approach To Webpage Prediction Method Using Variable Order

Markov Model In Recommendation Systems," Journal of Internet Technology, vol. 19, no. 2, pp. 415-424, 2018.

[12]. K. M. Stanney, C. Hughes, H. Nye, E. Cross, C. Boger, and S. Deming, “Interaction Design for Augmented, Virtual, and Extended Reality

Environments,” Interaction Techniques and Technologies in Human-Computer Interaction, pp. 355–405, Jul. 2024, doi:

10.1201/9781003490678-13.

[13]. Mahalakshmi, R. L. Kumar, K. S. Ranjini, S. Sindhu, and R. Udhayakumar, “Efficient authenticated key establishment protocol for telecare

medicine information systems,” Industrial, Mechanical And Electrical Engineering, vol. 2676, p. 020006, 2022, doi: 10.1063/5.0117522.

[14]. S. Zhu et al., “Intelligent Computing: The Latest Advances, Challenges, and Future,” Intelligent Computing, vol. 2, Jan. 2023, doi:

10.34133/icomputing.0006.

[15]. Z. Masood, Z. Jiangbin, I. Ahmad, C. Dongdong, W. Shabbir, and M. Irfan, “A novel continual reinforcement learning-based expert system

for self-optimization of soft real-time systems,” Expert Systems with Applications, vol. 238, p. 122309, Mar. 2024, doi:

10.1016/j.eswa.2023.122309.

[16]. P. Selvam et al., “A Transformer-Based Framework for Scene Text Recognition,” IEEE Access, vol. 10, pp. 100895–100910, 2022, doi:

10.1109/access.2022.3207469.

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025)

949

[17]. S. Sengan, S. Vairavasundaram, L. Ravi, A. Q. M. AlHamad, H. A. Alkhazaleh, and M. Alharbi, “Fake News Detection Using Stance Extracted

Multimodal Fusion-Based Hybrid Neural Network,” IEEE Transactions on Computational Social Systems, vol. 11, no. 4, pp. 5146–5157,

Aug. 2024, doi: 10.1109/tcss.2023.3269087.

[18]. R. Lokeshkumar, O. Mishra, and S. Kalra, “Social media data analysis to predict mental state of users using machine learning techniques,”

Journal of Education and Health Promotion, vol. 10, no. 1, p. 301, 2021, doi: 10.4103/jehp.jehp_446_20.

[19]. A. Sadeghi Milani, A. Cecil-Xavier, A. Gupta, J. Cecil, and S. Kennison, “A Systematic Review of Human–Computer Interaction (HCI)

Research in Medical and Other Engineering Fields,” International Journal of Human–Computer Interaction, vol. 40, no. 3, pp. 515–536, Sep.

2022, doi: 10.1080/10447318.2022.2116530.

[20]. K. Pfeuffer, H. Gellersen, and M. Gonzalez-Franco, “Design Principles and Challenges for Gaze + Pinch Interaction in XR,” IEEE Computer

Graphics and Applications, vol. 44, no. 3, pp. 74–81, May 2024, doi: 10.1109/mcg.2024.3382961.

[21]. U. Chadha et al., “Powder Bed Fusion via Machine Learning-Enabled Approaches,” Complexity, vol. 2023, pp. 1–25, Apr. 2023, doi:

10.1155/2023/9481790.

[22]. R. K. Poluru and R. Lokeshkumar, “Meta-Heuristic MOALO Algorithm for Energy-Aware Clustering in the Internet of Things,” International

Journal of Swarm Intelligence Research, vol. 12, no. 2, pp. 74–93, Apr. 2021, doi: 10.4018/ijsir.2021040105.

