
 
ISSN: 2788–7669  Journal of Machine and Computing 5(2)(2025) 

 

878 
 

Fully Connected Neural Network Based Carrier 

Estimation Mechanism on Encrypted Images for 

Data Hiding in Cloud Network 
 

1Prasad C N and 2Suchithra R 

1,2Department of Computer Science, Chirashree Institute of Research and Development (CIRD), 

University of Mysore, Karnataka, India. 

1prasad_achar@sju.edu.in, 2suchithra.suriya@gmail.com 
 

Correspondence should be addressed to Prasad C N : prasad_achar@sju.edu.in 

 

Article Info 

Journal of Machine and Computing (https://anapub.co.ke/journals/jmc/jmc.html)  

Doi: https://doi.org/10.53759/7669/jmc202505069. 

Received 05 March 2024; Revised from 14 November 2024; Accepted 21 February 2024.  

Available online 05 April 2025.   

©2025 The Authors. Published by AnaPub Publications.   

This is an open access article under the CC BY-NC-ND license. (https://creativecommons.org/licenses/by-nc-nd/4.0/) 

 

Abstract – The work proposes a fully connected neural network (FCNN) based approach for detecting the Carrier blocks 

for embedding the data in encrypted images in the cloud network. In a data embedding process, the determination of non-

carrier pixels that provide underflow and overflow during the data embedding process plays a major role. The location map 

for the non-carrier blocks is usually compressed and embedded in the encrypted image along with the hidden data. The 

embedding rate and peak signal-to-noise ratio (PSNR) are limited due to the storage of huge location map information on 

the image. Therefore, the proposed approach uses the FCNN network to detect the Carrier blocks /non-carrier blocks which 

highly minimizes the additional location map information to be embedded. In the embedding phase, a trained FCNN 

network is utilized to detect the carrier blocks, in which the FCNN network is trained with the labels that are generated by 

trial 0’s and 1’s embedding process. Two approaches are utilized in training the FCNN that includes FCNN with predictor 

only (FCNN-PO) and FCNN with sub-block fully (FCNN-SF) schemes in detecting the carrier blocks. In the extraction 

phase, the same FCNN model is used to detect the carrier blocks from which the data and actual encrypted image can be 

reconstructed. The performance of the carrier detection process was evaluated using measures such as precision, recall, 

and accuracy, while the data hiding process was evaluated using measures such as structural similarity index measurement 

(SSIM), PSNR, and embedding rate. The FCNN-PO carrier/non-carrier classification process results in an average accuracy 

of 98.59% in detecting the carrier while providing an SSIM, PSNR, and embedding rate of 0.9926, 58.86db and 1.97bpp 

respectively during the data embedding process when evaluated using the Bows-2 dataset.   

 

Keywords – Data Hiding, Fully Connected Neural Network, Image Encryption, Embedding Rate, Prediction Error 

Expansion. 

I.  INTRODUCTION 

The enhanced storage capacity of cloud computing [1] has drawn a number of consumers and researchers. Nevertheless, 

there are a number of issues with cloud storage, such as integrity, secrecy, and authentication. Data encryption [2] and data 

hiding [3] are employed to address these issues. The pixel content is altered by the data embedding process in order to hold 

the hidden material. Through the creation of a cipher picture, data encryption is employed which preserves the content of 

the plain image. 

Schemes like difference expansion [4], integer transform [5], prediction error expansion [6], and histogram shifting [7] 

are the foundation of the widely used reversible data embedding technique. After data extraction, the original image cannot 

be recreated in the non-reversible approach [8], but in the reversible data hiding approach [9], both the carrier image and 

the hidden data can be recreated without any modifications. Before uploading the picture to the cloud, the user usually 

encrypts it to protect its privacy content. To stop an unauthorized individual from seeing the actual image content, partial 

or full encryption can be employed.  In the patch level representation [10], the original image is transformed into sparse 

coefficients based on a dictionary, providing an adequate amount of carrier for embedding the data. For the residual errors 

to be embedded, this method necessitates the use of an extra reversible data-hiding strategy. 

In [11] developed two data embedding approaches in which a public cryptosystem is used to encrypt the images based 

on their homomorphic and probabilistic features. This approach uses non-reversible and reversible embedding mechanisms. 

In the reversible method, the homomorphic cryptosystem is utilized to encrypt the final image after the histogram has first 

been reduced. The non-reversible method uses multilayer wet paper coding for embedding the data on the image which 
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was initially encrypted. From the image's most significant bit (MSB) planes, the block-based MSB plain rearrangement 

technique [12] calculates the highly compressible bit streams, where the author Yi et al. suggested parametric binary tree 

labelling [13], in which the data is encoded in discrete encrypted pieces. 

Two general categories can be used to categorize the process of maintaining the private content of an image: reserving 

a room before encryption (RRBE) and vacating the room after encryption (VRAE). According to the RRBE technique [14], 

the picture owner must preprocess the image so that encryption can take place after that some space has been left for data 

embedding. However, the owner of the VRAE technique [15], can upload the image to the cloud and encrypt it without 

performing any additional pre-processing. To conceal the data, the cloud might alter the encrypted picture. The RRBE 

strategy can produce a higher payload than the VRAE approach, however, it necessitates an extra preprocessing step that 

adds to the workload for the owner of the image.  

The [14] presented the RRBE scheme for the first time. This method is based on the reversible data hiding technique 

known as histogram shifting, in which a blank space is produced in order to incorporate a small number of pixels least 

significant bits (LSB). While the remaining areas are encrypted and sent to the cloud, the unoccupied space is left intact. 

This method yields an embedding rate of 0.5bpp and uses the unoccupied region to conceal the secret data. In [15] used a 

second MSB plane in addition to the first MSB plane for data embedding, modifying the predictor used in [16]. An average 

payload of 1.35bpp is provided by this method. The [17] employ the bit planes iteratively from MSB to LSB, resulting in 

an average embedding rate of 1.84bpp. When compared to a difference expansion strategy established by [18], the 

performance of the prediction error expansion proposed by [19] delivers a superior performance.  

In [20] introduced the two-dimensional (2D) prediction error histogram (PEH) and the one-dimensional (1D) prediction 

error histogram with the 2D approach offering a better correlation between the prediction errors. 2D-PEH and 1D-PEH 

were merged by the author Zhang et al. [21] to create an effective map for data embedding. According to [20], the picture 

pixel is divided into two areas: the flat area and the rough region. The flat area can embed two bits per pixel, while the 

rough area can embed one bit per pixel. The prediction value [23] is estimated by averaging four neighboring pixels, which 

enhances the quality of the marked image. The histogram's prediction error is shifted to the right and left, producing a 

number of zero and peak spots. Because of this, a higher capacity is achieved when histogram shifting and prediction error 

expansion are combined [21].  

The scheme [20] uses different predictors in embedding the data. However, a Convolutional neural network model 

(CNN) was utilized to choose the best predictor, in which the CNN model was trained by embedding the trial data using 

different predictors. An adaptive approach was used with a block embedding process that increases the Laplacian type 

distribution in data embedding. To improve the correlation between the intra block the encryption was done by a bit plane 

selection approach which improve the performance to a certain extent. The data was embedded in a hierarchical approach 

that classifies the pixels of the image based on multiple linear regression. However, this approach results in huge location 

map information which is compressed and embedded in the encrypted image. 

Most of the data embedding approaches that are discussed above do not uses an artificial intelligence based carrier and 

non-carrier detection approach that pre-determines the carrier blocks for embedding the data. The carrier and non-carrier 

blocks are only detected after embedding the data, which results in a huge location map information. Therefore, the 

proposed approach uses a fully connected neural network to pre-determine the carrier blocks before the actual embedding 

process. This further facilitate to pre-determine the carrier blocks during the data extraction process in which the data is 

embedded. Detection of carrier and non-carrier without the use of location map information will highly reduce the 

computational burden of the data-hiding process while improving the embedding rate. 

 

The Contributions of The Work Are Mentioned Below 

• The work proposes a fully connected neural network (FCNN) based carrier and non-carrier classification approach 

which facilitate to pre-determine the carrier blocks before the actual embedding process. 

• Two different types of carriers and non-carrier classification approaches namely FCNN with sub-block fully 

(FCNN-SF) and FCNN with predictor only (FCNN-PO) were proposed to detect the carrier blocks. 

• The approach uses a prediction error expansion approach to embed the data, while in the extraction phase, the carrier 

is again detected using either the same FCNN-SF or FCNN-PO approach. 

•  A block-based approach is utilized in the encryption/decryption process, where the classification process involved 

in the proposed approach was evaluated with the metrics recall, precision, and accuracy. The embedding process 

involved in the proposed approach was evaluated with the measures namely, SSIM, embedding rate, and PSNR with 

the datasets namely BOWS-2 and Bossbase. 

 

The upcoming sections of the paper are structured as follows. A detailed description of the proposed approach is 

presented in Section 2, while the experimental results of the proposed scheme are provided in Section 3. Finally, the 

conclusion is framed in Section 4. 
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II. PROPOSED METHOD 

The three major steps involved in the proposed data embedding approach are (i) the Data embedding process with Carrier 

detection, (ii) the Data extraction process with carrier detection, and (iii) the Training process of FCNN with label 

generation.  

 

Data Embedding Process with Carrier Detection 

The illustration of the data embedding process is shown in Fig 1. In the embedding process, the image was initially 

encrypted by a block-based encryption approach. 

   

 
Fig 1. Flow Representation of Data Embedding.  

 

Encryption Process 

Let 𝐺(𝑥, 𝑦) represents the actual image having a size of 𝐽 × 𝐾. The image 𝐺(𝑥, 𝑦) is initially grouped into sub-blocks each 

having a size of 3 × 3. Thus, the total number of sub-blocks be 𝑁𝑡 =
𝐽×𝐾

9
. Let ∆ represent the key that is used to perform 

encryption. The key ∆= {∆1, ∆2} has two components. The key ∆1 is used to perform the inter-block permutation process, 

while the key ∆2 is used to perform the intra-block permutation process. 

 

 
Fig 2. Inter-Block and Intra-Block Permutation-Based Encryption. 

 

In the proposed encryption process, two permutation processes are involved namely (i) Inter-block permutation and 

(ii) intra-block permutation. In the inter-block permutation process 𝑁𝑡 number of random sequences between 1 and 𝑁𝑡 is 

generated utilizing the key ∆1. Let the inter-block random sequence be represented by 𝑆1. With the sequence 𝑆1, the position 

of each block is shuffled. Let the sub-blocks after shuffling be represented as 𝐺1(𝑥, 𝑦). In the intra-block permutation, the 

key ∆2 is used to derive 𝑁𝑡 number of intermediate keys using the pseudo-random sequence whose values lie between 1 

and 8. Using the intermediate keys the pixels in the sub-blocks are scrambled to perform intra-block permutation as 

illustrated in Fig 2.    
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Data Embedding 

Let 𝑃(𝑥, 𝑦) represents the image that was encrypted by the user (image that was uploaded to the cloud). The image 𝑃(𝑥, 𝑦) 
was partitioned into non-overlapping blocks where each block has size of 3 × 3. Each sub-blocks are fed to the trained 

FCNN for primary classification, the trained FCNN categorizes the sub-blocks either as primary non-carriers 𝑃𝑛𝑐(𝑥, 𝑦)or 

primary carriers 𝑃𝑐(𝑥, 𝑦). Let the 3 × 3 neighborhood pixels with center pixel ℎ be represented by the matrix  

 

 𝜆 = [

𝑔1 𝑔2 𝑔3
𝑔4 ℎ 𝑔5
𝑔6 𝑔7 𝑔8

] (1) 

 

From the neighbor pixels 𝑝 = {𝑔1, 𝑔2……𝑔8}, the predictor 𝜑̂ is estimated. The proposed predictor is derived from the 

predictor 𝜑 used in [25] which has the following relations. 

 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 𝜑 = {

min(𝛾1, 𝛾2)         𝛾1 ≥ max(𝑔7, 𝛾2)

max(𝛾1, 𝛾2)         𝛾1 ≥ min(𝑔7, 𝛾2)

𝑔7 + 𝛾2−𝛾2                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2) 

 

Where, 𝛾1, = ⌊
(𝑔1+ 𝑔2+𝑔3)

3
⌋, and 𝛾2 = ⌊

(𝑔4+ 𝑔5+ 𝑔6)

3
⌋      

 

For the determination of the proposed predictor 𝜑̂, the pixels 𝑝 = {𝑔1, 𝑔2……𝑔8} is sorted in ascending order. The 

sorted pixel sequence is represented as 𝑓 = {𝑏1, 𝑏2, 𝑏3, 𝑏4, 𝑏5, 𝑏6, 𝑏7, 𝑏8}. After sorting, three different boundary values are 

estimated. The first boundary values are estimated from the alternate sorted values starting from the first value 𝑏1 

 

 𝛾1 = ⌊
(𝑏1+ 𝑏3+ 𝑏5+𝑏7)

4
⌋ (3) 

 

The second boundary value is estimated from the alternate sorted values started from the second value 𝑏2 

 

 γ̂2 = ⌊
(b2+ b4+ b6+b8)

4
⌋ (4) 

 

The third boundary represents the median values which can be estimated by 

 

 𝛾3 = ⌊
( 𝑏4+ 𝑏5)

2
⌋ (5) 

 

Using the three boundaries 𝛾1, 𝛾2 and 𝛾3 the predictor can be estimated as, 

 

  𝜑̂ = {

min(𝛾1, 𝛾2)         𝛾3 ≥ max(𝛾1, 𝛾2)

max(𝛾1, 𝛾2)         𝛾3 ≥ min(𝛾1, 𝛾2)
𝛾1 + 𝛾2 − 𝛾3                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

 

During the data embedding the prediction error is estimated using the predictor 𝜑̂ and the centre pixel ℎ as, 

 

 𝛿 = ℎ − 𝜑̂ (7) 

 

The error 𝛿 can be expanded using the relation, 

 

 δ̂ = {

2δ + ρ               if   δ ∈ (ρ,∞) 
2δ − ρ          if   δ ∈ (−∞,−ρ)

D + 2δ             if   δ ∈ (−ρ, ρ)
 (8) 

 

Here 𝐷 represent the data and the embedding capacity can be controlled by the parameter 𝜌. Utilizing the expanded 

error and the predictor value 𝜑̂, the marked pixel can be obtained as  

 

 ℎ̂ = 𝜑̂ + 𝛿̂ (9) 

 

The primary carrier blocks 𝑃𝑐(𝑥, 𝑦) is used to embed the data 𝐷 to obtain the data embedded carrier blocks 𝑄(𝑥, 𝑦).  
The data-embedded carrier blocks 𝑄(𝑥, 𝑦) is checked for overflow/underflow. This overflow/underflow detection 

categorizes the data-embedded blocks as secondary non-carriers 𝑄𝑛𝑐(𝑥, 𝑦) or secondary carriers 𝑄𝑐(𝑥, 𝑦). The secondary 

carrier blocks do not have any overflow/underflow, while the secondary non-carrier blocks have overflow/underflow. The 
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primary non-carrier blocks 𝑃𝑛𝑐(𝑥, 𝑦), secondary non-carriers blocks 𝑄𝑛𝑐(𝑥, 𝑦), and secondary carrier blocks 𝑄𝑐(𝑥, 𝑦) are 

merged to obtain the marked encrypted image. Eventhough, the secondary non-carriers also hold the secret data 

information, the data embedded in this non-carrier are re-embedded (Data 𝐷1) in another carrier location. The location map 

of secondary non-carrier blocks is compressed and embedded in the marked encrypted image. However, the number of 

location map information is highly reduced since the majority of the non-carrier can be detected by the FCNN without its 

location map in the extraction phase. Let the resultant marked encrypted image be represented as 𝑅(𝑥, 𝑦). 
 

Data Extraction Process with Carrier Detection 

 
Fig 3. Flow Representation of Data Extraction.  

 

During the data extraction process, the cloud server will extract the data that was embedded in the marked encrypted 

image and reconstruct the actual encrypted image which was uploaded to the cloud by the user. The marked encrypted 

image 𝑅̂(𝑥, 𝑦) is initially partitioned into sub-blocks where each block has a size of 3 × 3. From the marked encrypted 

image, the additional location map information regarding the secondary non-carriers is initially extracted as illustrated in 

Fig 3. The trained FCNN is utilized to classify the sub-blocks into primary carrier and non-carrier classes. From the 

extracted location map information, the secondary carrier blocks 𝑄̂𝑐(𝑥, 𝑦), and secondary non-carrier blocks 𝑄̂𝑛𝑐(𝑥, 𝑦) are 

identified. The secondary non-carrier blocks  𝑄̂𝑛𝑐(𝑥, 𝑦) which are identified by location map information are not considered 

for data extraction, since it does not hold data. The data from the secondary carrier blocks are extracted using the prediction 

error expansion approach using the proposed predictor provided in equation (6). Let the predictor estimated from the 3x3 

sub-blocks be 𝜑̂, while ℎ̂ represents the marked center pixels. Using the predictor 𝜑̂ and center pixel ℎ̂, the expanded error 

can be estimated as  

 δ̂ = ĥ − φ̂ (10) 
 

Using the expanded error 𝛿̂, the hidden data 𝐷 and the actual center pixel ℎ can be reconstructed [28]. The same 

procedure is followed in all sub-blocks to obtain the encrypted image and the complete data 𝐷. The reconstructed encrypted 

image 𝑃̂(𝑥, 𝑦) is decrypted using the same inter-intra permutation approach to obtain the actual image by the user. The 

same key ∆ must be used in the decryption process for the exact reconstruction of plain image. 

 

Training Process of FCNN With Label Generation 

 
Fig 4. Flow Diagram Representation of Training Process in FCNN Model. 

 

For the training of the FCNN [29], the labels are initially generated. In the FCNN with sub-block fully (FCNN-SF) 

approach the FCNN uses the number of input layers as 9, while in the FCNN with predictor only (FCNN-PO) approach 

the FCNN uses the number of input layers as 8. In the FCNN-PO approach the pixels that are utilized for the predictor 

estimation are used for training, while in the FCNN-SF approach the complete pixels in the 3×3 sub-blocks are used for 

training. The labels are generated by embedding the trial data on the center pixels. The sub-block is considered to have 
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carrier as label, if the block does not result in overflow or underflow while embedding trial 0’s and 1’s during data 

embedding. Conversely, the block is considered to have non-carrier as label if it results in overflow or underflow during 

trial 0’s and 1’s during data embedding. The FCNN is model is trained using the pixels of the sub-blocks as the input and 

generated labels as the actual labels as illustrated in Fig 4.  The FCNN input is normalized between -1 to 1 before the actual 

training/ classification process. The pixel input 𝑥 to the input layer is normalized using the relation 𝑥̂ =
(𝑥−128)

128
 which 

results in both positive and negative values. The proposed FCNN uses the LCL activation function [30] which gives equal 

weightage to both positive and negative values. The FCNN uses 2 hidden layers each having 12 neurons in both the FCNN-

SF and FCNN-PO approach.  

 
Fig 5. Representation of LCL Activation Function. 

 

The structure of the LCL activation function is illustrated in Fig 5which contains a cosine region between two linear 

regions. Let 𝜀𝑚 and 𝜀𝐿𝑅 represents the amplitude or height of the middle cosine and linear regions respectively. The width 

of the mid-cosine region is represented as 𝜎𝑚. The output of the activation function 𝑦𝑎𝑐𝑡(𝑥) for input 𝑥 can be represented 

as 

  

𝑦𝑎𝑐𝑡(𝑥) =

{
 
 

 
 𝜀𝑚𝑐𝑜𝑠 (2𝜋 (0.75 +

0.25𝑥

𝜎𝑚
))     − 𝜎𝑚 ≤ 𝑥 ≤ 𝜎𝑚

𝜀𝐿𝑅𝑥 + 𝑦𝑎𝑐𝑡(𝜎𝑚) − 𝜀𝐿𝑅𝜎𝑚                       𝑥 > 𝜎𝑚
𝜀𝐿𝑅𝑥 + 𝑦𝑎𝑐𝑡(−𝜎𝑚) + 𝜀𝐿𝑅𝜎𝑚                  𝑥 < −𝜎𝑚

 

  (11) 

 

The use of the LCL activation function bounds the values between -1 to 1 while training or classifying the model. In 

the proposed approach the activation function uses the factors 𝜀𝑚 = 0.6, 𝜀𝐿𝑅 = 0.4 and 𝜎𝑚 = 0.6. The next section 

provides the experimental results of the FCNN-SF and FCNN-PO data hiding schemes. 

 

III. EXPERIMENTAL RESULTS 

Two databases such as BOWS-2 [31] and Bossbase databases [32] are used for evaluation. The images of these two 

databases are 8 bit grayscale images each having a size of 512 × 512. Each dataset has 10,000 images, where a few 

sample images are illustrated in Fig 6. To detect the carrier block, the FCNN is trained with 60% of the images from each 

dataset. The remaining 40% of the images are used to test the carrier detection process and the actual data embedding. The 

tool MATLAB 2018a is used to implement the data embedding algorithm. 

 

 
 (a) 

 
 (b) 

Fig 6. Sample Images Used for Analysis (A) Bows-2 Dataset (B) Bossbase Dataset. 
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Let the true positives, false negatives, true negatives, and false positives be represented by the variables 𝜌𝑡𝑝, 𝜌𝑓𝑛, 𝜌𝑡𝑛 

and 𝜌𝑓𝑝 respectively. The performance of the proposed fully connected network-based carrier detection process was 

evaluated using measures such as precision, recall, and accuracy which can be estimated with the relations that are provided 

below, 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝜌𝑡𝑝

𝜌𝑡𝑝+𝜌𝑓𝑝
 (12) 

 

 Recall =
ρtp

ρtp+ρfn
 (13) 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝜌𝑡𝑝+𝜌𝑡𝑛

𝜌𝑡𝑝+𝜌𝑡𝑛+𝜌𝑓𝑝+𝜌𝑓𝑛
 (14) 

 
The performance of the proposed data hiding approach was evaluated with the parameters namely structural similarity 

index measurement (SSIM), embedding rate, and peak signal-to-noise ratio (PSNR) that can be estimated using the 

following relations. 

 SSIM(P, R) =
(2σP,R+ω1)(2μPμR+ω2)

(σP
2+σR

2+ω1)(μP
2+μR

2+ω2)
 (15) 

 

In the above equation of SSIM 𝜎𝑃
2 and 𝜎𝑅

2 represents the variance of the encrypted and marked encrypted image 

respectively, while 𝜇𝑃 and 𝜇𝑅 represents the mean of the encrypted and marked encrypted image respectively. 

 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 =
𝑍

𝐽×𝐾
 (16) 

 

In above equation 𝑍 represents the total number of bits embedded and 𝐽 × 𝐾 represents the size of the image 

 PSNR = 10log10
2552

τ
 (17) 

 

Where 𝜏 resembles the mean square error estimated using the encrypted image 𝑃(𝑥, 𝑦) and the marked encrypted image 

𝑅(𝑥, 𝑦) as 

 𝜏 =
1

𝐽×𝐾
∑ ∑ [𝑃(𝑥, 𝑦) − 𝑅(𝑥, 𝑦)]𝐾

𝑦=1
𝐽
𝑥=1  (18) 

 

 

 
Fig 7. Results Obtained by The Proposed Approach in Carrier Detection on Plain Images (A) Input Images (B) Encrypted 

Images (C) Carriers Detected By FCNN-SF (D) Carriers Detected By FCNN-PO. 

 

Fig 7 illustrates the results obtained by the proposed approach in detecting the carriers and the non-carriers on the plain 

images without encryption. The red color indication shows the non-carrier blocks which are detected by the FCNN-SF and 

FCNN-PO approach. Both the FCNN-SF and FCNN-PO approach almost detect an equal number of non-carriers. This 

non-carrier block indicates that these blocks will overflow or underflow if the data either 0 or 1 is embedded.  

 

 

 
Fig 8. Results Obtained During the Proposed Approach (A) Input Images (B) Encrypted Images (C) Carriers Detected By 

FCNN-SF (D) Carriers Detected By FCNN-PO. 
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Fig 8 illustrates the results obtained by the proposed approach in detecting the carriers and the non-carriers on the 

encrypted images. The red color indication shows the non-carrier blocks that are detected by the FCNN-SF and FCNN-PO 

on the encrypted images. For this implementation, in both the schemes FCNN-SF and FCNN-PO the plain images are 

encrypted with the same key to compare the location of the FCNN-SF and FCNN-PO non-carriers.  Both the FCNN-SF 

and FCNN-PO approach almost detect an equal number of non-carriers. This non-carrier block indicates that these blocks 

will overflow or underflow if the data either 0 or 1 is embedded. 

 

 
Fig 9. Confusion Matrices Obtained During the Classification of Carrier and Non-Carrier (A) Input Image (B) FCNN-SF 

(C) FCNN-PO. 

 

Fig 9 (b) and (c) show the confusion matrices obtained by the FCNN-SF and FCNN-PO schemes respectively in the 

classification of carrier and non-carrier. In this confusion matrices the class ‘0’ represents the non-carrier blocks while the 

class ‘1’ represents the classified carrier blocks. 

 

 
                  (a)                (b) 

 

 
                  (c)               (d) 

 

Fig 10. Accuracy And Loss Comparison for The Two Approaches FCNN-SF And FCNN-PO During the Training Process 

(A) Accuracy Plot in Bossbase Dataset (B) Loss Plot in Bossbase Dataset (C) Accuracy Plot in Bows-2 Dataset (B) Loss 

Plot in Bows-2 Dataset. 
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Fig 10 illustrates the accuracy and loss curves obtained during the training of the model by the FCNN-SF and FCNN-

PO approaches. The FCNN model was trained with 50 epochs. The accuracy and loss almost stabilize as the number of 

epochs reaches 25. The training accuracy obtained while training with the Bows-2 dataset is less than the Bossbase dataset. 

Also, the loss obtained while training with the Bows-2 dataset is higher than the Bossbase dataset.  

 

Table 1. Performance Comparison of the FCNN-SF And FCNN-PO Schemes in The Classification of Carrier and Non-

Carrier. 

Database Class 
FCNN-SF FCNN-PO 

Precision Recall Accuracy Precision Recall Accuracy 

Bossbase 

Carrier 98.73 98.12 98.46 99.12 98.96 99.24 

Non-carrier 98.23 98.04 98.54 98.96 98.74 99.01 

Average  98.48  98.08  98.50  99.04  98.85  99.13  

Bows-2 

Carrier 98.21 97.96 98.37 98.76 98.43 98.74 

Non-carrier 98.01 97.58 97.91 98.54 98.26 98.43 

Average 98.11 97.77 98.14 98.65 98.35 98.59 

 

Table 1 illustrates the performance comparison of the FCNN-SF and FCNN-PO schemes in detecting the carrier and 

non-carrier. For the evaluation of the FCNN-SF, the FCNN model is trained with the complete sub-blocks before and after 

embedding the data. Therefore, the performance was evaluated on the complete sub-block before and after embedding the 

data. The FCNN-SF approach results in an average precision, recall, and accuracy of 98.48%, 98.08%, and 98.50% 

respectively when evaluated using Bossbase dataset. The same approach results in precision, recall, and accuracy of 

98.11%, 97.77%, and 98.14% respectively using Bows-2 dataset. For the evaluation of the FCNN-PO approach, the 

FCNN model is trained with only the predictor pixels without including the pixel in which the data is embedded. The 

FCNN-PO approach results in an average precision, recall, and accuracy of 99.04%, 98.85%, and 99.13% respectively 

when evaluated using the Bossbase dataset. The same approach results in precision, recall, and accuracy of 98.65%, 

98.35%, and 98.59% respectively when evaluated using the Bows-2 dataset.  

 

Fig 11 illustrates the graphical comparison of the proposed schemes FCNN-SF and FCNN-PO approach in both the 

Bossbase and Bows-2 dataset. The FCNN-PO approach results in higher precision, recall, and accuracy of 0.56%, 0.77%, 

0.63% respectively in Bossbase dataset. The FCNN-PO approach results in higher precision, recall, and accuracy of 

0.54%, 0.58%, 0.45% respectively in Bows-2 dataset. 

 

   
           (a)         (b) 

Fig 11. Performance Comparison for The Proposed Schemes FCNN-SF And FCNN-PO In the Classification of Carrier 

and Non-Carrier (a) Bossbase Database (b) Bows-2 Database. 

 

Table 2. Performance Comparison Of FCNN-SF And FCNN-PO Approach with Recent Data-Hiding Approaches 

Methods SSIM PSNR (dB) ER (bpp) 

Efficient prediction [16] 0.9988 60.84 1.42 

EPE approach [17] 0.9909 55.63 1.81 

Binary tree [13] 0.9871 51.36 1.92 

Extended Run-length [12] 0.9892 53.47 1.93 

Recursive RDH [33] 0.9921 57.81 1.7 

CNN-Predictor [25] 0.9915 55.82 1.95 

FCNN-SF (BossBase) 0.9929 58.97 1.99 

FCNN-SF (Bows-2) 0.9923 58.42 1.98 

FCNN-PO (BossBase) 0.9931 59.01 1.99 

FCNN-PO (Bows-2)  0.9926 58.86 1.97 
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The comparison interms of SSIM, PSNR, and ER for the proposed approach was made with other data hiding schemes 

such as efficient prediction [16], EPE approach [17], Binary tree [13], Extended Run-length [12], Recursive RDH and 

CNN-predictor approach [25]. The data was embedded by selecting the carrier using the two proposed carrier selection 

processes namely FCNN-SF and FCNN-PO. The performance of the proposed FCNN-PO is better when compared to the 

FCNN-SF approach in both the Bossbase and Bows-2 datasets as illustrated in Table 2. In case of the BossBase dataset, 

the FCNN-PO results in SSIM, PSNR, and embedding rates of 0.9931, 59.01𝑑𝐵 and 1.99𝑏𝑝𝑝 respectively. In case of the 

Bows-2 dataset, the FCNN-PO results in SSIM, PSNR, and embedding rate of 0.9926, 58.86dB, and 1.97𝑏𝑝𝑝 respectively. 

The proposed FCNN-PO approach results in higher performance than the traditional schemes including the FCNN-SF 

approach.  

 
Fig 12. Variation of PSNR At Different Embedding Rates for The Proposed Two Approaches FCNN-SF And FCNN-PO. 

 

Fig 12 illustrates the variation of PSNR at different embedding rates between 0.02bpp to 2bpp. As the bpp is increased, 

the PSNR gradually reduces in both the approaches namely FCNN-SF and FCNN-PO. This characteristic is almost linear 

in using both the BossBase and Bows-2 dataset. While comparing the FCNN-SF and FCNN-PO schemes, the FCNN-PO 

approach results in higher PSNR performance at different embedding rates.  

Let 𝑇𝑐,𝑒𝑚, 𝑇𝑑,𝑒𝑚, and  𝑇𝑙,𝑒𝑚,  be the time of classification, data embedding, and location map embedding respectively 

during the data embedding process. Thus, the total time during the embedding phase is 

 

  𝑇𝑡,𝑒𝑚 = 𝑇𝑐,𝑒𝑚 + 𝑇𝑑,𝑒𝑚 + 𝑇𝑙,𝑒𝑚 (19) 

 

Let 𝑇𝑐,𝑒𝑥, 𝑇𝑑,𝑒𝑥, and  𝑇𝑙,𝑒𝑥,  be the time of classification, data extraction, and location map extraction respectively during 

the data extraction process. Thus, the total time during the extraction phase is 

 

  𝑇𝑡,𝑒𝑥 = 𝑇𝑐,𝑒𝑥 + 𝑇𝑑,𝑒𝑥 + 𝑇𝑙,𝑒𝑥  (20) 

 

Table 3. Time Complexity of The Schemes FCNN-SF and FCNN-PO 

Dataset Scheme 

Time complexity (s) 

Embedding phase  Extraction phase  

𝑇𝑐,𝑒𝑚 𝑇𝑑,𝑒𝑚 𝑇𝑙,𝑒𝑚 𝑇𝑡,𝑒𝑚  𝑇𝑐,𝑒𝑥  𝑇𝑙,𝑒𝑥 𝑇𝑑,𝑒𝑥 𝑇𝑡,𝑒𝑥 

Bossbase 
FCNN-SF 0.478 0.597 0.397 1.472 0.416 0.423 0.341 1.18 

FCNN-PO 0.517 0.623 0.439 1.579 0.452 0.463 0.387 1.302 

Bows-2 
FCNN-SF 0.493 0.612 0.413 1.518 0.431 0.448 0.368 1.247 

FCNN-PO 0.526 0.647 0.451 1.624 0.479 0.495 0.408 1.382 

 

Table 3 illustrates the time complexity comparison of the proposed approach when evaluated using the Bossbase and 

Bows-2 datasets. The total time in the embedding phase by the FCNN-SF and FCNN-PO approach when evaluated in the 

Bossbase dataset is estimated as 1.472s and 1.518s respectively. The total time in the extraction phase by the FCNN-SF 

and FCNN-PO approach when evaluated in the Bossbase dataset is estimated as 1.18s and 1.302s respectively. In both the 
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Bossbase and Bows-2 datasets the FCNN-PO approach has a higher computation time than the FCNN-SF approach as 

illustrated in Fig 13. 

 
Fig 13. Graphical Comparison of Time Complexity in Proposed Data Embedding. 

 

Even though the FCNN-PO approach provides a higher computation time, its performance is higher in both the 

Bossbase and Bows-2 datasets.  

IV. CONCLUSION 

The work proposed a data hiding approach along with a carrier/ non-carrier detection process. Two different carrier 

detection process namely FCNN-SF and FCNN-PO are proposed that uses fully connected neural networks. The FCNN-

SF differentiates the carrier and non-carrier blocks with the complete information from the sub-block including the pixel 

in which the data is embedded. The FCNN-PO uses only the predictor pixels without considering the pixel that is used to 

embed data. The performance of the FCNN-SF and FCNN-PO approach in classifying the carrier and non-carrier was 

evaluated using the measures such as precision, recall, and accuracy while the performance of the FCNN-SF and FCNN-

PO data embedding process was evaluated using the measures such as SSIM, embedding rate and PSNR. The proposed 

FCNN-SF-based carrier detection process results in precision, recall, and accuracy of 98.48%, 98.08%, and 98.50% 

respectively, while the FCNN-PO-based carrier detection results in precision, recall, and accuracy of 99.04%, 98.85%, 

99.13% respectively when evaluated in Bossbase dataset. In the process of data hiding the FCNN-PO results in SSIM, 

PSNR, and embedding rate of 0.9931, 59.01dB, and 1.99bpp respectively which is better than the FCNN-SF approach and 

other recent data embedding schemes. 
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