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Abstract – One of the most widely used wireless technologies in recent years has been wireless sensor networks (WSN), 

which has led to intriguing new Internet of Things (IoT) applications. Internet Protocol IP integration with IoT-based 

WSN enables any physical item with sensors must have widespread connectivity and transmit data in real time to the 

server linked to the gate on the internet. WSN security is still a developing area of study that falls under the Internet of 

Things paradigm.  To protect digital infrastructures, strong techniques for precise and effective multi-class classification 

are required due to the growing frequency and sophistication of cyber-attacks. The proposed method makes use of the 

CICIDS2017 and UNSW-NB15 datasets alongside IoT-based wireless sensor networks to enhance cyber-security 

detection. In this work, Boosted Sooty Tern Optimization (BSTO) and Context-Aware Depthwise Separable onvolutional 

Neural Networks (CA-DSCNN) present an enhanced method for classifying multi-class cyber-security attacks. To 

guarantee consistent feature scaling, the proposed approach starts by applying Min-Max Scaler Normalization to 

preprocess the raw attack data. There is a feature selection stage that comes afterwards that uses Banyan Tree Growth 

Optimization (BTGO) combined with Augmented Snake Optimizer (ASO) to efficiently find and choose the most 

relevant characteristics to improve classification performance. Because of its strong feature extraction capabilities and 

computational efficiency, the CA-DSCNN is used; depthwise separable convolutions are used to strike a compromise 

between processing needs and accuracy. This architecture enhances the ability to extract complicated characteristics from 

the data and to comprehend those characteristics in context. BSTO is used to optimize the neural network's parameters, 

improving classification efficiency and accuracy in order to further enhance model performance. By lowering 

computational expenses and over-fitting, the proposed methodology which integrates IoT-based wireless sensor networks 

enhances cyber-security attack classification, exhibiting improved accuracy 99.5% and high PDR 99%. 

 

Keywords – Multi-Class Cyber Security Attack, IoT-Based WSN, Min-Max Scaler Normalization, Context-Aware 

Depthwise Separable Convolutional Neural Networks, Banyan Tree Growth Optimization, Augmented Snake Optimizer, 

and Boosted Sooty Tern Optimization. 

 

I. INTRODUCTION 

Cyber-security threats are becoming an increasing issue for everyone in today's society, where the internet plays a major 

role, including individuals, businesses, and governments. These are attacks that are specifically created to breach, 

compromise, or penetrate data, networks, or machines. The number of linked gadgets and the Internet of Things (IOT) 

has increased risk and created a new attack surface due to the exponential growth of internet access [1-5].  The 

decentralized structure of WSNs (wireless sensor networks) makes security a significant worry. Data and security are 

frequently compromised by these networks because of the high frequency of security assaults based on node capture and 

node hacking. The risks to WSNs are also relevant to and dangerous for IoT networks since they are made up of sensor-

based networks. 

Malware, phishing, denial-of-service (DoS) assaults, and other tactics are some of the ways that cyber security attacks 

might appear. Significant financial losses, data breaches, and reputational harm can all be brought on by these evil 



 
ISSN: 2788–7669                                                                                          Journal of Machine and Computing 5(2)(2025) 

 

815 
 

operations [6-8]. Advanced strategies for identifying, categorizing, and mitigating these threats must be developed and 

put into action since attackers are always improving their techniques. 

Cyber-attacks are becoming more harmful due to the advancement of internet technologies. Hackers are increasingly 

focusing their attacks on Cyber-Physical Systems (CPS) rather than traditional systems. Cyber-attacks targeting 

intelligent transportation and intelligent homes are growing faster each year. A self-driving car's serious flaws were 

discovered in 2005 by two security experts [9-13]. They were able to stop a self-driving Jeep on a highway by remotely 

controlling the vehicle's major functions. Cyber-attack methods are evolving into increasingly potent and advanced 

forms. State-sponsored hackers, as well as individual hackers, are actively planning cyber-attacks. With the use of 

offensive cyber-security technology, cybercriminals carry out complex attacks. The term "offensive cyber-security" 

describes a hacking method that targets a system rather than a protection mechanism [14].  

Even in the face of unanticipated threats or external attacks, vital facilities like ICS (Internet Industrial Control 

Systems) and SIPS (Sensitive Industrial Plants and Sites) must continue to function and be dependable. The 

communication layers, data management, and control are among the systems that are susceptible to cyber-attacks [15-

17]. These levels provide malicious individuals with access to sensitive data that they can steal or alter, possibly 

destroying physical assets and resulting in significant losses. Malicious users have the ability to alter crucial metrics used 

for managing or observing infrastructure components. 

Fighting malicious software is necessary for cyber-security, as it can remain dormant while monitoring compromised 

assets and infrastructure [18]. The swift advancement of technology such as, IoT and cloud computing boosts confidence 

in cyber-security. Due to the volume of encrypted traffic and dynamic port allocation, traditional methods of network 

intrusion detection are no longer effective. Instead, machine learning techniques have replaced port inspection as the 

method of choice [19-20]. Network anomaly detection in a variety of cloud environments can be addressed with machine 

learning and deep learning. The study's main contributions are: 

• The proposed method uses Min-Max Scaler Normalization to reduce the effect of different feature ranges and 

normalize feature scales, which improves the model's capacity to learn from the data. The model's capacity to 

learn efficiently from a variety of IoT-based wireless sensor network data is improved by this standardization.  

• In order to provide effective and efficient feature selection that enhances model performance by dimensionality 

reduction and focusing on the most important features, a hybrid Banyan Tree Growth Optimization with 

Augmented Snake Optimization is presented. By choosing the most pertinent features from the IoT-based data, 

this technique reduces dimensionality and boosts model efficiency. 

• The proposed method uses a context-aware, depthwise separable convolutional neural network (CA-DSCNN) to 

minimize computational complexity, resulting in a classification that is more accurate and economical. 

• The proposed method uses Boosted Sooty Tern Optimization (BSTO) to adjust network parameters in order to 

overcome issues like over-fitting and computational complexity and maximize the classification model's accuracy 

and computational efficiency. 

• A methodology for identifying multi-class cyber security assaults is made scalable and effective by the method. 

The suggested technique boosts speed and precision, two essential elements for quickly identifying and mitigating 

security threats, by utilizing data from IoT-based wireless sensor networks. 

The manuscript is organized as follows: Section 1 outlines the introduction; Section 2 investigates the literature 

review; Section 3 presents the proposed methods; Section 4 presents the results and discussions; and Section 5 concludes 

the manuscript. 

 

II. LITERATURE SURVEY 

Jia Y et al. (2023) [21] have suggested the defense of cyber-security for smart cities facilitated by artificial intelligence: 

A new approach to threat detection established on the MDATA model. This research presents aninnovative architecture 

for detecting attacks named ACAM, using a suggested mechanism. The outline is built regarding the MDATA model; it 

describes information that is temporally and spatially dynamic more effectively than the information graph in order to 

better express the cyber security knowledge. In order to reduce false alerts and enhance multi-step attack recognition 

capabilities, the framework includes modules for knowledge extraction, sub-graph construction, alarm correlation, and 

attack detection. The suggested method's implementation complexity, which necessitates significant data, is a limitation.  

In 2022 Semwal P and Handa A [22] have suggested the cyber-physical system cyber-attack detection via supervised 

machine learning. Four distinct supervised machine learning approaches are suggested in this study to develop 

representations to identify cyber-attack activity on a CPS water treatment facility. The comparison study is carried out by 

comparing the output of the four classification models, Decision Tree (DT), Random Forest (RF), K-Nearest Neighbors 

(KNN), and Support Vector Machine (SVM), using evaluation matrices.The suggested method's disadvantage is that it 

canover-fit complex datasets. 

Prabakar D et al. (2023) [23] have demonstrated a cyber-attack detection in a sustainability smart city using energy 

management and IoT with AI. The study describes a traffic analysis that reduces network traffic and improves data 

transmission through the use of a kernel polynomial vector classifier. Because there is less traffic, energy efficiency is 

improved. Next, adversarial Bayesian belief networks are used to detect malicious attacks. Throughput, packet delivery 
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ratio, data traffic analysis, end-end delay, energy efficiency, and quality of service have all been examined 

experimentally. The potential complexity in model implementation is the method's disadvantage. 

Balta EC et al. (2023) [24] have suggested digital twin-based cyber-attack detection system for cyber-physical 

systems of manufacture. This study tackles two issues related to CPMS cyber-attack identification: the differentiation of 

cyber-attacks throughout transient response and cyber-attacks from predicted abnormalities. In order to identify cyber-

attacks in CPMS through regulated transitory actions and anticipated anomalies, it suggests using a Digital Twin (DT) 

paradigm. An experimental case study is offered to illustrate the usefulness of the framework. The complexity of 

integration is the suggested method's drawback.   

In 2022 Li Q et al. [25] have suggested the scalable categorized cyber-attack localization and detection insystems of 

active dissemination. The study suggested an altered spectrum network partitioning using clustering technique for the 

"coarse" localization of categorized cyber-attacks. A standardized impact score determined by waveform statistical 

metrics is then suggested as a way to further refine the cyber-attack site, obtaining a "fine" cyber assault location by 

describing various waveform attributes. In summary, a thorough quantitative assessment involving two case studies 

reveals encouraging estimation outcomes for the suggested framework when contrasted with traditional and cutting-edge 

techniques. 

Salam A et al. (2023) [26] have presented deep learning techniques: a novel approach for internet-based assault 

prevention in sector 5.0. This method focuses on the classification of attacks and the recognition of abnormal behavior 

using DL (Deep Learning) methods like CNNs, RNNs, and transformer models. Deep learning has proven to be useful in 

identifying intrusions in Industry 5.0 environments via a transformer-based system that surpasses conventional methods 

in terms of precision, recall, andaccuracy. This ensures data protection. The suggested method's high computing cost is a 

disadvantage. 

Jullian O et al. (2023) [27] have suggested a scalable attack identification framework for cyber-attacks in 

IoTnetworks using DL. The distributed framework based on DL that is utilized in this study prevents several sources of 

vulnerability simultaneously under a single security mechanism. Thefeed-forward neural network and long-short-term 

memory are two distinct DL models that are assessed. The networks are tested on two distinct datasets (i.e., BoT-IoT and 

NSL-KDD) for both performance and attack type identification. A drawback of the suggested approach is its high 

resource consumption and complexity of integration. 

Raghunath KK (2022) [28] have introduced the Regression Classifier XGBoost (XRC) model for Inception V4-based 

cyber-attack identification and categorization. The suggested hybridized classifier, which is utilized in Inception V4 to 

further develop and evaluate the model, integrates the ideas of both XGBoost and Logistic classifiers. The proposed XRC 

classifies and predicts a number of prevalent network cyber-attacks, such as phishing, distributed denial of service 

(DDoS), Internet of Things (IoT), and cross-site scripting (CS). To reduce the erroneous ratio and boost efficacy, the 

hybridized classifier uses the sigmoidal function as a supportive activator. One of the methods' shortcomings is its 

computationally intensive and complex implementation. 

Saghezchi FB (2022) [29] have recommended using machine learning to identify DDoS assaults in Industry 4.0 

CPPSs.The suggested approach makes use of network traffic data that was obtained from an actual semiconductor 

manufacturing facility. For the purpose of instruction and evaluation of machine learning models, the suggested approach 

creates several labeled datasets and extracts 45 bidirectional network flow features. The suggested approach examines 

eleven distinct unsupervised and semi-supervised algorithms and evaluates their efficacy using inclusive simulations. The 

resultsestablish that supervised algorithms perform better in terms of finding performance than both unsupervised and 

semi-supervised ones. The suggested method's limitation is restricted to a particular manufacturing setting. 

In 2023 Alaca Y and Celik Y [30] have suggested employing lightweight DL algorithms to identify cyber-attacks 

using QR code descriptions. Initially, substantial data with several classes was produced as QR code images in this 

investigation. Next, ShuffleNet CNN and MobileNetV2algorithms were employed for instruction images of QR codes. 

Following the extraction of features from the training images using Deep CNN models, the Harris Hawk Optimization 

(HHO) was used to ascertain which characteristics would be most useful for classification.  The recommended method's 

increased computing complexity is a limitation. Table 1 shows display the comparison of existing methods. 

 

Problem Statement  

Cyber-security attacks represent significant risks to digital infrastructure; thus, identifying and reducing such hazards 

requires reliable and precise categorization techniques. The current techniques for classifying cyber-security attacks into 

many classes have a number of shortcomings, such as difficult implementation, substantial data requirements, over-

fitting vulnerability, and expensive computing expenses. These difficulties make it difficult to use them practically, 

particularly in intricate settings. This research proposes a novel method utilizing a context-aware, depth-wise separable 

convolutional neural network framework and advanced Boosted Sooty Tern optimization techniques to address these 

problems. The results include better classification accuracy, lower computational overhead, and increased adaptability in 

a variety of environments. Furthermore, it uses sophisticated regularization algorithms to prevent over-fitting and reduce 

the requirement for large amounts of data. The proposed method effortlessly fits into a variety of operational scenarios by 

optimizing computational efficiency. 
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Table 1. Comparison of Existing Approaches 

References Method Advantages Disadvantages 

[21] 
ACAM framework with 

MDATA model 

Reduces false alarms, 

improves multi-stem 

detection 

Implementation 

complexity, requires 

extensive data 

[22] 
KNN, SVM, DT, and 

RF 

Easy to interpret and 

visualize 

Prone to over-fitting with 

complex datasets 

[23] 

Kernel quadratic vector 

discriminant + 

adversarial Bayesian 

belief networks 

 

High throughput, 

improved energy 

efficient 

Potential complexity in 

model implementation 

[24] Digital twin framework 
Real-time detection 

during system transients 
Complexity in integration. 

[25] 
Deep learning and 

spectral clustering 

Effective at detecting and 

localizing minor attacks 

Complexity in 

implementation and 

computation 

[26] 
CNNs, RNNs, 

Transformer models. 
Enhanced accuracy High computational cost 

[27] 
Distributed deep 

learning framework 

High accuracy, 

comprehensive 

vulnerability protection 

Complexity in integration 

and high resource 

consumption 

[28] 

XGBoost Regression 

Classifier (XRC) with 

Inception V4 

High accuracy, effective 

threat detection 

Complexity in 

implementation, 

computationally intensive 

[29] Machine Learning 
High accuracy, real-

world data usage 

Limited to specific factory 

environment 

[30] 

Hybrid HHO, 

MobileNetV2, and 

ShuffleNet CNN 

High accuracy, efficient 

feature selection 

Increased computational 

complexity 

 

 

III. PROPOSED METHODOLOGY 

The proposed method for multi-class cyber-security attack classification initiates with a preprocessing step that uses Min-

Max Scaler Normalization to standardize feature scales and improve model performance on raw data. Following 

normalization, the data is analyzed using feature selection and Banyan Tree Growth Optimization (BTGO) combined 

with Augmented Snake Optimizer (ASO). By effectively finding and choosing the most pertinent features, this 

combination lowers dimensionality and raises classification accuracy. After that, the enhanced features are fed into a 

Context-Aware Depthwise Separable Convolution Neural Network (CA-DSCNN), which takes advantage of depthwise 

separable convolutions to minimize computational complexity and maximize feature extraction efficiency. In order to 

improve classification performance, network parameters are adjusted using Boosted Sooty Tern Optimization, which 

further optimizes the model. This method provides a scalable and effective way to identify and classify various cyber-

threats. Fig 1 shows the block schematic illustrates the proposed methodology. 

 

Dataset 

The two datasets used in the proposed method, UNSW-NB15 and CICIDS2017, are well known for their ability to 

classify cyber-security attacks into multiple classes. Additionally, the method uses data from the IoT- based wireless 

sensor networks. These datasets offer a broad variety of attack scenarios, allowing a comprehensive evaluation of the 

method's efficacy in identifying and categorizing various cyber-threats. Preprocessing based on Min-Max Scaler 

Normalization is applied to the datasets to provide uniform scaling across features. By minimizing the bias caused by 

different feature scales, this step improves the performance of the classification that comes next. 

 

Minmax Scaler Normalization-Based Preprocessing  

The datasets are fed into Min-Max Scaler Normalization-based preprocessing to efficiently scale and normalize the 

feature values, ensuring consistency and relevance for accurate analysis.  The normalization procedure ensures that each 

item of data in the database has a comparable range. When the data has no structure and has a wide range of values, this 

becomes crucial. Normalization with MinMax scaler is beneficial for high-dimensional data. The feature values in cyber-

security might differ greatly because of the variety of attack methods and data sources. Model training may become 

challenging as a result of this variation. A normalization method called MinMax scaler raises every feature's value to a 
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range of 0 to 1, which enhances the stability and performance of the model. Equations (1) and (2) describe the MinMax 

scaler normalizing algorithm [31].  

MinMax Scaler 

Normalization based 

Preprocessing 

Hybrid Banyan tree growth optimization and Augmented 

Snake optimizer based feature selection 

Classified Outcomes 

Boosted Sooty Tern 

Optimization 

UNSW-NB15 and 

CICIDS2017

Datasets 

 

Context-aware depth wise separable 

convolutional neural network 

Performance Evaluation

 

IoT-based wireless sensor 

networks +

+

accuracy 

precision, 

recall, 

MAPE, 

RMSE  

MSE 

Network Lifetime, 

End-to-End Delay,

Packer Delivery 

Ratio ,

Throughput

 Fault Tolerance.

 
Fig 1. Block Diagram of The Proposed Methodology. 

 

 

 𝐼𝑆𝑡𝑑 =
(𝐼−𝐼.𝑀𝑖𝑛)

(𝐼.𝑀𝑎𝑥−𝐼.𝑀𝑖𝑛)
 (1) 

  

 𝐼𝑆𝑐𝑎𝑙𝑒𝑑 = 𝐼𝑆𝑡𝑑 ∗ (𝐼.𝑀𝑎𝑥 − 𝐼.𝑀𝑖𝑛) + 𝐼.𝑀𝑖𝑛 (2) 

 

The lowest and highest feature values for the dataset under consideration are represented by the min and max values 

in Equations (1) and (2). These attributes are normalized in the dataset through preprocessing, guaranteeing consistency 

between various data points. Equations (1) and (2) offer the normalized values corresponding to every feature. Before 

being used for model training and testing, these normalized values are fit and transformed for the full dataset. The 

relevant features are then chosen by feeding the preprocessed data into the feature selection process. 

 

Hybrid Banyan Tree Growth Optimization and Augmented Snake Optimizer-Based Feature Selection  

The important aspects are chosen from the preprocessed data using feature selection. To optimize feature subsets, the 

hybrid Banyan Tree Growth Optimization (BGTO) and Augmented Snake Optimizer (ASO)-based feature selection 

techniques combine the advantages of both algorithms. Whereas ASO improves the search by concentrating heavily on 

favorable regions, BGTO expands and grows branches in the solution space to examine a variety of feature 

combinations. By combining exploration and exploitation, this hybrid strategy produces feature selection that is more 

precise and effective. In order to promote both high accuracy and low feature count, the fitness function utilized balances 

predictive performance with feature subset size. As a consequence, a strong feature selection procedure is produced that 

makes use of the advantages of both optimization techniques. 

 

Banyan Tree Growth Optimization (BTGO) [32] 

The ancient species of tropical and subtropical plants known as banyan trees, with their many aerial roots and expansive 

canopies, served as inspiration. They are sensitive to environmental elements such as water, nutrients, and light and have 

a strong capability for growth and adaptation. Growth hormones in the tree direct its trunks toward locations with more 

resources, enabling it to develop in that direction. The concept of optimization is present in the unique growth style of the 
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banyan tree and offers suggestions for remedies. There are several cycles in the growth process, as new leaves and 

branches emerge and withering branches break down. 

 

Augmented Snake Optimizer (ASO) [33] 

The behavior of snakes mating in low-temperature environments and in the presence of food serves as the model for the 

Snake Optimization concept. To improve the global's efficiency, this procedure includes transitional phases. When its hot 

outside, snakes concentrate on consuming the food that is accessible. Mating takes place in pairs in cold weather, and 

females may lay eggs that develop into baby snakes while they are in the search area.   

 

Initialization  

The hybrid initialization averages random variables within predefined constraints by combining the BTGO and ASO 

approaches. For better optimization exploration, this method guarantees a variety of well-balanced starting locations 

throughout the solution space. 

  

 𝑋𝑎,𝑏 =
1

2
[𝑋𝐵𝑇𝐺𝑂(𝑋𝑏,𝑚𝑖𝑛𝑏,𝑚𝑎𝑥 + 𝑥𝐴𝑆𝑂(𝑥𝑚𝑖𝑛𝑚𝑎𝑥)𝑚𝑖𝑛)𝑏,𝑚𝑖𝑛

]  (3) 

 

Where 𝑋𝑏,𝑚𝑖𝑛represents the minimum value for 𝑏 − 𝑡ℎ dimension, 𝑋𝑏,𝑚𝑖𝑛 denotes the maximum value for 𝑏 − 𝑡ℎ 

dimension, 𝑅𝑎𝑛𝑑𝐵𝑇𝐺𝑂 is the random value for BTGO, 𝑥𝑚𝑖𝑛 is the minimum value for solution space, 𝑥𝑚𝑎𝑥maximum 

value for solution space, and 𝑅𝑎𝑛𝑑𝐴𝑆𝑂  is the random value for ASO. 

   

Fitness Function  

The fitness function of the hybrid BGTO-ASO optimization approach was recently proposed is shown in Equation (4). 

 

 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) =
1

1+𝐸𝑟𝑟𝑜𝑟(𝑋)
− 𝜆 ×

𝑋

𝑛𝑚𝑎𝑥
   (4) 

 

Where 𝐸𝑟𝑟𝑜𝑟(𝑋) denotes the measures model error with selected features, |𝑋| is counts the number of selected 

features, 𝑛𝑚𝑎𝑥 denotes the maximum allowable feature count, and 𝜆represents the balance accuracy and feature count. 

 

Exploration 

The exploration phase in BTGO has been established in order for the algorithm to retain diversity more efficiently. 

Equations display the phase of exploration (5)– (6). 

 

 𝐵𝑖 = 𝐵𝑖+∈× 𝑛(0,1)      (5) 

 

Where 𝑛(0,1) indicates the Gaussian distribution's random numbers and ∈ denotes the exploration factor. This is 

computed using Equation (6). 

 

 ∈= 𝑆𝑡𝑒𝑝 × 𝑅𝑎𝑛𝑑 × 𝑒
1−

𝑚𝑎𝑥 𝑖𝑡𝑒𝑟

𝑚𝑎𝑥 𝑖𝑡𝑒𝑟−𝑓+1  (6) 

 

Where 𝑚𝑎𝑥 𝑖 𝑡𝑒𝑟represents the greatest quantity of repetitions, 𝑓is the current generation, and the variable that 

corresponds to the search space’s breadth is the parameter𝑆𝑡𝑒𝑝.
 

 

Exploitation 

Exploitation in the Snake Optimizer is similar to locating and taking advantage of food sources in that it involves a 

thorough search around recognized high-quality solutions. By focusing on areas that show promise, this phase improves 

the search's refinement and increases convergence efficiency and accuracy of the solutions. 

  

 𝑆𝑤𝑜𝑟𝑠𝑡,𝑀 = 𝑆(𝑆𝑚𝑖𝑛𝑚𝑎𝑥)𝑚𝑖𝑛   (7) 

 

 𝑆𝑤𝑜𝑟𝑠𝑡,𝐹 = 𝑆(𝑆𝑚𝑖𝑛𝑚𝑎𝑥)𝑚𝑖𝑛    (8) 

 

Where 𝑆𝑤𝑜𝑟𝑠𝑡,𝑀 is the worst member in the male group, 𝑆𝑤𝑜𝑟𝑠𝑡,𝐹is the worst member in the female group, 

Metaheuristic algorithms that optimize agent direction can make random position adjustments thanks to the flag direction 

operator, also called the diversity factor. 

 

Termination  

After every step, the termination condition of the hybrid optimization is established by increasing the number of 

iterations𝑡 = 𝑡 + 1.The hybrid BGTO and ASO feature selection method combines the advantages of both techniques to 
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explore and refine feature subsets in an effective manner. In an attempt to streamline the model and improve model 

performance, this method selects the most important features from the dataset. Following feature selection, a context-

aware depthwise separable convolutional neural network is employed in the classification stage to categorize the multi-

class cyber-security attack based on its optimum properties. 

 

Context-Aware Depth Wise Separable Convolution Neural Network (CA-DSCNN) 

The next step for the feature selection is classification. The proposed method uses Context-Aware Depthwise Separable 

Convolutional Neural Network (CA-DSCNN): This neural network effectively captures contextual and spatial 

information with low computational overhead, improving multi-class cyber-security threat categorization. Fig 2 shows 

the architecture of proposed CA-DSCNN. 

 

Depth-wise convolution 1x1 convolution 

Input 
Convolution

Output 
Convolution

Final Output 
inpff

NCC 
inp

Nhh 

inpgg
NCC 

out
N11

outgg
NCC 





inp
N









out
N

Context Learning 

Module
Attention 

Transfer Module x

1X1 Conv

+ReLU

Context Feature 

Maps

Attention Maps

Fusion
FC FC Softmax

Input

 
Fig 2. Architecture of CA-DSCNN. 

 

Depth Wise Separable Convolutional Neural Network 

Decomposition of depth-wise separable convolution yields two different forms: depth-wise convolution and 1x1 

convolution, which is also referred to as point-by-point convolution. If point-by-point convolution combines feature 

maps from several channels in a normal 1x1 convolution process, depth-wise convolution retrieves spatial characteristics 

on each dimension [34].   

Convolutional kernel size𝐻is ℎ × ℎfor the input feature maps 𝐼, which have a size of .ff CC  𝑁𝑖𝑛𝑝indicates the 

quantity of input channels and 𝑁𝑜𝑢𝑡 indicates the quantity of output channels. The output feature map 𝑂has a size 

of𝐶𝑔 × 𝐶𝑔. The definition of a standard convolutional operation is as follows: 

 

 𝑂𝑦 = ∑
𝑁𝑖𝑛𝑝
𝑥=1 𝐼𝑥 ⋅ 𝐻𝑥

𝑦
+ 𝑎𝑦 , 𝑦 = 1,2, . . . , 𝑁𝑜𝑢𝑡 .  (9) 
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Where 𝐼𝑥is the 𝑥 − 𝑡ℎmap in ,I 𝑂𝑥is the 𝑥 − 𝑡ℎmap in𝑂, and 𝐻𝑥
𝑦

is the 𝑥 − 𝑡ℎportion in the 𝑦 − 𝑡ℎ kernel. The bias of 

the output map 𝑂𝑥is𝑎𝑦. Moreover, the notation ⋅ represents the convolution operator. Assume that, in a typical 

convolution process, 𝐹𝑝1 represents the number of floating-point computations and 𝑇𝑝1 represents the total number of 

trainable parameters (ignoring bias parameters). Equations (10) and (11) can be used to compute them: 

 

 𝑇𝑝1 = ℎ × ℎ × 𝑁𝑖𝑛𝑝 × 𝑁𝑜𝑢𝑡 ,   (10) 

 

 𝐹𝑝1 = ℎ × ℎ × 𝑁𝑖𝑛𝑝 × 𝑁𝑜𝑢𝑡 × 𝐶𝑔 × 𝐶𝑔    (11) 

 

The parameter 𝑇𝑝2 and the floating-point computation 𝐹𝑝2 for a depth-wise separable convolution process are the 

total of the depth-wise and 1x1 point-wise convolutions. 𝑇𝑝2and𝐹𝑝2 can therefore be computed using the methods 

provided in Equations (12) and (13) respectively: 

 

 𝑇𝑝2 = ℎ × ℎ × 𝑁𝑖𝑛𝑝 + 𝑁𝑖𝑛𝑝 × 𝑁𝑜𝑢𝑡 ,    (12) 

 

 𝐹𝑝2 = ℎ × ℎ × 𝐶𝑔 × 𝐶𝑔 × 𝑁𝑖𝑛𝑝 + 𝐶𝑔 × 𝐶𝑔 × 𝑁𝑖𝑛𝑝 × 𝑁𝑜𝑢𝑡 .    (13) 

 

Equations (14) and (15) display the ratios of Equations (10) and (12) and Equations (11) and (13): 

 

 
𝑇𝑝2

𝑇𝑝1
=

1

𝑁𝑜𝑢𝑡
+

1

ℎ
2,  (14) 

 

 
𝐹𝑝2

𝐹𝑝1
=

1

𝑁𝑜𝑢𝑡
+

1

ℎ
2,  (15) 

 

It is apparent that the depth-wise separable convolution's parameters and computations are just
1

𝑁𝑜𝑢𝑡
+

1

ℎ
2 times larger 

than those of the conventional convolution. This significantly lowers the model's parameter and computing expense. 

 

Context-Aware Attention Network  

A module for attention transfer and a module for context learning make up the proposed context-aware attention network. 

Each module has three peeks that use completely convolution and sigmoid layers to forecast an attention map and are 

tuned for convergence using softmax classification loss [35].   

 

 𝑝(𝑋) = 𝑒 (𝑓(𝑋)⨀𝑔(𝑓(𝑋))), (16) 

 

Where 𝑋 denotes the input,⨀represents the way the element-wise product works. Having a layer of softmax to further 

transform the feature vector into probabilities is also included, 𝑒(⋅)represents fully linked layers that are used to convert 

convolutional features into feature vector that might be matched the submissions in each category. 

 

Context Learning Module  

Cyber security attack classification relies heavily on context, and studies in computer networks indicate that accurately 

modeling context might improve attack comprehension and classification algorithms. The creation of a module for 

context transfer that transmits contextual details in the right, left, down, and up directions is necessary for effective 

contextual information learning. The process of context transfer can be written as follows: 

 

 𝐷𝑎,𝑏
𝑢𝑝

= 𝑚𝑎𝑥(𝑉𝑎−1,𝑏
𝑢𝑝

𝐷𝑎−1,𝑏
𝑢𝑝

+ 𝐷𝑎,𝑏
𝑢𝑝
, 0)   (17) 

 

The transmission processing is depicted in the above equation in an upward direction; comparable operations are 

carried out in the other directions. In equation (17)  𝐷𝑎,𝑏
𝑢𝑝

is one of the input map of features cells, and updating it is the 

aim.𝑉𝑎−1,𝑏
𝑢𝑝

is a transference parameter that has a range of 0 to 1. Rather of being manually set, the parameter𝑉𝑎−1,𝑏
𝑢𝑝

 is 

learning. For cyber-attack classification, context feature maps 𝑓(𝑋) = 𝑐𝑜𝑛𝑐𝑎𝑡(𝐷𝐿𝑒𝑓𝑡 , 𝐷𝑅𝑖𝑔ℎ𝑡 , 𝐷𝑈𝑝, 𝐷𝐷𝑜𝑤𝑛)comprise both 

transmitted and original convolution features. 

 

Attention Transfer Module  

The method creates an attention transfer model, generating attention maps through several looks, each containing a 

unique attention region, demonstrating reasoning relations between these regions.Maps with context feature 𝑓(𝑋) are 

produced by the indicated module for context learning and input into the module for attention transfer to produce the 

predicted attention map. 
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 𝐸𝑁𝑡(𝑋) = 𝐸𝑁𝑡−1(𝑋) ∗ (1 − 𝐴𝑁𝑡−1(𝑋))𝐴𝑁𝑡(𝑋) = 𝑙(𝐸𝑁𝑡(𝑋))   (18) 

 

Where the 𝑡 − 𝑡ℎglimpses created attention map is𝐴𝑁𝑡(𝑋), and the input feature maps are shown by𝐸𝑁𝑡(𝑋). The 

attention weight of every input pixel appears on an attention map that the network creates a pixel-by-pixel mask. An 

inhibition approach is applied for every peek, producing three attention maps from three snapshots, each of which 

represents a distinct attention zone. Following classification, the neural network is input into an optimization phase 

wherein its parameters are changed to improve accuracy and performance. By ensuring that the model converges to the 

most accurate response, optimization raises the model's overall effectiveness and detection capacity.   

  

Boosted Sooty Tern Optimization (BSTO) 

Sooty terns, also known as Onychoprion fuscatus, are sea birds with diverse species. They are omnivorous birds that eat 

various animals, including insects, reptiles, amphibians, fish, and earthworms. They are colonial creatures that locate and 

hunt prey with intelligence. Sooty terns migrate seasonally to find abundant food sources, grouping together to avoid 

collisions [36]. They use a flapping mode in flight for air attacks, updating initial positions based on the fittest found 

sooty tern. Effective error rate minimization is achieved by the use of BSTO. Fig 3 shows the flowchart of BSTO.  

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑀𝑖𝑛(𝑀𝑆𝐸) 
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Fig 3. Flowchart of the BSTO. 

 

The process for classifying cyber security attacks stated in this proposed method starts with pre-processing the data 

using min-max scaler normalization. Important features are then selected from the complete set utilizing advanced hybrid 

optimization techniques. The cyber security attack is then classified by running these chosen features through a CA-

DSCNN. To raise efficiency and accuracy in the classification of cyber-security attacks, the BSTO is utilized. 

 

IV. RESULTS AND DISCUSSION 

This section compares the proposed method with the existing approaches using the UNSW-NB15 and CICIDS-2017 

datasets. Additionally, the method uses data from the IoT- based wireless sensor networks. Regarding validated 

performance, the proposed method attains superior accuracy, ultra precision, flawless recall, and MAPE, RMSE and 

MSE efficiency, network lifetime, end-to-end delay, packer delivery ratio (PDR), and throughput and fault tolerance. 

When it comes to classifying cyber-security attacks into many classes and managing unbalanced datasets, the proposed 
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method regularly performs better than standard models. Incorporating pre-processing, feature selection, and technique 

optimization into the model-building process is another way to improve stability and reliability. Furthermore, the 

approach doesn't suffer from a lack of generalization for the categorization of multi-class cyber security attacks and 

demonstrates its effectiveness. In general, it computes more quickly and has better detection accuracy than the earlier 

models. Python is used to execute the proposed method. 

 

Dataset Description  

UNSW-NB15 dataset [37] 

The UNSW-NB15 dataset encompasses 10 classes (Normal, Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, 

Reconnaissance, Shellcode, and Worms) and contains 42 characteristics (labels excluded). More accurate data for 

assessing cyber-attack detection systems is intended to be provided by the dataset. With 82,332 examples in the testing 

set (which includes both attack and normal data), the training set has 175,341 occurrences. The UNSW-NB15 dataset has 

certain limitations, even though it provides better coverage than its predecessors. These include a small number of 

network assaults and some obsolete packet information. A comparison of the different forms of data in Table 2 shows 

the distribution of data from the UNSW-NB15 dataset.  

 

Table 2. Distributed data for the UNSW-NB15 dataset 

Data Types Description Number of records 

Normal Typical network information 2,218,761 

Fuzzers 
Utilizing data feeding that is created at random to 

suspend applications 
24,246 

Analysis 
Includes assaults such port scans, spam, and 

HTML page penetration. 
2677 

Backdoors Method for getting around system security 2329 

DoS Denial of service attack 16,353 

Exploits Making use of the acknowledged security flaws 44,525 

Generic Method that attacks every block cipher 215,481 

Reconnaissance Attack-simulating strikes to obtain information 13,987 

Shellcode 
Snippet of code used to take advantage of software 

vulnerabilities 
1511 

Worms 
In order to infect other computers, worms duplicate 

themselves. 
174 

  

CICIDS2017 Dataset [38] 

The Canadian Institute for Cyber-security created the dataset. The dataset includes some modern multi-stage attacks, 

including DoS assaults and Heartbleed. A range of contemporary protocols are also included.  CICIDS2017 simulates 

seven different attack families, including brute force, heart bleed, botnet, denial-of-service, web, and infiltration attacks. 

It is designed for use in intrusion detection and network security applications. A comparison of the different forms of 

data in Table 3 shows the distribution of data from the CICIDS-2017 dataset.  

 

Table 3. Distributed data for the CICIDS-2017 dataset 

Data Types Description Number of records 

Normal Typical network information 2,358,036 

Brute Force Attack 
Attempt to guess FTP passwords using a 

brute force attack. 
7938 

Heart Bleed Attack 
Employing openSSL exploits to inject 

malicious data into openSSL memory 
11 

Botnet 
Use of the victim system in the Botnet 

network and trojan-based attacks 
1966 

Denial-of-Service (DoS) 

Excessive use of HTTP get requests in 

order to limit HTTP use 

 

5499 

Web Attack 
Using a brute force method to extract 

personal ID numbers from webpages 
1707 

Infiltration Attack 

unauthorized access to the system through 

the use of instruments and penetration 

techniques 

36 

  



 
ISSN: 2788–7669                                                                                          Journal of Machine and Computing 5(2)(2025) 

 

824 
 

Iot-Based Wireless Sensor Networks Data  

IoT-based wireless sensor networks provide the raw data that is utilized to evaluate the proposed method. This dataset 

captures the intricacies of network traffic and device interactions, encompassing a broad spectrum of attack scenarios 

pertinent to IoT systems. A thorough evaluation of the approach's effectiveness in identifying and categorizing different 

cyber security risks unique to IoT-based contexts is made possible by the utilization of IoT-based sensor data. 

 

Performance Comparison with Existing Approaches  

Performance Comparison on the UNSW-NB15 Dataset 

 

 
Fig 4. Distribution of Attack Frequencies in the UNSW-NB15 Dataset. 

 

Fig 4 shows the prevalence of various attack types, such as backdoors, fuzzers, exploits, and reconnaissance, across 

all training and testing sets. Initially, the categories "Exploit" and "Generic" are shown with comparatively higher 

frequency, particularly in the training set. It helps to perceive the distribution of attacks at different phases of the model's 

development. 

Table 4. Data Distribution for Training, Testing, and Validation Sets on UNSW-NB15 Dataset 

Label Training Dataset Testing Dataset Validation Dataset 

Normal data 1,014,221 289,777 144,899 

Attack data 157,748 45,071 22,535 

 

Table 4 provides statistical information on normal and attack data instances in the UNSW-NB15 dataset's training, 

test, and validation sets. The training set consists of 1,014,221 normal training data records and 157,748 attack data 

records. There are 289,777 records of routine testing and 45,071 records of attacks in the testing set. The validation set 

consists of 22,535 assault data records and 144,889 normal validation data records. 

 

Table 5. UNSW-NB15 Dataset Performance Evaluation Outcomes 

Methods Accuracy (%) Precision (%) Recall (%) F1-Score (%) Detection rate 

(%) 

DNN 98.8 97.94 97.86 98.76 97.92 

CNN 99.47 99.43 99.46 99.44 98.65 

SVM 75.21 99.16 75.21 76.60 80.12 

RF 99.30 99.09 99.30 99.12 98.51 

NB 98.86 99.01 98.86 98.85 97 

ANN 99.28 99.37 99.28 99.17 98.02 

Proposed 

CA-DSCNN 

99.51 99.49 99.51 99.46 99.33 
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Table 5 presents a comparison of the performance evaluation results for various methods on the UNSW-NB15 

dataset. In comparison with existing models, the proposed CA-DSCNN performs better. CA-DSCNN is the best at 

classifying multi-class cyber-security attacks, with the highest accuracy (99.51%), precision (99.49%), recall (99.51%), 

F1-score (99.46%), and detection rate (99.33%).  

 

 
Fig 5. Performance Measures for Classifying Cyber Security Attacks into Multiple Classes Using UNSW-NB15 Dataset. 

 

Fig 5 presents the performance metrics of a multi-class cyber security attack classification system in terms of many 

classes, such as DoS Attack Category, Shellcode, etc., as well as regular traffic classes include accuracy, precision, 

recall, and F1 score. Every indicator displays high values, with the majority exceeding 98%, suggesting that the model is 

accurate in characterizing and classifying various cyber-attacks. 

 

Performance Comparison on the CICIDS 2017 Dataset 

 

 
Fig 6. Cyber-security Attack Frequency in the CICIDS 2017 Dataset. 

 

The Fig 6 depicts the frequency of cyber security attacks in the CICIDS 2017 dataset on a logarithmic scale. This 

enables us to clearly see the representation of these types of attacks in relation; for example, "Benign,”” Bot,” and "Dos 
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attack-Hulk“ are all included, making it available for cyber-- security analysis. This visualization enables us to see and 

prioritize a selection of the most common cyber-attacks. Moreover, it emphasizes the necessity of focusing on both 

ordinary and rare attack vectors in order to guarantee strong security measures. 

 

Table 6. Data Distribution for Training, Testing, and Validation Sets on CICIDS-2017 dataset 

Label Training Dataset Testing Dataset Validation Dataset 

Normal data 318,014 90,861 45,431 

Attack data 7,800 2,229 1,114 

 

Table 6 provides statistics on normal and attack data instances from the CICIDS2017 dataset's training, test, and 

validation sets. There are 7,800 assault data records and 318,014 regular training data records. There are 2,229 test set-

based attack data records and 90,861 normal testing data records. There are 1,114 validation set-based attack data records 

and 45,431 normal validation data records. 

 

Table 7.  CICIDS-2017 dataset performance evaluation outcomes 

Methods Accuracy Precision Recall F1-Score Detection rate 

DNN 97.02 96.99 96.6 96 92.80 

CNN 98.22 98.23 98.21 98.20 94.65 

SVM 73.41 96.78 73.99 74.55 75.88 

RF 98.15 97.88 98.66 98.54 97.64 

NB 96.78 96 96.68 96.58 94 

ANN 98.49 98.55 98.60 98.11 97.66 

Proposed 

CA-DSCNN 

99.48 99.23 99.15 99.66 99.13 

 

Table 7 shows the CICIDS-2017 dataset performance evaluation outcomes. The higher accuracy (99.48%) and F1-

Score (99.66%) are attained by the proposed CA-DSCNN, which performs better than the existing approaches. 

Additionally, it outperforms techniques like CNN and ANN in terms of precision (99.23%) and recall (99.15%). Its 

effectiveness and reliability are demonstrated by the 99.13% detection rate, which emphasizes the way well it performs 

in identifying situations when compared to other models. 

 

Comparative Analysis of The Proposed Method's Performance with Existing Approaches 

 

 
Fig 7. Accuracy And Precision Performance Comparison Between Proposed and Existing Methods. 

 

The performance of the following cyber-security attack models is compared in the Fig 7. DNN, SVM, CNN, RF, NB, 

ANN, and CA-DSCNN (proposed). It showsshows98% accuracy and almost 97% precision, with colored bars for each 

model. In terms of both measures, the proposed CA-DSCNN model performs similarly to alternative models. 
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Fig 8. Recall And F1-Score Performance Comparison Between Proposed and Existing Methods. 

 

Fig 8 shows the Recall and F1-Score performance comparison between proposed and existing methods. Various 

algorithms, such as DNN, SVM, NB, CNN, RF, ANN, and the proposed CA-DSCNN, are compared with respect to 

recall and F1-Score performance. The proposed CA-DSCNN achieves the highest recall (99%) and F1-score (99.5%). 

However, other models have F1-Score and recall values that range from 80% to 95%, indicating that the CA-DSCNN 

technique performs better in cyber-security attack classification tasks. 

 

 
Fig 9. Computational Time and MAPE Performance Comparison Between Proposed and Existing Methods. 

 

The Mean Absolute Percentage Error (MAPE) and computational time metrics are used in the Fig 9 to compare the 

existing cyber-attack methods. Although it does not have the shortest computation time (1.0s), the CA-DSCNN 

(Proposed) model has the lowest MAPE 5%, suggesting the maximum accuracy. A variety of other models exhibit 

different performance levels, including the DNN Computational Time ~ 0.8s, MAPE ~ 12%, SVM Computational Time 

~ 1.2s, MAPE ~ 15%, NB Computational Time ~ 0.7s, MAPE ~ 18%, RF Computational Time ~ 0.9s, MAPE ~ 10%, 

and ANN Computational Time ~ 0.85s, MAPE ~ 14%. 



 
ISSN: 2788–7669                                                                                          Journal of Machine and Computing 5(2)(2025) 

 

828 
 

 
Fig 10. RMSE and MSE Performance Comparison Between Proposed and Existing Methods. 

 

The following algorithms' performances are compared in the Fig 10. DNN, RF, CNN, NB, SVM, and ANN. With an 

RMSE of 0.8% and an MSE of 0.6%, the CA-DSCNN (proposed) method performs the best. RMSE values consistently 

exceed MSE for every algorithm, indicating a larger degree of error in RMSE.  

  

Table 8. Comparing Cyber Security Detection Techniques' Performance in IoT Based Wireless Sensor Networks 

Methods 
Network  

Lifetime 

End-to-End 

Delay 

Packer Delivery 

Ratio (PDR) 
Throughput Fault Tolerance 

EESC-SSP [39] 30 hours 120 ms 92% 200 kbps High 

HR-MOPSO-

IDS [40] 

28 hours 110 ms 90% 190 kbps Medium 

SG-IDS [41] 25 hours 130 ms 88% 180 kbps High 

ESWI [42] 32 hours 115 ms 91% 210 kbps High 

ASP-WSN [43] 29 hours 105 ms 93% 195 kbps High 

Proposed 35 hours 100 ms 99% 220 kbps Very High 

 

The Table 8 compares various cyber security detection methods for IoT-based wireless sensor networks across five 

key metrics: network lifetime, end-to-end delay, packet delivery ratio, throughput, and fault tolerance. The results show 

that the proposed method is superior to other methods both in security and performance metrics, including longest 

network lifetime (35 hours), lowest delay (100 ms), highest PDR (95%), best throughput (220 kbps), and superior fault 

tolerance. 

 

V. CONCLUSION 

The use of cutting-edge methodologies has greatly improved threat detection's accuracy and efficiency in the field of 

multi-class cyber-security attack categorization. Pre-processing has used Min-Max scaler normalization through 

reshaping of the data in order to enhance the contribution rate of the features in the classification process, thus enhancing 

the performance of the model. BTGO, along with an ASO for the feature selection process, has enhanced the degree of 

relevance of the input features; these modifications improve the models’ accuracy and resilience. CA-DSCNN has been 

employed to identify more complex patterns of relations between different data elements as well as more effectively 

classify these patterns by minimizing the number of computations. Also, BSTO has been used to optimize the model 

parameters and enhance the classification accuracy of the result. In general, the use of these methodologies has 

contributed to the development of a diverse and efficient way of categorizing various types of cyber-security attacks. The 

above-mentioned methods have done well in enhancing detection performance and thereby presented a good avenue for 

further research and extension of practical use in the future. Future work will expand datasets to encompass a wider 

variety of attack types and real-world scenarios, which will facilitate the creation of more broadly applicable models.  
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