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Abstract – Coronary Artery Disease (CAD) is the most common cardiovascular disease. Risk factors impact CAD 

progression. Diagnostic and therapy methods for this illness include several costly side effects. Consequently, researchers 

are seeking economical and precise techniques for diagnosing this condition. Machine learning algorithms may assist 

doctors in the early diagnosis of the condition. Hence this work presents an efficient approach for feature selection and 

classification of abnormal heart rate patterns by combining Joint Mutual Information (JMI), Quantum Annealing, and a 

Bayesian ensemble model using CatBoost and XGBoost classifiers. The method starts with Joint Mutual Information to 

rank features based on their dependency with the target variable, identifying the most informative features for 

classification. Quantum Annealing, specifically simulated annealing in this case, is then used to optimize the subset of 

features by exploring the feature space and selecting the most relevant combinations, thus improving the model's 

performance by avoiding suboptimal solutions. The selected characteristics are then input into a Bayesian ensemble of 

CatBoost and XGBoost classifiers, which are trained to forecast heart rate irregularities. This ensemble method integrates 

the advantages of gradient boosting models to improve forecast accuracy and mitigate overfitting. The 

proposed technique is termed Probability-based Bayesian Statistics with Ensemble Boost (PBSEnsBoost), achieving an 

accuracy of 98.2%, specificity of 93.6%, sensitivity of 92.6%, and an F1-score of 95.7%. 

 

Keywords – Coronary Artery Disease, Abnormality, Feature Selection, Ensemble, Bayesian, Mutual Information, QR 

Wave. 

 

I. INTRODUCTION 

Cardiovascular Diseases (CVD) are widespread globally, accounting for one-third of annual mortality, with 7.5 million 

fatalities related to Coronary Heart Diseases (CHD). About 1.8 million of these deaths are sudden and caused by ACS 

[1]. Heart failure patients are misdiagnosed 16.1% of the time [2]. Coronary calcium scans utilizing X-rays to study 

arteries can diagnose CHD. CTCA detects CHD with 89% sensitivity and 96% specificity [3,4]. Delivering affordable, 

high-quality medical treatment is a primary challenge for healthcare organizations. For optimal care, a patient's issues 

must be accurately diagnosed and suitable treatments must be administered. To address these issues, it is essential to 

include advanced technology [5]. This entails examining techniques, such as using data analysis to enhance the decision-

making processes of healthcare professionals. By using these technologies, healthcare organizations may improve their 

treatments, therefore establishing a basis for more accurate and efficient patient care [6]. Patient information and 

treatments are stored in a comprehensive medical data repository. Medical judgments often depend on the healthcare 

professional's experience, training, and intuition rather than being guided by data-driven insights [7]. Data is crucial in 

today's changing world. Effective problem-solving relies on it to extract insights, identify patterns, and build crucial 

links. These innovations improve forecast accuracy and help grasp complex, non-linear relationships across large datasets 

[8]. This, in turn, enables medical practitioners to make informed judgments and choose the most effective therapies from 

the outset of a disease. Machine learning, with its capacity for autonomous adaptation and model enhancement, is leading 

this transformation, enabling medical practitioners to make educated decisions and choose appropriate treatments from 

the onset of an illness. This evolving domain persistently expands the limits of possibility, ensuring further progress in 

healthcare and other areas [9]. Machine learning, using data to identify complex patterns and relationships that may elude 
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human observation, is very beneficial in predicting cardiac disease. It helps doctors diagnose and prognose heart issues 

quickly and accurately. Beyond diagnosis, machine learning is being used in cardiac care to create personalized therapy 

procedures. These systems use patient-specific data to prescribe treatment and interventions that improve outcomes and 

decrease risks [10]. It is essential to assess the likelihood of heart disease manifesting in specific populations using 

effective data mining techniques; these techniques analyze data to uncover significant patterns and actionable insights 

within a dataset, which comprises various data relevant to the etiology and resultant characteristics of each monitored 

patient. Furthermore, to mitigate the influence of trivial attributes in the dataset, feature selection methods are used, 

wherein characteristics are selected based on their significance relative to the resultant feature [11]. These estimate 

assessments facilitate the development of a ML model to predict cardiac disease in the testing data based on the patterns 

or insights acquired from the training data. Hence, the contributions are: 

• A hybrid feature selection method that combines Joint Mutual Information (JMI) and Quantum Annealing to 

optimize feature subset. Quantum Annealing further improves this process by considering the global optimization 

of feature subsets, rather than relying solely on heuristic methods like forward or backward selection.  

• This approach ensures that the selected features are both statistically significant and non-redundant, leading to 

better generalization and reduced overfitting in machine learning models. 

• Hybrid Joint Mutual Information (JMI) Quantum Annealing identifies a promising subset of features by adopting 

mutual information, dramatically reducing the search space for quantum annealing. It significantly reduces the 

dimensionality of the data, which decreases the computational load in subsequent processing stages. 

• probability Bayesian statistics-based ensemble boosting classifier combines ensemble learning techniques, such as 

boosting (e.g., XGBoost, CatBoost), with Bayesian inference to integrate model uncertainty and improve 

prediction accuracy 

• Bayesian statistics offers a framework for probabilistic reasoning, whereby predictions are represented as 

distributions across potential outcomes derived from chosen attributes rather than just point estimates.  

The subsequent sections of this article are delineated below. Section 2 provides the description of the literature 

survey. The proposed solution is outlined in Section 3. Section 4 encompasses the investigation of performance and 

outcomes through comparative research. Section 5 concludes the work with future approach. 

 

II. RELATED WORKS 

Different ML algorithms were created to diagnose cardiac disorders. The publications differed because researchers used 

association rules, clustering, and classification algorithms to extract the most important heart disease prediction 

characteristics with high accuracy. In [12] offered PSO and SFFS for efficient feature selection. NAO classifies normal 

and abnormal cardiac sounds. It has 98.03% accuracy, 97.64% sensitivity, and 98.43% specificity. In [13], an ensemble 

model including the top three classifiers—RF, XG boost, Gradient Boost—is created using seven highly significant 

characteristics and compared utilizing algorithms and ensemble learning approaches. Its accuracy is 96.17%. In [14], a 

neural network may leverage the inherent linkages between enhanced quaternion domain dynamic weight variables and 

quaternion-valued input features. Accuracy is 97.2%. To reduce overfitting, [15] uses deep convolutional neural 

networks (DCNN) with transfer learning. The accuracy is above 0.9200 with sensitivity of 0.8775 and specificity of 

0.9637. In [16], closest neighbor/naive Bayes and adaptive neuro-fuzzy inference system (ANFIS) detect seventeen CVD 

risk variables. Prediction accuracy is 91.95%. In [17] used a KNN, RF, and SVM. KNN has 86% f-measure mean. In 

combined LBP HOG with Bag of Words (BOW) model and feature fusion. Finally, it uses SVM, which has the best 

accuracy at 87.35%. Ensemble Cost-sensitive SVM was used to construct linear features from the CTG signal's time-

domain representation. Its sensitivity is 85.2%, specificity 66.1%, and quality index 75.0%. 

Approaches like particle swarm optimization, sequential forward feature selection, and ensemble models combining 

classifiers such as Random Forest, XGBoost, and Gradient Boosting Machine have demonstrated high accuracy and 

efficiency. Neural networks, including quaternion dynamic representation and deep convolutional networks with transfer 

learning, show promise in mitigating overfitting and capturing complex relationships in data. Adaptive neuro-fuzzy 

inference systems, combined classifiers, and feature fusion methods like Local Binary Patterns and Histograms of 

Oriented Gradients further enhance predictive capabilities. In summary, while current models show high accuracy, 

challenges related to computational efficiency, interpretability, and generalization remain, limiting their real-world 

application in clinical settings. Hence, proposed Efficient Feature Selection using Joint Mutual Information (JMI), 

Quantum Annealing, and a Probability-Based Ensemble Machine Learning Network helps to overcome the above-

mentioned limitation. 

 

III. PROPOSED METHODOLOGY 

In our work we have done an accurate heart disease prediction with binary classification machine learning model. It 

begins with band-pass filtering the ECG signal to remove noise from sources such as power-line interference and 

baseline drift, ensuring that only the frequency range relevant to cardiac activity (typically 0.5-100 Hz) remains. Next, 

Empirical Mode Decomposition (EMD) is applied to further decompose the ECG signal into intrinsic mode functions 

(IMFs), which helps isolate and remove non-cardiac artifacts such as motion or muscle interference. By discarding the 

high-frequency IMFs associated with noise and reconstructing the signal from the remaining relevant components, the 
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signal is denoised and prepared for feature extraction. The feature extraction stage employs several Entropies for 

quantifying the complexity and irregularity of the signal. From the XL dataset some of the features are selected using 

Joint Mutual Information (JMI) with quantum annealing follows by Bayesian inference and ensemble classifiers for 

abnormality detection as in Fig 1. 

 

 
Fig 1. Overall Block Diagram for Coronary Heart Disease Abnormality Detection. 

 

Dataset Description 

All ECG data used in this investigation are sourced from the PTB-XL dataset. The PTB-XL database comprises a 

substantial collection of 21,837 clinical 12-lead ECG recordings. The data has a sample rate of 500 Hz and 100 Hz, with 

a resolution of 16 bits. Each ECG signal has a duration of 10 seconds and is assessed by cardiologists. The PTB-XL 

dataset comprises data from 18,885 individuals, with a balanced gender distribution of 52% male and 48% female 

participants. The dataset has five primary categories: NORM—normal electrocardiogram, CD—myocardial infarction, 

MI—conduction disturbance, HYP—hypertrophy. 

 

Preprocessing of Data 

The fundamental purpose of ECG signal processing is to detect signal components versus noise. This procedure is eq (1). 

Then, Filter the signal 𝑥(𝑡)  sampled at t 𝑡 = 𝑡1, … 𝑡𝑛 to isolate the information-carrying signal 𝑆(𝑡) and remove the 

distorting interference 𝑛(𝑡): 

 

 𝑥(𝑡) = 𝐹[𝑆(𝑡), 𝑛(𝑡)]  (1) 

 

Where, 𝐹 is a functional, 𝑆(𝑡) is the ECG signal, and 𝑛(𝑡) is the distorting interference. Usually, it is assumed to be 

additive: 

 

 𝑥(𝑡) = 𝑆(𝑡) + 𝑛(𝑡)  (2) 

 

Quantile features should be utilized to assess how the bandpass filter cutoff frequency affects ECG signal parameter 

measurement inaccuracy. Bandpass filters with equations are usually Butterworth bandpass filters used to preprocess 

ECG signals. This involves filtering out frequencies outside the desired range (e.g., 0.5 to 40 Hz) to retain the essential 

ECG features while reducing noise. Butterworth filters with infinite impulse response provide flat passband frequency 

responses. An IIR filter transfer function is 



 

ISSN: 2788–7669                                                                                         Journal of Machine and Computing 5(2)(2025) 

 

723 
 

 𝐻(𝑠) =
𝐵(𝑠)

𝐴(𝑠)
  (3) 

 

Where, 𝐵(𝑠) and 𝐴(𝑠) are polynomials in 𝑠 and 𝑠 is the complex frequency variable. Once the filter coefficients 𝑎𝑖 

and 𝑏𝑖 are calculated, we can apply the filter to the ECG signal 𝑥[𝑛] by the difference equation 

 

 𝑦[𝑛] = ∑ 𝑏𝑖 . 𝑥[𝑛 − 𝑖] − ∑ 𝑎𝑗 . 𝑦[𝑛 − 𝑗]𝑁
𝑗=1

𝑁
𝑖=0   (4) 

 

Where, 𝑥[𝑛] is input signal, 𝑦[𝑛] is filtered ECG signal, 𝑏𝑖 and 𝑎𝑗 Filter coefficients computed for the Butterworth 

bandpass filter. Moreover, the artefacts refer to specific, non-random distortions caused by external factors or 

physiological movements unrelated to the target signal. It may be muscle contractions, electrode movement on the skin, 

breathing-induced baseline wander, and movements during recording. The EMD divides the signal into a few IMFs and a 

residual value, 

 

 𝑥(𝑡)_𝐸𝑀𝐷 = ∑ 𝐼𝑀𝐹𝑖(𝑡) + 𝑟𝑘(𝑡)𝑘
𝑡=1   (5) 

 

The ultimate residual value is 𝑟𝑘, where k is the number of IMFs 𝐼𝑀𝐹 𝑖 is the 𝑖 th 𝐼𝑀𝐹. As a result noise reduced and 

artifacts reduced signal is given as follows 

 

 𝑦_𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝒚[𝒏] + 𝑥(𝑡)_𝐸𝑀𝐷  (6) 

 

Feature Extraction Based on Entropy 

After preprocessing feature extraction from an ECG signal using Permutation Entropy, Spectral Entropy, and renyi-

Tsallis Entropy is a way to capture complex, nonlinear patterns in the signal, which can be useful for classifying and 

analyzing ECG features 

 

Permutation Entropy 

The encoding shows sample rank order in n-length sequences. To define permutation entropy (PE), 

 

 𝐻𝑛 = − ∑ 𝑝𝑗
′𝑛!

𝑗=1 𝑙𝑜𝑔2(𝑝𝑗
′)  (7) 

 

Where the frequency of symbol sequence patterns, known as permutations, is represented by 𝑝𝑗
′ . Permutation entropy 

per symbol is 

 

 ℎ𝑛 = −
1

𝑛−1
∑ 𝑝𝑗

′𝑛!
𝑗=1  𝑙𝑜𝑔2(𝑝𝑗

′)  (8) 

 

Spectral Entropy 
The SpE considers the signal's frequency-domain normalized power distribution as a probability distribution, 

• Calculation of the Discrete Fourier Transform of the preprocessed time domain data, 𝑥(𝑛) 

 

 𝑋(𝐾) = ∑ 𝑥(𝑛)𝑊𝑁
𝑘𝑛𝑁−1

𝑛=0 , 0 ≤ 𝐾 ≤ 𝑁 − 1  (9) 

 

Where, 𝑊𝑁 = 𝑒
−𝑗2𝜋

𝑁  

The spectral entropy is derived from the Shannon entropy through the formula 

 

 SpE = − ∑ 𝑝𝑘𝑙𝑜𝑔𝑝𝑘  (10) 

 

Renyi Entropy 

Rényi generalizes the information measure to retain event additivity. Diversity indices are represented by ReEn in 

preprocessed ECG signals. In aberrant preprocessed ECG readings, spikes or high peaks are inferred. Define the ReEn as 

 

 ReEn(∝) =
1

1−∝
𝑙𝑜𝑔(∑ 𝑝𝑖

∝)  (11) 

 

Where, 𝑝𝑖  is the probability of each amplitude level in the ECG signal, and and ∝= 2(ℎ𝑒𝑟𝑒) determines the 

sensitivity. As a results, the 𝑝𝑒𝑟𝑚_𝑒𝑛𝑡 extract local order and complexity in the ECG signal. SpE helps to measure 

randomness in frequency domain.   ReEn Adds flexibility in quantifying diversity and rare events in the ECG signal 

distribution. Permutation Entropy (𝑝𝑒𝑟𝑚_𝑒𝑛𝑡), Spectral Entropy (SpE), and Rényi-Tsallis Entropy (ReEn) are powerful 

tools for analyzing R-wave and Q-wave deviations in ECG signals. 𝑝𝑒𝑟𝑚_𝑒𝑛𝑡 quantifies the complexity of signal 
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patterns, effectively detecting irregularities or abrupt changes in the QRS complex. SpE analyzes the power distribution 

across frequencies, highlighting shifts in spectral content caused by variations in R-wave amplitude or Q-wave depth. 

ReEn, which assesses nonlinear and multifractal properties, is sensitive to rare or extreme events and long-range 

correlations, capturing subtle or significant waveform deviations. Together, these entropy measures identify deviations in 

amplitude, timing, and morphology of R- and Q-waves, enabling accurate characterization of ECG abnormalities. To 

identify the R and Q wave Regions, adopt R-peak detection algorithm to locate R peak. Define the regions around R 

peaks that may contain Q waves or deviations. 

These entropy features can be combined to create a feature vector for further analysis. Three entropy measures into a 

single vector as follows 

 

 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = 𝐻𝑝𝑒𝑟𝑚_𝑒𝑛𝑡 , 𝐻𝑆𝑝𝐸 , 𝐻𝑅𝑒𝐸𝑛  (12) 

 

Joint Mutual Information Quantum Annealing Based Selection 

From the extracted features required features are selected using (JMIQA) Assuming that the joint probability distribution 

of two features 𝑓𝑒𝑎𝑡1 and 𝑓𝑒𝑎𝑡2 is 𝑝(𝑓𝑒𝑎𝑡1, 𝑓𝑒𝑎𝑡2) and their marginal probability distribution is 𝑝(𝑓𝑒𝑎𝑡1) and 𝑝(𝑓𝑒𝑎𝑡2) 

respectively, shared on info The Kullback-Leibler divergence of the joint probability distribution 𝑝(𝑓𝑒𝑎𝑡1) and 𝑝(𝑓𝑒𝑎𝑡2)  

and marginal probability distributions 𝑃(𝑥) and 𝑝(𝑦) is described as 𝑀𝐼(𝑓𝑒𝑎𝑡1, 𝑓𝑒𝑎𝑡2), 
 

  𝑀𝐼(𝑋, 𝑌) = − ∫ 𝑥 ∫ 𝑦  𝑓(𝑥,𝑦) log
𝑓𝑥,𝑦(𝑥,𝑦)

𝑓𝑥(𝑥)𝑓𝑦(𝑦)
𝑑𝑥𝑑𝑦  (14) 

 

Where, 𝑓𝑒𝑎𝑡1 = 𝑋 and 𝑓𝑒𝑎𝑡2 = 𝑌. Thus, feature 𝑓𝑖 is more relevant to class label C than to subset S 

when 𝐼(𝑓𝑖, 𝑆; 𝐶) > 𝐼(𝑓𝑖 , 𝑆; 𝐶). Combining selected features presupposes 𝑓𝑖 ∈ 𝐹 − 𝑆 and 𝑓𝑠 ∈ 𝑆. When paired with each 

feature in subset S individually, candidate feature 𝑓𝑖 has the lowest joint mutual information with class label 𝐶. Fig 2 

shows Flow of Joint Mutual Information Quantum Annealing Based Selection. 

After identifying the minimal joint point, quantum simulated annealing is used to represent each feature of a feature 

subset as a binary decision: 0 means the feature is not selected, 1 means it is selected. We incorporate two coefficients, 

denoted as ∝ and 𝛽 to regulate the linear and quadratic terms, respectively, in order to manage both terms effectively. 

The JMIQA equation can be represented as follow. 

 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋) = −∝ ∑ 𝐽𝑀𝐼𝑖𝑖𝑥𝑖 + 𝛽 ∑ 𝐽𝑀𝐼𝑖𝑗𝑥𝑖𝑥𝑗𝑖<𝑗𝑖   (15) 

 

Where, in linear terms,  𝐽𝑀𝐼𝑖𝑖   refers the joint mutual information among the target and a feature, while 𝐽𝑀𝐼𝑖𝑗  denotes 

the MI between two features. The parameters ∝ and 𝛽 serve as a relative weight, such that ∝ +𝛽 = 1. 

 

 

 
Fig 2. Flow of Joint Mutual Information Quantum Annealing Based Selection. 
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Algorithm: 

 
 

Probability Based Ensemble Boost Classifier 

The selected feature are given for classification. Here, we used two machine learning algorithms such as CatBoost and 

XGboost with probability-based Bayesian statistics. The CatBoost algorithm adeptly manages categorical characteristics, 

and the simple method is to substitute them with the mean value of the associated labels. The average value of the label 

will serve as the criteria for node division in the decision tree. This procedure entails: 

 

 𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝜗. ℎ𝑚(𝑥)  (16) 

 

Where, 𝐹𝑚(𝑥) represents the model's forecast after the addition of m trees. 𝐹𝑚−1(𝑥) represents the model's forecast 

after the incorporation of 𝑚 − 1 trees. 𝜗 represents the learning rate, and ℎ𝑚(𝑥) denotes the 𝑚 -th tree. In conjunction 

with CatBoost, we use XGBoost to minimise the subsequent objective function, which comprises the loss function and 

regularisation terms. 

 

 𝐿𝑜𝑠𝑠(𝑡) = ∑ 𝑙(𝑦𝑖 , 𝑦′
𝑖

(𝑡−1)
+ 𝑓𝑡

𝑛
𝑖=1 (𝑥𝑖)) + 𝜑(𝑓𝑡)  (17) 

 

In this context, l denotes the loss function that quantifies the discrepancy between the observed data 𝑦𝑖  and the 

predicted data 𝑦𝑖
′, while 𝑓𝑡 represents the model at the 𝑡 -th iteration, with 𝑡 serving as the iteration index throughout the 

optimisation process. Bayesian statistics assumes that people evaluate the probability of an event based on its probability 

and the probability of a dependent event, Where 𝑔𝑖  is from catboost and ℎ𝑖 is from XGboost, we may state this 

mathematically as “Bayes' theorem” or “Bayes' rule”, 

 

 𝑝(𝑔𝑖|ℎ𝑖) =
𝑝(ℎ𝑖 |𝑔𝑖)×𝑝(𝑔𝑖)

𝑝(ℎ𝑖)
  (18) 

 

The objective is to examine the probability of a certain genotype being better, in terms of performance or stability, 

compared to its counterparts. The pairwise probability of enhanced performance and the pairwise probabilities of 

enhanced stability were provided, respectively. 

 

 𝑝(𝑔𝑖 > ℎ𝑖|𝑦) =
1

𝑆
∑ 𝐼(𝑔𝑖 > ℎ𝑖|𝑦)𝑠

𝑠=1   (19) 

 

 𝑝(𝑣𝑎𝑟(𝑔𝑖ℎ𝑖) < 𝑣𝑎𝑟(𝑔𝑖ℎ𝑖|𝑦) =
1

𝑠
∑ 𝐼(𝑣𝑎𝑟[𝑔𝑖ℎ𝑖]

𝑠 < 𝑣𝑎𝑟([𝑔𝑖ℎ𝑖]
𝑠|𝑦)𝑠

𝑠=1   (20) 

Input: Feature set F, class label C, coefficients α and β (where α + β = 1)  

Output: Selected feature subset S 

(patient_id,report,infraction_stadium1,baseline_drift,extr_beats, pacemaker, 

filename_lr, R wave and Q wave) 

Step-1 Initialize subset S = ∅ 

Step-2(a) Compute the marginal mutual information 

Step-2(b) Initialize Joint Mutual Information (JMI) score for feature 𝑓𝑒𝑎𝑖 

Step-3for each feature compute joint mutual information and update min _𝐽𝑀𝐼 

Step-4  Define the objective function for quantum simulated annealing  

Step-5 Initialize binary decision variables 𝑥𝑖 where, 

𝑥𝑖 = 1 if feature 𝑓𝑖 is selected, otherwise  𝑥𝑖 = 0 

Step-6 Apply Quantum Simulated Annealing 

 Step-6(a) - Set initial temperature 𝑇 > 0 

 Step-6(b) Repeat until convergence 

Step-6(c) Gradually reduce temperature 𝑇 

Step-7 Select features  𝑓𝑖 with 𝑥𝑖 = 1 and add them to subset 𝑆 

Step-8 Return the final subset 𝑆 containing the selected features 

 



 

ISSN: 2788–7669                                                                                         Journal of Machine and Computing 5(2)(2025) 

 

726 
 

Where,𝐼(𝑔𝑖
𝑠 > 𝑔𝑖

𝑠|𝑦) indicates success if 𝑔𝑖
𝑠 S i has a higher value than 𝑔𝑖

𝑠, and failure otherwise 

(𝑣𝑎𝑟[𝑔𝑖ℎ𝑖]
𝑠 < 𝑣𝑎𝑟|([𝑔𝑖ℎ𝑖]

𝑠|𝑦)) indicates success if 𝑔𝑖ℎ𝑖 has lower variance. As a result, this will help to classify such 

as normal, arrhythmia, myocardial infraction and cardiomyopathies, while also taking advantage of Bayesian reasoning 

for uncertainty estimation and combining multiple classifiers to improve overall performance. 

 

IV. PERFORMANCE ANALYSIS 

• Experimental setup - This study employed Google Colab on a Ryzen 7 PC equipped with a 4800-H CPU and 16 

GB of RAM. The efficacy of the proposed feature selection and classification techniques is evaluated against 

existing approaches based on accuracy, specificity, and sensitivity, with the proposed methods demonstrating 

superior performance. The findings were compared for binary classification between the proposed and 

existing approaches. The performance of our work on multiclass classification is examined by comparing the 

suggested PBSEnsBoost with the existing novel automated approach (NAO)[12], deep convolutional neural 

networks (DCNN) [15] and Ensemble Cost-sensitive Support Vector Machine (ECSVM). 

• Accuracy is the ratio of positive predictions to total predictions, including both positive and negative results. The 

Equation (21) shows,  

 

 𝑎𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑁+𝐹𝑁+𝑇𝑃+𝐹𝑃
  (21) 

 

Table 1. Comparison Between Existing and Proposed for Accuracy 

Number of 

sample data 

NAO DCNN ECSVM PBSEnsBoost 

200 98.2 92.4 75 99.2 

400 98.1 91.7 74.9 98.5 

600 98.2 92.1 74.7 98.2 

800 98.5 91.5 75.2 99.4 

1000 98.4 91.9 74.7 99.5 

 

 
Fig 3. Analysis of Accuracy. 

 

Fig 3 indicates the overall comparison of accuracy. For the increasing order from 200 to 1000 numbers of sample 

data, the proposed method PBSEnsBoost achieves best accuracy of 99.5%, which is 1.53% better than NAO, 7.5% better 

than DCNN and 24.5% better than ECSVM. Table 1 shows Comparison Between Existing and Proposed for Accuracy. 

• Specificity pertains to the proportion of correct negative predictions generated by the model relative to the total 

predictions, both positive and negative. Specificity may be determined using Equation (22), 

 

 𝑠𝑝𝑒𝑐 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (22) 

 

Table 2. Comparison Between Existing and Proposed for Specificity 

Number of 

sample data 

NAO DCNN ECSVM PBSEnsBoost 

200 98.4 96.54 66.1 98.77 

400 98.2 96.38 66.9 98.79 

600 98.6 96.23 65.9 97.89 

800 98.4 96.58 65.3 97.37 

1000 98.2 96.36 66.4 98.85 
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Fig 4. Analysis of Specificity. 

 

Fig 4 indicates the overall comparison of specificity. For the increasing order from 200 to 1000 numbers of sample 

data, the proposed method PBSEnsBoost achieves best specificity of 98.78%, which is 0.35% better than NAO, 2.41 

better than DCNN and 32.68% better than ECSVM. Table 2 shows Comparison Between Existing and Proposed for 

Specificity. 

Sensitivity pertains to the accurate identification of positive predictions made by the developed machine learning 

model. The specificity may be determined using Equation (23). 

 

 𝑠𝑒𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   (23) 

 

Table 3. Comparison Between Existing and Proposed for Sensitivity 

Number of 

sample data 

NAO DCNN ECSVM PBSEnsBoost 

200 97.56 87.75 85.56 98.45 

400 96.98 87.45 85.31 97.34 

600 97.31 86.98 84.85 98.35 

800 97.64 86.35 85.84 98.24 

1000 97.35 87.68 85.52 98.63 

 

 
Fig 5. Analysis of Sensitivity. 

Fig 5 indicates the overall comparison of sensitivity. For the increasing order from 200to 1000 numbers of sample 

data, the proposed method PBSEnsBoost achieves best sensitivity of 98.1%, which is 1.54% better than NAO, 11.65% 

better than DCNN and 13.1% better than ECSVM. Table 3 shows Comparison Between Existing and Proposed for 

Sensitivity. Table 4 shows Comparison Between Existing and Proposed for F1-Score. 
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The F1-score quantifies the harmonic mean of model performance. 

 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑠𝑝𝑒𝑐×𝑠𝑒𝑛

𝑠𝑝𝑒𝑐+𝑠𝑒𝑛
  (24) 

 

Table 4. Comparison Between Existing and Proposed for F1-Score 

Number of 

sample data 

PBSEnsBoost 

200 98.4 

400 97.8 

600 97.2 

800 98.2 

1000 97.4 

 
Fig 6. Analysis of F1-Score. 

 

Fig 6 illustrates the comprehensive comparison of the f1-score. As the sample size grows to 200 and 1000, the F1-

score exhibits a decrease, reaching its lowest point at around 97.2% for 600 samples. Performance improves again at 800 

samples, with the F1-score rising close to 98.3%. However, at 1000 samples, the score drops slightly below 98.0%. 

These results suggest that the algorithm performs best with smaller or intermediate sample sizes and experiences 

variability in performance with larger datasets, potentially due to computational or data distribution factors. Table 5 

shows Overall Comparative Analysis Between Existing and Proposed Methods for Binary Classification. 

 

Table 5. Overall Comparative Analysis Between Existing and Proposed Methods for Binary Classification 

Parameters Accuracy (%) Specificity (%) Sensitivity (%) F1-score (%) 

NAO [12] 98.03 98.43 97.64 - 

DCNN [15] 92 96.37 87.75 - 

ECSVM [19] 75 66.1 85.2 - 

PBSEnsBoost

(proposed) 
98.2 93.6 92.6 95.7 

 

V. CONCLUSION 

This research examined the efficacy of Joint Mutual Information Quantum Annealing for choosing coronary heart 

disease variables to forecast the disease's existence using the PBSEnsBoost model. The findings demonstrated that 

JMIQA is crucial for selecting relevant characteristics and minimising training duration. The JMIQA proficiently 

discerns the attributes in a training dataset that are most pertinent for forecasting CHD. JMIQA maintains the feature 

significance of feature-selected data and closely resembles the original data based on the aforementioned finding. 

Nonetheless, a disadvantage of this work is that the suggested PBSEnsBoost model has not been evaluated on diverse 

datasets. It is advised that the JMIQA be tested on other datasets in further research to confirm the results of this 

investigation. 
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