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Abstract – Several epidemiological studies have been undertaken using a compartmental model to predict disease spread 

effectively. However, knowledge about the epidemiological cycle lacks existing techniques and fails to promote the 

vaccines and medications that the government issues to overcome the pandemic disease. Many researchers implemented a 

Susceptible-Infected-Recovered-Deceased (SIRD) based compartmental approach to determine the methods emphasized 

by the government to eradicate the spread of COVID-19. The traditional SIRD-based compartmental model produces high 

prediction errors and is time-consuming. Hence, this article presents a novel Deep Learning (DL) based Attention-driven 

bi-directional gated recurrent unit Autoencoder (A-Bi-GRU-AE) model, which is hybridized with the SIRD model to 

enhance the system performance. The proposed approach is implemented in the PYTHON platform, and the publicly 

available covid19Italy dataset is utilized for the experimental process. The proposed method obtains the overall predicted
2R of 0.97 and time complexity of 2634.01ms.  

 

Keywords – COVID-19, Italy, Attention Mechanism, Bi-Directional Gated Recurrent Unit, Autoencoder, Hospitalizations, 

Compartmental Models.  

 

I. INTRODUCTION 

COVID-19 was discovered initially in Wuhan, China, in December 2019, which was then professed as a pandemic in 

March 2020 by the World Health Organization (WHO). Under the published real-time data by WHO, it is known that 

millions of people have been affected, and the mortality rates are increasing by the communicable disease [1]. COVID-19 

has emerged, and some common symptoms include dry cough, appetite loss, fever and breathing difficulties, leading to 

complicated diseases like liver damage, septic shock and pneumonia [2, 3]. Due to this pandemic in March 2020, most 

countries are locked down, and strict social distancing is maintained to stop coronavirus transmission. This social distancing 

and lockdown aim to break the transmission chain and reduce the coronavirus. Estimating the spread over time is critical 

in healthcare management to protect lives and reduce the disease’s social and economic consequences [4, 5].    

Due to the increased contagion, the confirmed cases at the initial stage are quite increasing. As a result, a lack of ICU 

and respiratory equipment arose in most developing countries. The spread of COVID-19 can be eradicated with isolation 

beds and hospital ICUs. However, the need for isolation beds and other medical requirements is increasing in many 

hospitals, and the knowledge about these requirements is unknown to the governmental organization to take necessary 

preventive measures. To overcome this issue, an effective compartmental model is highly required to learn the daily spread 

of COVID-19 and other medical requirements in the hospital. Other countries like France, Belgium, New York, Japan, and 

South Korea report the day-to-day spread of the COVID-19 pandemic disease utilizing high effective compartmental model 

[6].  
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The compartmental model is one of the mathematical models used to calculate the count of infectious diseases by 

considering different compartments in an entire population [7]. During the COVID-19 pandemic, the compartmental 

approach predicts hospital demand and ICU utilization [8]. The common outline of compartmental modelling is that it 

arranges the individuals based on their disease depth and infection rate [9]. The compartmental modal considers the extra 

compartments for ICU and hospitalization demand [10]. The logistic functions, spreading dynamics, and standardized 

logistic functions are required compartmental models with infected and susceptible states [11]. The Susceptible-Infectious-

Recovered (SIR) and Susceptible-Exposed-Infected-Recovered (SEIR) commonly belong to the compartmental model 

[12].  

Mc Kendrick and Kermack introduced the compartmental modal in 1991 with SIR. Compartmental modal repeats the 

outbreaks of observed characteristics, like a self-limiting period. Compartmental epidemiological models depend on SEIR 

criteria and prolonged it for extra features consisting of ICU and health care compartments. These features are structured 

as 0 to 59, 60 to 79, and above 80 years of age. Several studies have been conducted using the compartmental modal, 

particularly in the transmission of COVID-19 in several countries, focusing on various features [13-15]. The SIR model is 

a type of compartmental approach consisting of three compartments: susceptible, infected and recovered [16]. In the SIR 

model, the epidemic spread signifies individually or transmits between susceptible-infected-recovered cases [17].   

A deterministic SEIR compartmental modal is highly required to effectively calculate the spread of COVID-19. This 

compartmental modal mainly depends on the individuals’ epidemiological status, clinical progression of COVID-19, and 

other intervention processes like treatment, quarantine, isolation etc. [18]. Due to the spread of COVID-19, SARS-CoV-2 

creates the population’s compartmental model based on the disease state level and disease awareness. The government 

imposed social distancing, reducing individual contact to diminish the spread of COVID-19 completely. Self-care measures 

are expected for each individual, including wearing masks, social distancing and hand washing. Nowadays, compartmental 

models are used to find epidemiological key parameters via COVID-19 clinical lessons. This compartmental modal gives 

the highest amount of diagnoses, time and attack rate for the highest number of COVID cases [19].  

Based on the SEIR compartmental modal, the population is set to be constant with time from one compartment to 

another under varying infection rates. The people not present in the compartments are determined as non-infectious cases. 

But in the COVID-19 case, there is evidence that the people exposed in the compartment are also infectious. In this case, 

the people transmit the infectious diseases to the susceptible compartments. The diagnosed carriers are instantly disclosed 

to a hospital or isolated at home for nearly 14 days. If they are not tested, the non-diagnosed carriers with no symptoms 

like cough or fever can spread COVID-19 because they are not restricted in their movements or any social restrictions [20].  

In recent days, several mathematical models have been proposed for understanding the dynamic progression of COVID-

19. One of the best models for understanding the epidemic is a compartmental model. However, the existing models failed 

to provide the best approximation for the huge COVID-19 dataset. The conventional compartmental models utilize 

appropriate estimation approaches such as Maximum Likelihood to compute the hyper-parameters. These models usually 

considered time-invariant hyper-parameters and thereby reduced the prediction accuracy. Hence, the hyper-parameter 

should be modelled with a time-dependent characteristic to allow the model to work under varying marginal conditions. 

These points motivate integrating the time-dependent compartmental model with deep learning algorithms to give accurate 

long-term estimations.  

The Major Contributions of This Research Work are Listed as Follows: 

• To propose a DL-integrated SIRD compartmental model by considering the time-dependent parameters to eliminate 

the spread of COVID-19 efficiently. 
• To modify the conventional compartmental model by integrating the SIRD model with DL algorithms.  
• To give an accurate long-term prediction for the Covid-19 outbreak by introducing a novel A-Bi-GRU-AE-based 

DL technique. 
• To validate the performance of the proposed model by considering the pandemic outbreak in Italy. 

• To analyze the proposed method in PYTHON and performance measures like prediction
2R and time complexity 

are analyzed and compared with existing techniques.  
 

II. LITERATURE SURVEY 

Some of the Recent Related Works are Listed as Follows 

In [21] defined a different compartmental mathematical model for analyzing the spread of COVID-19 based on 

quarantining and age-related issues. This compartmental model forecasts the spread of an epidemic using original data 

based on confirmed cases. Next, difficulties with social distance were examined based on their epidemic outcomes. Lastly, 

discovered the key biological characteristics of COVID-19 that remain unknown under susceptibility to varying age groups 

and symptoms. 

The [22] established a new compartmental model SEAIRDQ (Susceptible-Exposed- Asymptomatic-Infectious-

Recovered-Deceased-Quarantined) models for the transition of individuals between the social awareness and the suscepted 

compartments. The SEAIRDQ model could take the nonlinear behaviour of COVID-19 pandemic for determining the 

asymptomatic infections in the individuals. This model also aids in reporting the cumulative infection and death rate in 

various states. In addition, the SEAIRDQ model calculates an individual’s current reproduction number and immunity 

level.  
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In [23] determined the COVID-19 pandemic unpredictability for successfully modelling its dynamic evolution. This 

method aids in determining the spread of disease by training the traditional compartmental models until it returns the best 

prediction outcome. Here, the chemical reaction schemes were modelled using chemical master equations and solved using 

Monte Carlo approaches. This model was effectively used for COVID-19 prediction during pandemic conditions in 

medium and small-sized municipalities. 

The [24] introduced the SIR-modified model for COVID-19 transmission to calculate the efficiency of lockdown 

methods during a pandemic situation. The input of this method was COVID-19 epidemiological data collected from other 

countries using certified information. The output parameters were considered as formation time and immunity level of that 

particular diseased individual. These parameters were then used as an effective indicator to determine the day-to-day 

analysis of the suspected cases effectively.  

In [25] determined the SEIR compartmental model to analyze the local pandemic transmission. This SEIR method uses 

the input of health care resources, case counts, and evaluates the intrusion strategies. The output includes the infection 

patients count, death rate, critical isolation beds, and ventilators relative to current capacity. This method shows that 

aggressive interventions can stop the extensive diseases and death rate from coronavirus. This SEIR method permits the 

fast calculation of locally applicable states and improves the outcome when the current information becomes more accurate 

and clearer.  

 

Problem Definition  

In literature, some methods used feed-forward neural networks and the LSTM model to predict the patients’ future 

trajectories. However, the feed-forward neural networks will not consider the temporal relations between the historical 

data. However, RNN can consider the temporal relations between the input sequences. RNN has a superior ability to 

encapsulate sequential information over time. Some existing approaches like LSTM have also been contemplated because 

RNN can’t handle the gradient vanishing and long-distance dependencies problem. Hence, an effective DL model is highly 

required that can integrate with a compartmental model to utilize both the past and upcoming spread of the COVID-19 

pandemic disease  

The traditional SIRD model predicts its outcome with high error due to varying time intervals. Recently, many 

techniques have been integrated with the SIRD model for accurate prediction. But those techniques are highly suffered due 

to time complexity and error. Hence, an effective hybrid technique is required to address the drawbacks faced by the 

existing techniques for accurate prediction. To the best of the knowledge, the proposed method addresses all the problems 

arising in the existing technique and effectively provides an outstanding prediction outcome.  

 

III. PROPOSED METHOD 

This paper proposes a new modified compartmental model with deep learning algorithm for predicting the COVID-19 

outbreak and hospitalizations. Initially, the population is divided into four compartments: susceptible (S), infectious (I), 

recovered (R), and dead (d). Here, the infectious (I) compartment will consider the isolated patients at home, in the hospital 

and the intensive care unit. Here a dynamic transfer between each compartment is considered to show the time dependence. 

Then, the contact rate, recovery rate, and deceased rate will be estimated using the number of people hospitalized with 

symptoms, isolated patients at home and in the hospital, ICU admissions, recovered, and death data from the dataset. 

However, this model will not provide accurate long-term estimations. To tackle this issue, a hybridized DL-based A-Bi-

GRU-AE will be integrated with the SIRD model for learning and correcting the estimated error created by the SIRD 

model. Here, the estimated results of the SIRD model will be given as input to the hybrid A-Bi-GRU-AE, and the real 

hospitalizations/data will be used as the target while training the A-Bi-GRU-AE model. In addition, the proposed model 

will introduce a similarity measure to compute the similarity between the training and the testing time series to predict the 

COVID-19 outbreak and hospitalization accurately. Also, the predicted contact and recovery rates are used to detect the 

epidemic progression (i.e. the reproduction number). 

 

Prediction Using Hybrid SIRD with A-Bi-GRU-AE 

For predicting the COVID-19 outbreak and hospitalizations, the conventional SIRD model is utilized. In the conventional 

SIRD model, the population M can be divided into four compartments, namely ( )S , ( )I , ( )R and ( )D is determined 

based on varying time intervals v . Fig 1 determines the structure of the SIRD-based compartmental model. 

The mathematical interpretation of the SIRD model is explained in the upcoming section. The total population M can 

be formulated as, 

 

 
vvvv DRISM +++=

    (1) 
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Fig 1. Structure of SIRD-Based Compartmental Model. 

 

Here, vvvv DandRIS ,,
 indicates the suspected cases, infected cases, recovered cases and deceased cases under 

different time intervals, respectively. The alterations that take place in the total cases can be formulated as,  

 

 
vvvv DRIA ++=

     (2) 

 

The obtained outcome from equation (1) always remains constant. The outcomes obtained in each compartment are 

depicted in detail below:  
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       (4) 

 

 
IRRv +=+1   (5) 

 

 
IDDv +=

   (6) 

 

Here,  determines the contact rate, 


signifies the recovery rate and 


depicts the death rate. In the first phase, the 

susceptible ( )S cases are equal to the total population M . The increasing rate of growth ( ) for each day and the primary 

reproductive number 
( )nR

can be mathematically interpreted as,  

 

 
( ) +−=    (7) 

 

 




+
=nR

      (8) 

  

When
( )01  nR

, the epidemic disease is generated and in the reverse case, the epidemic disease gets 

eradicated.  

 

Calculation of Epidemic After Several Measures Taken by The Government  

Let us consider the regular change in suspected cases as vv SSS −= +1
ˆ

. Similarly, the constant change in infected, 

recovered and deceased cases can be mathematically formulated as,  
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The above interpretations are also referred to as transmission coefficients, recovery rate, and death rate.  

In the past few years, the dataset vvvv DRIA ++=
is very less while differentiating from the total population. The 

total population M is very near to the vS
, then consider IA /ˆ= for a huge amount of data.  

Finally, the obtained contact rate , recovery rate


and, the deceased rate


can be mathematically interpreted as,  

 

 

( )AMM
I

A
−














= /

ˆ


    (13) 

 

 I

R̂
=

  (14) 

 

 
I

D̂
=

   (15) 

 

Here, Â represents the number of daily changes in the SIRD compartment, A indicates the total changes under 

different cases, R̂ indicates the change in daily recovered cases, D̂ denotes the changes in daily death cases.  

The obtained outcome from vA
is very high, and an accurate outcome is still required to predict the compartment cases 

efficiently. In addition, the existing SIRD model does not show accurate number of cases due to varying time intervals. 

Hence, this research introduces a novel A-Bi-GRU-AE technique using the conventional SIRD model. The outcome of the 

conventional SIRD model is given as input to the proposed A-Bi-GRU-AE technique.  

 

Proposed A-Bi-GRU-AE Technique 

The entire operation in the proposed model undergoes two major stages, namely offline SIRD compartmental curve library 

construction and online SIRD-based COVID-19 prediction estimation during the testing process. In the offline stage, 

embedding vectors are initially developed based on attention and skip connection (AS) with the AE model. The continuous 

variation of SIRD cases is evaluated by changes that have occurred in the embedding vectors during machine operations. 

During the training process, the curve is obtained to form the SIRD compartmental curve library. 

Fig 2 depicts the architecture of the A-Bi-GRU-AE model. The proposed system works based on time series, and the 

curve must be smoothed to eliminate overfitting and other irreversible processes. In addition, the proposed method 

introduces the Linear Regression (LR) model to understand the mapping of actual and predicted outcomes from the network 

model. For the online phase, the test outcome is given to the trained LR model as an input for constructing the testing 

curve. Finally, the similarity is estimated between the offline training curve and the online testing curve for an accurate 

SIRD prediction.  



 

ISSN: 2788–7669                                                                                          Journal of Machine and Computing 5(2)(2025) 

 

699 
 

Testing

curve

Training

curve

Attention

Embedding

X

Similarity matching

Decoder

Encoder

S

I

R

D

Predicted outcome

Concat

 
Fig 2.  Architecture of A-Bi-GRU-AE Model. 

 
Bi-GRU with AS 

The Bi-GRU consists of double GRUs having forward and backward directions that can extract time series from the input 

dataset. After the completion of encoding process, the hidden vector state sh
is utilized for the prediction process. The 

encoder having an output vector sy
gets added with sh

that can act as the input to the attention layer. Under varying time 

steps, the weight vector attW
is determined in the attention layer and it is concatenated with the output of encoder to 

generate an attention output vector. At the decoder phase, the attention vector output is delivered as the input to the Bi-

GRU decoder. Finally, the decoded Bi-GRU outcome is obtained by the skip connection and overcomes the computational 

complexity by proving feature vector to the Linear Prediction (LP) layer.  

Assuming the time series data as,
 TvppppP ,....,,, 321=

having k  a number of dimensions. Also, consider that 

the Bi-GRU has hidden units x  that encode the vector outcome. At the final stage, the hidden vector state can be 

mathematically formulated as,  

 

 

( ) ( )
x
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x

F

x

s

kv

s

xv

s
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hhh
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=

=

1121

221
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      (16) 

 

 

Here,
( )kv

s PG 

 depicts the summary function of the Bi-GRU encoder, 

x

B

x

F handh
 11

indicates the forward and 

backward hidden states, respectively, sh
represents the added hidden vector state from

x

B

x

F handh
 11

and sy
indicates 

the encoder’s output vector.  

For evaluating the weight of the attention layer, the hidden vector state 

x

sh
21

and the output

xv

sy
2

is utilized. The 

initial dimension of 

x

sh
21

is replicated at the time v  to accommodate the dimensions of

xv

sy
2

. The weight of the attention 

layer att
sW 1

is estimated using

x

sh
21

and

xv

sy
2

 at each time step. The obtained att
vW 1

is then convoluted with

xv

sy
2
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for generating oatt
sW −

1
to extract hierarchical information during each time step. At the last stage, oatt

sW −
1

is forwarded 

to the Bi-GRU’s decoder unit for estimating the vector outcome and hidden state. It can be mathematically formulated as,  

 

 

xv

s

plicationx

s hh
2Re21 

⎯⎯⎯ →⎯
     (17) 

 

 
( )xv

s
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v yhAttW

221  =
    (18) 
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attatt
x yWW

2121  =
    (19) 

 

 

 
( ) ( )s

x
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x

r

xv

r

x

r hWGyh 2121221
,, 

−


=
    (20) 

 

The outcome of the attention layer is then added with ry and LP layer to decode vp~
under v a number of times for the 

prediction of encoder input
 TvppppP ~,....,~,~,~~

321=
. The error which is smoothened at a time v  is expressed as, 

ttt ppE −= ~
. The AS-based Bi-GRU is then finally trained to reduce the prediction error, and it can be mathematically 

formulated as,  

 

 

( )
=

=
v

r

tE
1

2

12

1

   (21) 

Here, 1tE
 depicts the norm-1 operator that can intersect fast compared to a norm-2 operator. After training of AS-

based Bi-GRU, the input P is compressed in the final encoded hidden state unit. If the AS-based Bi-GRU is integrated 

with several Bi-GRU layers, the embedding vector is generated by adding all the layers in the hidden states and can be 

mathematically formulated as,  

 

 
s

n
ssv hhhZ ....21 =

   (22) 

 

Here, s
nh indicates the final hidden vector state of the 

thn  layer, vZ
 denotes the input time series data having 

embedding vector and n indicates the total Bi-GRU layers.  

 

LR-Based Embedding Vector 

This model helps to map the difference between the actual value and the predicted SIRD outcome. Assuming the failed 

time series as the, 
 TvppppP ,....,,, 321=

and having a k  number of dimensions, 
 ns uuup ....., 21=

. A stable 

window sliding   has the data sequence
    n

xxxxv



+−++− ==


 111321 ,....,,,,....,,,
. The 

sliding window sequence is fed as the input to the AS-based Bi-GRU and hence, x
 can establish an embedding vector

xZ
via equation (16).  

Finally, the time series having multi-dimensional features are converted into single-dimensional embedding vector 

series as
 vzzzzz ,....,,, 21 ++=   that contains the details about the actual data. Assuming M as the number of cases 

to be predicted, thus,
( )bz  is determined as,b where, Mb . The initial embedding can be mentioned as 
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( )321 ,, bbb ZZZ
in

( )bz are, must be correctly predicted, as same as values obtained in the dataset. Due to the reduction 

of a lifetime, the system performance gets degraded and completely alters the actual and the predicted value.  

The deviation between the actual and the predicted compartmental outcomes can be mathematically formulated as,  

 

 

( ) ( )

2

1



−=
normzZ

v
b

v
b ZZ

M
D

  (23) 

 

Here, normz
represents the normalized embedding vector, M signifies the components present in normz

. The 

proposed system utilizes the normalization range  1,0 to map the 
( )

v
bD for generating the curve, and it can be 

mathematically formulated as,  

 

 

( )
( )( ) ( )

( )( ) ( )( )
( )b

x
b

x
b

v
b

x
b

v
b vv

DD

DD
H ,....,1,,
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−

−
= 

   (24) 

 

Here, 

( )( ) ( )( )minmax , x
b

x
b DD

depicts the maximum and minimum values having 
thb deviation

( )
v

bD during a certain 

operational time. Based on the training of the unsupervised network, the degradation at 
thb an instance is determined. For 

training the LR model, the best prediction outcome is obtained, and it can be mathematically formulated as, 

  

 
v

T

v ph  += 0     (25) 

 

Here, vh
and vp

represents the predicted value and the input reading at a time v  , respectively and

 n ,......,, 21=
 represents the coefficient factors. After training the LR model, the obtained testing and training 

values are given as input to equation (27) to generate a particular predicted value.  

 

Similarity Calculation for SIRD Prediction 

The proposed prediction method for the testing value is emphasized based on the similarity concept. However, the proposed 

technique runs longer during training and tends to reduce the prediction outcome. Let’s assume that the original value is 

different at the training time, so the test curve is rotated with a delayed time  to make the training and testing curve’s 

similarity accurately. The mathematical interpretation for the similarity calculation is depicted below:  
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( )( )
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Here, 

( )( ),, c
b

c TeTrD
indicates the square of average Euclidean distance for the two curves,  determines the relax 

factor that can measure the similarity degree under different cases, Ŝ interprets the total time taken for online process. 

The resting predictive value is predicted based on the 
thb training instance and can be mathematically interpreted as,  

 

 
( ) −−= SSbed b

ˆ,Pr
    (28) 
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Here, bS
signifies the total time taken for the training process. Every testing and training instance is determined using 

equation (29) to generate weight similarity. The outcome having greater similarity can be mathematically interpreted as,  

 

 

( ) ( )

( )
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b

bSim

bedbSim

de
,

,Pr,
~

Pr

     (29) 

 

Here,
( ) ( )





 


,max,

,
bSimbSim

b


 which
( )


,max

,
bSim

b depicts the high similarity between the training 

curves under varying lagging times, the parameter


controls the training instance to be integrated with the testing 

instances.  

 

IV. RESULTS AND DISCUSSION 

The proposed work will be implemented in the Python platform by studying the COVID-19 situation in Lombardy, Italy. 

There are 1,707,743 tested cases in this dataset, which is mapped to 195,351 positive cases. For the active cases, recovered 

cases, hospitalizations, intensive care and death cases, 105,847, 63,120, 21,533, 2,102 and 26,384 cases are present. In 

addition, this dataset is separated into three categories: the total COVID cases at the regional, national, and provincial 

levels. A total of COVID-19 cases in Italian countries is stated from February 2020 to October 2022 under different levels 

respectively. Also, the performance of the proposed model will be validated by comparing the predicted results of the 

number of cases confirmed, death, recovered, hospitalization (ICU) and reproduction number with actual data. Also, R-

squared (R2) is a statistical measure used to measure the predicting ability of the proposed model. In addition, the integration 

of the DL algorithm with the SIRD model will be proved by comparing it with the conventional SIRD model. Tables 1 

and 2 tabulate the proposed method’s experimental details and simulation parameters.  

 

Table 1. Experimental Details of The Proposed Method 

SYSTEM CONFIGURATION 

Device name SST001 

Full device name SST001. seahost. local 

Processor Intel(R) Core (TM) i5-3570 CPU @ 3.40GHz   3.40 GHz 

Installed RAM 8.00 GB (7.89 GB usable) 

Device ID 8591FDD2-5800-427D-BB79-151A3EB8A6AB 

Product ID 00330-81495-17322-AA248 

System type 64-bit operating system, x64-based processor 

Pen and touch No pen or touch input is available for this display 

 

Table 2. Simulation Parameters of The Proposed Method 

HYPER   PARAMETERS VALUES EVALUATED IN   THE 

PROPOSED METHODOLOGY 

No. of hidden layer L 20 

No. of hidden nodes h 150/128/64/50/100 

Window Length W 50/25/50/100 

Learning rate 0.001 

Training epochs 10 

Early stop 10 

L2 weight 0.01 

Gradient clipping 1 

 

Performance Metrics 

The performance is analyzed daily to predict the COVID-19 cases under SIRD compartments. The mathematical formula 

for calculating the daily suspected cases is given: 

 

 
vv AAA −= +1

ˆ
    (30) 
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The mathematical formula for calculating the daily infected cases is given as,  

 

 
( )vvv DRAI +−=ˆ

    (31) 

Also, the mathematical interpretation for calculating daily death cases is given by, 

 

 
( )vv DDD −= +1

ˆ
    (32) 

 

For analyzing the accuracy of the proposed prediction model, the prediction coefficient 
2R is measured and can be 

mathematically formulated as, 

 

 

( )

( )( )

−

−
=

2

2

2

PmeanP

PQ
Rpredicted

    (33) 

 

Here, Q determines the confirmed and recovered cases obtained by the proposed method and P denotes the total 

amount of data analyzed for the prediction. If the parameter
2R attains a negative value, then the prediction model obtains 

poor accuracy, and if 
2R attains a positive value, it is considered the best prediction model.  

Likewise, for analyzing the error performance, MSE is measured and can be mathematically formulated as,  

 

 

2

1

)ˆ(
1

x

l

x

x PP
l

MSE −= 
=     (34) 

 

Here, l indicates the number of data used, xP
manipulates the actual value, xP̂

indicates the calculated value. 

 

Comparative Analysis of The Proposed Model with Other Models 

This section analyses the proposed method’s performance using a graphical illustration. Some other existing techniques 

like PDCNN, CNN, BI-GRU and GRU are also compared to prove the proposed model’s efficiency.  

 

 
(a)  

(b) 

Fig 3. Accuracy and Loss Curve Under Varying Epochs, (A) Accuracy Loss and (B) Loss Curve. 

 

Fig 3a and 3b illustrate the accuracy and loss curve under varying epochs. The performance of the proposed model will 

be analyzed through training, testing and validation. From the graphical illustration, it is clear that the proposed method 
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obtains a training accuracy of 97%, and the accuracy obtained is about 96% for the testing process. For the validation 

process, the accuracy obtained was about 94%. From Fig 3b, the loss obtained by the proposed method under training, 

testing and validation are 0.05, 0.03 and 0.04, respectively.  

 

 
(a) 

 
(b) 

 
(c) 

Fig 4. Analysis of (a) Contact rate, (b) Recovery rate and (c) Deceased rate 

 

Figs 4a, 4b and 4c depict the LR plot for the contact, recovery, and deceased rates, respectively. From the graphical 

illustration, it is clear that the predicted value obtained by the proposed method is near to the original value. The contact 

rate, recovery rate and decreased rate for the proposed model are tested on a daily basis. The rate of contact, recovery and 

death is determined for October 2020, June 2021, February and October 2022, respectively.   
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(a) 

 
(b) 

Fig 5. Comparative Performance Under (A) Daily Death and (B) Daily Infected Cases. 

Figs 5a and 5b indicate the comparative performance under daily death and infected cases, respectively. The graphical 

plot concludes that the proposed method obtains almost similar outcomes compared to the original value. In contrast, the 

existing techniques continuously show a random outcome rather than the actual value. The daily death and infected cases 

are emphasized for October 2020, June 2021, February and October 2022, respectively. For 24th June 2021, the total original 

death cases are considered 127362, and the proposed predictive model effectively predicted 127361 death cases. For the 

infected cases, on 24th June 2021, the original cases are given as 68619, and the proposed hybrid model correctly predicts 

the total 68618 infected cases.  

 

 
(a) 

 
(b) 
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(c) 

Fig 6. Comparative Performance Under (A) New Cases, (B) Hospitalized and (C) Recovered Cases. 

 

Figs 6a, 6b, and 6c illustrate the comparative performance under new, hospitalized, and recovered cases, respectively. 

The graphical interpretation gives a close result compared to other conventional models for the proposed method. The new 

cases, hospitalized and recovered cases are determined for October 2020, June 2021, February and October 2022, 

respectively. By 23rd October 2020, the total original new cases are determined as 186,002, and the proposed model 

correctly predicts a total of 186,001. For hospitalization, a total of 38507 people were hospitalized on 23rd October 2020, 

and a total of 38503 were corrected predicted. For recovered cases, a total of 58449 people are given in the dataset, and 

58451 recovered cases are correctly predicted. The proposed technique is also compared with existing techniques, and the 

predicted outcome of these techniques is completely away from the actual value. However, the SIRD compartment model 

is a highly time-dependent process and needs to train for a longer time to get an accurate prediction. The existing techniques 

cannot be supported for multiple varying periods, and they suffer greatly from the gradient vanishing problem.  

Fig 7 signifies the performance comparison for analyzing the number of reproductions. The proposed method obtains 

near to the original value from the graphical illustration. The reproduction number is determined for varying months and 

years as October 2020, June 2021, February, and October 2022, respectively. The increase in the growth of reproduction 

number starts to reduce from February 2022 and maintains the constant outcome throughout the year 2022. During the 

beginning of the COVID-19 outbreak in 2020, the number of reproductions grew and rapidly fell to the 0th position in 2021. 

The proposed hybridized predictive model is also compared with multiple traditional techniques and proves the efficiency 

of the hybrid model.  

 

 
Fig 7. Performance Comparison for Analyzing Reproduction Number. 
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Fig 8. Error Performance Under Different Techniques. 

 

Fig 8 contemplates the error performance under different techniques. The proposed model obtains a low error from the 

graphical manipulation compared to other conventional techniques. The conventional AE, Bi-GRU, GRU and the proposed 

hybrid model obtain the MSE of 0.0082, 0.0089, 0.00861, 0.0088 and 0.008, respectively. From the experimental outcome, 

the existing techniques show major difference between the predicted and the original value. Table 3 tabulates the outcome 

of 

2Rpredicted
and time complexity. Here, 

2Rpredicted
is one of the effective performance metrics for 

analyzing the effectiveness of the proposed predictive model. In addition, the time complexity of the proposed method is 

also analyzed and compared with different traditional techniques.  

 

Table 3. Outcome of 

2Rpredicted
and Time Complexity 

Performance 

measures Proposed AE Bi-GRU GRU 

2Rpredicted
 0.97 0.89 0.78 0.77 

Time complexity (ms) 2634.01 6069.17 7483.31 10212.89 

 

V. CONCLUSION 

For accurate prediction of the spread of COVID-19 outbreak and hospitalizations, the traditional SIRD compartment model 

is not applicable for training with huge data. The conventional SIRD model splits the compartments into four parts, and 

stable transmission is determined based on varying time intervals. Using suspected, infected, recovered, and death cases, 

the rate of contact, recovered, and deceased are predicted. However, the traditional compartment model is considered a 

time-consuming process and cannot handle daily changes in COVID cases. This research brought a novel hybridized A-

Bi-GRU-AE-based DL algorithm that aids the Italian government in taking necessary interventions and future decisions to 

deal with the pandemic. The proposed method obtains the overall predicted
2R of 0.97 and time complexity of 2634.01ms. 

The proposed method’s main advantage is that it can process huge datasets with low time complexity. Despite this, the 

proposed method utilizes a single dataset for the whole process. In future, the researchers need to focus on utilizing the 

proposed method for processing multiple datasets to eradicate the spread of COVID-19 effectively.   
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