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Abstract – Vehicular Ad-Hoc Networks (VANETs) have emerged as a pivotal technology for enhancing road safety and 

traffic management through real-time vehicle-to-vehicle (V2V) communication. However, the dynamic and open nature 

of VANETs introduces challenges related to data security, privacy, and trust among vehicles. To address these 

challenges, the integration of blockchain technology into VANETs has gained considerable attention. In this study, we 

introduce Vehicular chain- Reinforcement Learning (RL), a Blockchain-based VANET system that employs artificial 

intelligence (AI), Deep Reinforcement Learning (DRL), to create a flexible, knowledgeable, collaborative, and secure 

network for the VANET industry. The framework brings together a wide variety of VANET systems by utilizing 

Blockchain technology and an intelligent decision-making RL algorithm that operates online. The goal is to optimize the 

network's behavior in real time, with privacy and security of Vehicles data as primary concerns. The proposed 

Blockchain Manager (BM) intelligently adjusts blockchain setup to optimize security, latency, and cost. In the realm of 

Reinforcement Learning (RL), the D3QN framework introduces Deep Q-Network (DQN), Double Deep Q-Network 

(DDQN) and Dueling DQN (DQDQN) techniques to efficiently solve the Markov Decision Process (MDP) optimization 

model. The proposed approaches and two heuristic ones are thoroughly compared. The suggested methods achieve real-

time adaptation to system state convergence, maximum security, minimal latency, and low cost. 

 

Keywords – VANET, Block Chain, Block Manager, Reinforcement Learning, Deep Q-Network (DQN). 

 

I. INTRODUCTION 

Focusing on the global impact of VANET systems and their effect on people's standard of living is essential. Due to an 

increase in the number of Vehicles with event transactions, it is becoming increasingly difficult to employ the 

conventional VANET model to provide round-the- clock monitoring. Direct interaction between doctors and Vehicles 

during illness epidemics raises concerns about instability, scalability, and delays in receiving critical services. As a result, 

both the Vehicles and the doctors face a higher risk of dying. More than 10 million Indian vehicles have accidental 

records that limit their ability to function, according to the Traffic control laws. Obviously, these figures rise 

precipitously due to the ongoing intelligent transport management systems. It is of the utmost importance to establish an 

VANET system that eliminates the requirement for Vehicles and physicians to meet one another in person. Researchers 

are looking into approaches to decentralize the connecting of several parties while yet considering these constraints. In 

2008, a distributed ledger, often known as a blockchain, was first presented as a means of ensuring the dependability and 

security of data that is exchanged across several participants. As discussed in, this exciting technology was use in a 

variety of fields, including but not limited to Industry 4.0 and the IoT, the financial sector, and the academic world. 

Blockchain features allowed it “to overcome central challenges in these applications. Due to the characteristics that it 

possesses, Blockchain was able to overcome major problems in several applications. These characteristics can be 

summarized as follows: It eliminates the need for a third party while at the same time fostering confidence amongst 

diverse entities subject to a variety of rules and regulations. Data recovery is made simpler because all entities involved 

in the Blockchain have access to a copy of the ledger. In this way, the newly added block is irretrievable and better fraud 

detection is achieved [1]. 

To create these Blockchain systems, a consensus algorithm and smart contract are used. Blockchain's consistency and 
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integrity are safeguarded by the consensus algorithm. There are a few different consensus algorithms that have been 

researched and written about, including Proof of Work (PoW), Proof of Stake (PoS), Practical Byzantine Fault Tolerance 

(PBFT), Delegated Proof of Stake (DPoS), and others. Without the need for a middleman, smart contracts enable the 

autonomous execution of business logic in response to predefined criteria. Smart contracts enjoy the same security 

assurances as the blockchain ledger since they are executed as transactions on top of the ledger. Miners are responsible 

for checking the legitimacy of transactions before they are included in a confirmed block. With guidance from 

Blockchain companies, miners can reliably enforce smart contract regulations. Due to Vehicles misidentification and 

event records being duplicated between vehicles, traditional VANET systems experience redundancy issues. The 

VANET industry has been an early adopter of blockchain technology due to the many ways in which it can be utilized to 

improve upon the inefficiencies of current VANET systems. The VANET sector is predicted to become the largest 

Blockchain market by 2022, with revenues of over $500 million. 

VANET systems benefit from blockchain technology because of its ability to reduce the likelihood of inconsistencies 

in medical data, resulting in higher-quality data, shorter processing times, fewer human processing processes, and lower 

reconciliation costs. Moreover, Blockchain capabilities such as accessibility, trust, openness, traceability, and auditability 

can be effectively implemented in VANET delivery systems. When conducting an analysis of medical data, it can be 

helpful to link data and events from a variety of entities to understand the factors that contribute to medical phenomena 

like virus infections. When dealing with complicated transactions while adhering to all the essential privacy and security 

regulations, there are issues that can occur. When optimizing for Blockchain, the writers solely take latency and security 

into account. The price, however, is a factor that must not be disregarded. 

To enhance blockchain efficiency, it is necessary to update the Blockchain configuration adaptively based on the 

characteristics of incoming transactions, a task that requires a learning- assisted decision-making strategy [2]. Rapid 

advancements in Artificial Intelligence (AI) in recent years attest to the technology's prowess in efficiently absorbing and 

applying lessons from large datasets. To enable the construction of intelligent health systems across a variety of 

disciplines, including the VANET industry, AI methodologies were used extensively. Data analysis, preprocessing, 

recognition, categorization, drug discovery, etc. were only some of the many uses. The Artificial Intelligence (AI) 

technique known as Machine Learning (ML) known as Reinforcement Learning (RL) has found usage in medical 

settings. RL is a technology that is decision-driven and learns the dynamics of its surroundings as well as the links 

between the states of its components. Since RL approaches include both the immediate (short-term) reward at a given 

state and the discovery of a long-term policy that optimizes the system's benefit over time, they have the potential to 

outperform conventional methods of decision-making. 

Deep Learning was combined with traditional RL to create Deep Reinforcement Learning, or DRL for short, to 

improve RL's overall performance”. A decision can be made in real time by Deep Reinforcement Learning (DRL) based 

on a model that has been trained. This paradigm enables us to achieve our objective of maximizing system security while 

simultaneously reducing latency and costs, and achieving this optimal balance between these competing system goals is 

our primary objective. 

Within the scope of this investigation, we present Health chain-RL, an effective and decentralized VANET 

Blockchain architecture. Health chain-RL makes use of Deep Reinforcement Learning (DRL), which enables the 

network's behavior to be dynamically modified. This paradigm enables us to achieve our objective of maximizing system 

security while simultaneously reducing latency and costs, and achieving this optimal balance between these competing 

system goals is our primary objective. Here is a rundown of the major contributions: 

A multi-goal optimization framework, Blockchain-RL is being developed for use in VANET systems. “It establishes 

a relationship between characteristics like the number of transactions per block and the age of a transaction and 

blockchain setup aspects like the priority of transactions and the security of data. The purpose of Blockchain-RL is to 

boost the effectiveness of VANET networks such as to:  

• Introduce the reputation of Blockchain miners; consider the temporal elements of Blockchain; and   formulate the 

Markov Decision Process (MDP) of our suggested Health chain- RL [3]. 

•   Optimise latency, security, and cost in real-time while considering the requirements of Blockchain entities and 

have been tasked with proposing an intelligent manager that is based on reinforcement learning techniques such as 

Deep Q-Network (DQN) and Dueling Double Deep Network. This will allow to optimize these factors by taking 

into account the requirements of Blockchain entities. 

•   Compare the suggested Health chain-RL to other methods, such as the Greedy and Random- selection   methods, 

while demonstrating the superior performance of the proposed BM”. 

 

II. RELATED WORK 

Blockchain Technology in VANET 

Blockchain is ideally suited for use in VANET applications due to its features, which are required to uphold a high level 

of confidentiality when exchanging Vehicles data and medical records with one another. The authors propose a 

distributed event record ledger constructed on the MATLAB software. This will allow for diverse VANET operators to 

have access to Vehicles information in real time. Unfortunately, it has shortcomings in a variety of areas, including 

Vehicles identity, key replacement, and scalability, among others. The proposed architecture that is built on the 
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Blockchain that safeguards the confidentiality of Vehicles event records and prohibits potentially harmful parties from 

having unauthorized access to those records. The proposed framework for Parallel Healthcare System (PHS) Blockchain 

has its own problems, such as scalability, latency, and security, because it is based on artificial systems, computational 

experimentation, and parallel execution, yet it has shortcomings. A dual Blockchain infrastructure is utilized by both the 

BSPP and the BLOCHIE VANET systems respectively. Both approaches come with several problems, including low 

scalability, high latency, high computational cost, and inadequate storage space. The private blockchain architecture for 

VANET known as Vehicular chain has problems with scalability and adds additional responsibilities, such as needing 

Vehicles to provide clearance [4]. The OmniPHR framework promotes interoperability among different providers to 

access health record, solves the scalability problem that Vehicular chain was having, although Vehicles authentication is 

still necessary. As an illustration, quite a few of the other suggested Blockchain systems in the VANET industry, such as, 

have problems with the scalability of their administrative processes. Table 1 shows blockchain-powered applications 

employing deep reinforcement learning. 

 

Table 1. Blockchain-Powered Applications Employing Deep Reinforcement Learning 

AUTHORS FIELD TRADE-OFF OBJECTIVE 
RL-

APPROACH 

Zhang, D., Zeng, Z., 

Sudhan, A. 

Vehicular Ad Hoc 

Networks 

Trust features of Blockchain nodes and 

vehicles, consensus nodes, Blockchain 

computational capability 

DDQN 

Arulkumaran, K. 
Industrial Internet of 

Things 
Parity across regions and overall energy use 

Distributed 

DQN 

Liu, Y., Wang, S., Zhao, 

Q., Du, S., Zhou, A., Ma, 

X., Yang, F. 

Vehicular Edge 

Computing 

Energy required for transmission, data 

stored in cache, and delay in sending data all 

add up. 

DQN 

Liang, F., Yu, W., Liu, X., 

Griffith, D., Golmie, N. 

Industrial Internet of 

Things 
Flexibility, independence, delay, and safety DQN 

Xia, X., Chen, F., He, Q., 

Grundy, J., Abdelrazek, 

M., Jin, H. 

Wireless Networks 
Consumption of resources, costs, and 

caching 
DQN 

Guth, S., et al. 
IoT Monitoring 

Applications 
Accountability, lag time, and price DQN 

 

Enhancing VANETs Using Reinforcement Learning 

In “a Markov decision process (MDP), a transition to a new state is said to have occurred when a decision- maker (the 

agent) chooses an action for a given state while interacting with the environment (the formulation of the issue). This is 

because the decision-maker has moved on to a new state, Markov decision process (MDP). At the same time, the agent is 

rewarded monetarily for the work that he or she has done. As a result, the MDP consists of the following five basic 

components: the agent, the environment, the states, the actions, and the reward. A unique approach to solving Markov 

decision processes (MDPs) that use artificial intelligence (AI) is called reinforcement learning (RL), and it is a subfield 

of the area of machine learning (ML)”. The major objective of the agent is to engage with its environment in a manner 

that contributes to the accomplishment of its other primary objective, which is to maximize its utility by adhering to a 

behavior policy. In the second stage, you will examine the policy that is the focus of your attention and decide on the 

most effective next move for a particular state. This later technique ends up being the one that is better in the long run, 

thus it is the one that we will implement. 

 

Off-Policy Learning 

During its training, the agent may select either the on-policy or the off-policy instructional method. The concept known 

as on-policy learning describes a circumstance in which the desired policy and the actual behavior are completely 

congruent with one another. Off-policy learning is the term used to describe the alternative (e.g., Q-Learning). Q-learning 

is a well-known example of an off-policy learning algorithm in reinforcement learning. An agent is a piece of software 

that takes in information about a policy's value function and then tries to optimize that policy by analyzing it and making 

changes where necessary. Off-policy learning, on the other hand, involves the agent learning the value function in a 

manner that is distinct from the action itself. This is accomplished by iteratively updating the policy in the course of 

exploration in order to find the most effective policy [5].  

 

Q-Learning Approach 

In particular, the Q-Learning approach is investigated in this work. This is a method in which an agent attempts to 

determine the most appropriate response for any given set of circumstances and then records this data in a Q-table. 

Medical imaging research and clinical concept extraction are only two examples of the kinds of challenges that neural 

networks may help with. This is only one example of how doctors might benefit from using deep q-networks (DQN). 
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III.  SYSTEM MODELING AND ANALYSIS 

Our goal in creating Vehicular chain-RL was to create a safe, adaptable, and web-based platform where many parties 

could safely share and use VANET information. Fig 1 depicts the structure, which advocates the implementation of a 

consortium medical Blockchain across multiple VANET organizations. In accordance with their predetermined eligibility 

in the smart contract, these entities will have access to the distributed ledger where the medical data is stored, share it 

with other entities, and process it. In addition, any organization may operate its own private network to gather, process, 

and prepare Blockchain-bound transactions holding crucial data. Transaction data might be gathered, processed, and 

processed using this network. Some local network data may be preprocessed using AI techniques including 

summarization, clustering, and compression. However, this article will primarily focus on optimizing Blockchain 

networks by striking a balance between security, latency, and cost in light of the constraints imposed by transactions, 

specifically              the security and urgency levels. 

Blockchain managers have been proposed as a means of dealing with the time-sensitive nature of medical data, 

protecting that data from unauthorized access, and optimizing all the aims at once [6]. In this study, we present a smart 

Blockchain manager that utilizes reinforcement learning methods to respond to the ever-changing state of the system and 

anticipate its behavior in the future. 

Then, the Blockchain optimization problem is resolved, along with the Blockchain entities, the Blockchain network, 

the intelligent Blockchain manager, and the Blockchain itself. 

 

 
Fig 1. Architecture of Vehicular Chain-Reinforcement Learning. 

 

Entities of a Blockchain   

Several interested parties may collaborate on this framework's creation to speed up the creation of a decentralized 

VANET system that is also scalable, safe, and smart. To conduct research, review data, and adopt new health rules, these 

organizations can either share their VANET data with the blockchain or access the data that is already there. Possible 

participants in such a framework include medical facilities, pharmaceutical stores, insurance providers, and the Ministry 

of Public Health (MOPH) [7]. In the form of a smart contract, Blockchain presents the underlying business logic that 

makes the technology work. This logic encompasses all the organizations’ stipulations, guidelines, hierarchies of 

authority, and order of importance levels. Each party must approve the transaction and then apply the smart contract 

before it can be recorded on the Blockchain ledger. 

 

Blockchain Technology 

Blockchain, a distributed ledger technology, facilitates the secure movement, storage, and processing of Vehicles data 

between institutions. Instead of using Proof of Stake (PoS), a consensus mechanism called Delegated Proof of Stake 

(DPoS) can be used to guarantee scalability and shield the Blockchain from detrimental usage and centralization. Voting 

and elections are used to select miners who maintain low operating expenses. With the Blockchain setup described in this 

paper, the trade-off between cost, latency, and security may be adjusted to suit the needs of the various entities storing 

transactions [8]. The important variables are the total number of miners and the average number of transactions per 

block. Those two factors are determined by the smart Blockchain manager. 
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Blockchain Manager of Intelligent Blockchain — An Optimizer 

One of the most important parts of the proposed architecture is the Blockchain Manager (BM). A certain time step's 

worth of transactions will be gathered, and from there the number of transactions allowed in a block will be determined. 

Next, a set number of miners validate a block using their storage space, processing power, and transaction fees. While it 

may be tempting to keep adjusting those settings, doing so can incur unnecessary computational and financial costs and 

should be avoided. Unless an unexpected occurrence occurs, all parties involved can agree on how often the Blockchain 

configuration should be updated. A smart contract on the blockchain or a timed algorithm could specify certain actions to 

be done at specific intervals. To ensure the integrity of the Blockchain, either one entity must assume the role of BM 

(which is not recommended for security reasons) or the role can be shared among multiple entities in the same chain and 

rotated at regular intervals. This circulation should occur on a predetermined and agreed-upon schedule. For the sake of 

consistency and safety, the proposed Vehicular chain-RL framework implements a circulation protocol. 

Our goal is to find the sweet spot between security, latency, and cost in the Vehicular chain-RL protocol by 

optimizing the provided attributes transaction latency, cost, and security. Information on a transaction's security, 

timeliness, and age are summarized using various data compression, classification, and event detection methods (local 

network). How long a transaction must sit in limbo before it can be put to the Blockchain is described by the "age" 

concept (ledger). In Section 4 we go into greater depth. Here are some examples where urgency and safety play a role: 

Urgent transactions, like emergency alerts, may call for little security and short latency. If more miners are needed to 

keep the Bitcoin network running, transaction fees and transaction times for high- security payments may rise. 

Considering three competing goals, the suggested framework allows us to attempt to translate the Vehicle’s 

circumstances into several modes of Blockchain configuration. Safety, Delay, and Money [9]. At a given time step t, the 

utility multi-objective function is represented by Eq. (1) 

 

 𝑚𝑖𝑛𝑚𝑖, 𝑝 (
𝐿

𝑙𝑚𝑎𝑥
) + 𝑞 (

𝑠𝑚𝑎𝑥

𝑆
) + (

𝐶

𝑐𝑚𝑎𝑥
)   (1) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 1 ≤ 𝑚𝑖 ≤ 𝑀𝑚𝑎𝑥 

1 ≤ t𝑟𝑖 ≤ 𝑇𝑚𝑎𝑥 

𝐴𝑡 ≤ 𝐴𝑡ℎ 

 

Where by 1 ≤ mi ≤ 𝑀max and 1 ≤ t𝑟i ≤ 𝑇max are constraints on the chosen number of miners mi and the number of 

transactions tri, respectively. 

The Mmax miners and Tmax transactions in a single block. The transaction age (At) should not exceed the threshold 

(Ath) above which a transaction is rejected from the submission queue and not included in a block and forwarded to the 

network. According to the needs of the system administrator, the relative importance of latency, security, and cost is 

determined by the weighting factors p, q, and r, the sum of which equals one. When determining what features a system 

administrator needs, it is possible to consider both business logic and the data's inherent characteristics. With the 

maximum values of the objectives in mind, we were able to create equations that were uniform in their units and scaled 

to the same dimensions. Maximum latency (lmax), maximum security (smax) and maximum cost (cmax) [10]. 

 

 𝑆 = 𝑆𝑐𝑚𝐵𝑀𝑞  (2) 

 

Where Sc is a system coefficient; mBM is the number of miners picked by the BM; and q is an indicator factor 

demonstrating the scale of the network, with a value that is greater than or equal to two, can be used to identify the 

security (S). 

The total amount of time that it takes to create, verify, broadcast, and upload a block is denoted by the symbol L in 

Equation (3).  

 

  𝐿 = (
𝑡𝑏𝑆𝑡

𝐷𝑡𝑟
) + 𝑚𝑎𝑥𝑖∈1 (

𝐺

𝑎𝑖
) + 𝐸𝑡𝑏𝑆𝑡𝑚 +

𝑉𝑓

𝑈𝑡𝑟
  (3) 

 

tb is the number of transactions that are included in each block, St is the size of each transaction, G is the number of 

computational resources required to verify a block, ai is the number of computational resources that miner I possesses, 

and E is a predefined parameter that is described in greater detail in. The size of the verification feedback is denoted by 

Vf, the uplink transmission rate from the miners to the BM is denoted by Utr, and the downlink transmission rate from the 

BM to the miners is denoted by Dtr.  

 

  𝑈𝑡𝑟 = 𝑏𝑙𝑜𝑔(1 + 𝑆𝑁𝑢)    (4) 

 

            𝐷𝑡𝑟 = 𝑏𝑙𝑜𝑔(1 + 𝑆𝑁𝑑)              (5) 

 

In equations (4) and (5), b denotes the bandwidth, while SNd and SNu stand for the signal- to-noise ratio of the 



 

ISSN: 2788–7669 Journal of Machine and Computing 5(2)(2025) 

 

663 
 

downlink and the uplink respectively. 

The final objective that we are aiming to achieve via reducing costs is the cost Cmin, Which is represented in Equation 

(6).  

 

 𝐶𝑚𝑖𝑛 =
∑ 𝐶𝐶𝑖

𝑚
0

𝑡𝑏
  (6) 

 

In this equation, the computing cost for each miner m is denoted by CCi, where I am the number of selected 

transactions. As CC𝑖 = a𝑖 × r𝑖, CCi is proportional to the   product of its available resources (ai) and the cost of utilizing 

those resources (ri). 

 

Strategy Based on Deep Reinforcement Learning (RL) 

The architecture shown in was used as a starting point and tweaked such that the system could be used in a variety of 

online environments. This study aims to find the optimal Blockchain configuration for a given set of Vehicles conditions 

by considering the tension between the three main constraints of any VANET system: privacy, speed, and cost. Its goal is 

to ensure a responsive, smart, and safe VANET system. We classify this optimization issue as NP-hard. The problem was 

solved by the authors in using a Greedy strategy that ignored the time-dependent nature of receiving transactions within 

the Blockchain framework, hence negatively affecting latency and the system's long-term viability. The Greedy method 

is expensive and unreliable in real-time since it requires solving the optimization at each time step. To get beyond these 

restrictions on speed, complexity, and future aggregated performance, researchers have turned to reinforcement learning 

methodologies, particularly Q learning and its derivatives. The configurations of Blockchain will be determined at 

regular intervals by examining the BM queue of pending transactions [11]. The utility function represents the trade-off in 

a consortium, considering security, speed, and efficiency. A Markov Decision Process model is used to explain the multi-

objective optimization issue (MDP) State space (SS), action space (AS), state transitions (Ts), reward function (RF), and 

discount factor (Df) Df ∈ [0, 1). The agent receives a snapshot of the environment's state, represented as es ∈ SS, at 

regular intervals of time, denoted by t. To get a reward 𝑟𝑡 ∈ R, the agent must carry out an action e𝑎 ∈ AS in accordance 

with a policy (a|s). Therefore, 𝑃 (𝑠 ′ |e𝑠, e𝑎) = Ts (e𝑠, e𝑎, 𝑠′) is the transition probability from state es to state s ′ when ea 

is the initial state. We introduce the concept of deep expectation, where the reward for performing an action an in a state 

s while adhering to a certain policy 𝜋 is encapsulated by the function 𝑄𝜋 (e𝑠, e𝑎) = E𝑎∼𝜋,′∼𝑃 [𝑅𝑡 |𝑠𝑡 = e𝑠, 𝑎𝑡 = e𝑎]. The 

MDP is then solved using Deep Reinforcement Learning (DRL). After the MDP is defined, Deep Reinforcement 

Learning is used to solve it (DRL). Following this, we will describe in detail the structure of our aims-based approach to 

education. This encompasses the SS, AS, EA, and MORF of our optimization issue, or state space, action space, 

environment, and goal function. 

 

IV. PROPOSED METHODOLOGIES FOR REINFORCEMENT LEARNING 

Blockchain Manager is unaware of the model for state transitions, a model-free technique like Deep Q-Network (DQN) 

must be employed to arrive at an estimate for Q. There is no assurance that this approach will converge, thus it's useful to 

add enhancements that speed up the weight convergence and stabilize training in a neural network. When it comes to 

model-free algorithms, experience replay (Rp) is a key idea utilized to facilitate training, both for the present experience 

and the agent's accumulated history of experiences. Using these previously collected samples of experience during 

updates not only improves data efficiency, “but also guarantees that the correlation between different samples of 

experience in the update is minimized using uniform sampling, which in turn reduces the variance. Using experience 

replay and soft updates to the neural networks, Fig 2 depicts the interaction flowchart between an agent (BM) and the 

environment (environment) in Bitcoin. The agent takes suitable action to reflect the share of state- selected transactions 

and miners needed to validate them. The environment's evaluation of the agent's action and its subsequent impact on 

reward and state will be fed back to the agent. Initially, multiple random actions are taken to explore the state space and 

determine the ideal action for that state. An experience replay memory will be created to record all information regarding 

previous encounters, including the state, the action made, the reward received, and the subsequent state [12]. As often as 

N time steps, the target network's settings will be adjusted. Making the proper choice and responding quickly to 

unexpected changes are crucial in VANET applications, where they can have a major impact on the health of the 

Vehicles and the effectiveness of the system. Traditional methods of decision-making struggle to keep up with the rapid 

pace and high stakes of today's VANET systems. Therefore, the purpose of this research is to explore the online decision-

making performance and flexibility of state-of-the-art off-policy techniques. Double Q- Network (DQN) and its variants 

are investigated. These include the Double Deep Q-Network (DDQN) and the Dueling Double Q-Network (D3QN). 

When neural networks are used in place of a Q-table, as they are in the original DQN model, the table is no longer 

needed. Concerns of overconfidence and false positives associated with DQN are especially pressing in the context of 

VANET systems. Since DQN suffers from being too optimistic, DDQN is an improvement. D3QN considers not just the 

value of the state in relation to the action to be taken, but also the probability of being in that condition. Thus, D3QN 

employs a neural network model with a unique structure. Each method is broken down into its component parts below. 

Traditional Q- learning relies on Q- tables for action estimation, but for model-free results, researchers at Google have 
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recommended using a neural network instead. Machine learning models are used by DQN as function approximators 

instead of traditional lookup tables. The online network will undergo continuous gradient descent updates, while the 

parameters of the target network are changed after a predetermined number of episodes. 

In the case of DQN, Y is denoted by the equation (7), and the parameters are held constant at some previously 

determined values *.  

 

 𝑌𝑘𝐷𝑄𝑁 = 𝑟 + 𝐷𝑓𝑚𝑎𝑥𝑄(𝑠′. 𝑎′; 𝜃 ∗)  (7) 

 

The revised version of the loss function, denoted by Lf, considers the historical data on Y, DQN that has been stored 

in the replay buffer, denoted by Rp (8). Equation (9) describes the Q function,  

 

 𝐿𝑓𝑘(𝜃𝑘) = 𝐸(𝑠,𝑠,𝑟,𝑠𝐹)~𝖯(𝑅𝑓)[(𝑌𝑘𝐷𝑄𝑁 − 𝑄(𝑠, 𝑎; 𝜃𝑘))2]  (8) 

 

 𝑄𝑘+1(𝑠𝑡, 𝑎𝑡, 𝜃𝑡) = (𝑠𝑡, 𝑎𝑡, 𝜃𝑡) + ((𝑌𝑘𝐷𝑄𝑁 − (𝑠𝑡, 𝑎𝑡, 𝜃𝑡)) (9) 

 

Where k is the episode duration, Df is the discounting factor that prevents the BM from relying solely on future 

rewards, and the settings of the neural network. Rectified linear units (ReLU) make use of the activation function (𝜕), a 

positive-returning function defined by 𝜕 = max (0, x). The 𝜑 value denotes the learning rate, which indicates the degree 

to which the most recent estimate is modified in relation to the update target. The smooth-Lf1 loss function is developed 

and refined with the aid of Adam Optimizer. Online Sample-based learning is made possible using an intermediate 

estimate Y of the rewards of the future state. Adam is utilized as an alternative to standard stochastic gradient descent 

(SGD) techniques. The Q-Learning approach that is utilized determines how Y is defined. 

 

Double Deep Q-Network (DDQN)  

In DDQN, the maximum operator is used by both the online and target networks at the same time, but in DQN, the 

maximum operator is used in a separate fashion. The two methods differ in how they alter the target network [13]. 

Because of this, the estimated actions are unrealistically positive. Most of the time, an overly optimistic problem will 

manifest itself in the form of a false-positive issue when it comes to large- scale issues. To choose the appropriate action 

with the highest Q-value, DDQN favors using online networks. With an eye toward the following state's expected Q-

values, the target network prioritizes the action that necessitates the most data. After a set number of cycles, the online 

network's data will be used to adjust the parameters of the desired network. On the other hand, the internet network will 

be upgraded in accordance with the optimizer (e.g., Adam Optimizer). Because of this, the problem of over optimism 

will be mitigated, and the phase of learning will become steadier and more dependable. Equation (10) stands for the 

Y𝒌
DDQN

, and Equation (11) is the action- value function Q for the DDQN taking Y DDQN into consideration. 

 

 Y𝒌
DDQN

= r + D(𝑠′, 𝑎𝑟𝑔𝑚𝑎𝑥(𝑄(𝑠′. 𝑎′;  θ∗))𝑘  (10) 

 

 𝑄𝑘+1(𝑠𝑡 , 𝑎𝑡 , θ𝑡) =  (𝑠𝑡 , 𝑎𝑡 , θ𝑡) +  φ (Y𝒌
DDQN

− 𝑄𝑘+1(𝑠𝑡 , 𝑎𝑡 , θ𝑡))  (11) 

 

Dual-Depth Q-Network Battle (D3QN)  

We presented a new network architecture called the Dueling Double Deep Q-Network (D3QN). Since many states' action 

choices are roughly equivalent, the motivation for suggesting D3QN is that doing so may slow down learning. Two 

streams can be estimated using the suggested dueling neural network model. In this study, we apply the idea of an 

advantage function to DDQN, where the approach of applying advantage function A produces identifiability concerns 

and consequently inhibits the recovery of both the Vs and Af. T the average of Af, shown to increase the stability of the 

optimization. Action-state Q function in D3QN is represented by Eq. (12), which incorporates the value and advantage 

functions”. 

 

 𝑄(𝑠, 𝑎;  θ, 𝑥", 𝑦") = Vs(𝑠, θ, 𝑥") + ((A𝑓(𝑠, 𝑎;  θ, 𝑥", 𝑦") −  
1

|𝐴𝑓|
∑ 𝐴𝑓(𝑠, 𝑎;  θ, 𝑥, 𝑦

𝐴𝑓

𝑎 )  (12) 

 

Parameters for the combined streams Af and Vs are denoted by x” and y” in Eq. (12).  

Vs(𝑠) = E[𝑄∗ (𝑠, 𝑎)]is a representation of the state-value function Vs. It is important to note that over optimism is not 

an issue for many uses because high performance can still be achieved. But lowering it will greatly steady the educational 

process. 
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Fig 2. Vehicular Chain-RL System's Deep Q-Learning Flowchart. 

 

V. IDEAS PROPOSED DURING INSTRUCTION 

First, we have Algorithm 1, which depicts the BM's training procedures in full. Together with the initialization of the 

replay memory Rp, where the tuples of experience data are stored, the weights of the online and target neural networks 

are also set. Through social interaction, an agent in the BM model accumulates a set of experience tuples across a 

succession of states. The agent “picks actions in each state at random with probability or according to a greedy policy (𝜖) 

to ensure the quality of its investigation of the actions available in that state. It also involves adjusting the weights of both 

the online and target neural networks until line7. To facilitate BM environment learning, 𝜖 is initially set to 1, and then 

begins to decline over time [14]. Exploitation behavior is represented by the best actions (those with the highest Q-

value), while exploration behavior is shown by random activities. Acting is done to control the cost-benefit ratio of the 

situation. The tuples of state-action transitions are recorded in the replay memory Rp and later used as experience data in 

the optimization process to refine the estimation of 𝑄∗. As an option, we can consider requesting irrational subsets of 

Rp's experiences of 𝜌. The TD-target Yi is computed for each experience tuple i in the subset 𝜌t to arrive at the updated 

estimate when 𝜃* is considered. This procedure aids in stabilizing and bringing about convergence in the learning 

process (experience replay). Whether a DQN, DDQN, or D3QN model is employed, the resulting TD-target Yi is 

determined by the formula. Adam optimizer is then used to fit to 𝑌 𝑖 with a soft update to 𝜃* applied after a 

predetermined number of iterations to account for the most recent information about the environment. Soft updates to the 

target network can also help stabilize the learning process Convergence occurs when and only when *𝜃∼ 𝜃*”. 

 

Algorithm 1: Methods Used in BM Training (agent) 

Input: Artificial Environment Modeler 

Output: 𝜃1: The approximation's NN parameters 𝑄∗ 

1: Rp ← Setting the amount of the replay memory as the initial 𝑁. 

2: 𝜃 ← Randomize internet network settings to start. 

3: 𝜃*← 𝜃 Setup the parameters for the intended network.  

4: for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒𝑠 = 1 ∶ 𝐸 do 

5: To set the initial condition 𝑠0 ← ⟨[𝑆0 , 𝑈0 , 𝑎0 ] , [ 𝑅1 ⋯ 𝑅𝑀 ]⟩ 
 6: for 𝑡 = 1 ∶ 𝐾 do /** Environmental interaction **/ 

7: Specify the Update Operation for the State 𝑎𝑡 

𝑎𝑡 {
Random with probability ϵ

greedy policy,            otherwise
 

Determine, using at, how many transactions tr and how many miners m were chosen.  

Use Eqs. (7) and (8) as guides. 

8: Perform at and evaluate st+1 and rt 

Rewards can be calculated using Eqs. (9) and (10). 𝑡𝑟𝑡 and 𝑚𝑡 from 𝑎𝑡 
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𝑖=1 

9: Achieved Environmental Status ← Boolean 

10: Replace Experience with a New Tuple in the Playback Memory  

Rp ← (st , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒) 

11.Update State 𝑠𝑡 ← 𝑠𝑡+1 

12: /**Updating the estimates**/ Just pick a sample at random 𝜌 ⊆ Rp 

𝜌 ← { st , 𝑎𝑡 , 𝑟i , 𝑠𝑡+1,done} |𝜌| 

13: Determine Q-targets for the selected strategy by using the target network.  

For DQN, DDQN, and D3QN based equations, see Eqs. (15), (18), and (20). 

14: Fit 𝜃 to Target 𝑌𝑡 using Adam Optimizer 

15: Update the target network at each target step. 𝜃* ← 𝑟𝜃 + (1 − 𝑟)* 16: end for 

17: end for 

18: return 𝜃1 ∼ 𝜃 

 

Methods Proposed in Real Time 

The neural network parameters were saved after completing algorithm 1 and reaching convergence, allowing their 

subsequent use in a real-time setting. This means that the agent must be prepared to adapt to sudden changes in the 

environment (such as an increase in miner pricing or the loss of some miners) to maintain the convergence state. One run 

through the neural network is performed at each time step in Algorithm 2, which is a representation of the steps as they 

occur in real time. The BM will always take the course of action that maximizes its expected profit over the long run. 

 

Algorithm 2: Directly Monitored BM in Real Time (agent)  

Input: NN parameters after training 𝜃1 

Output: State update 

1: 𝑑𝑜𝑛𝑒 ← Set the initial environment status to false. 

 2: Initialize State 𝑠𝑡 

3: while! done do 

4: Find 𝑎 ∗ Consider that 𝑎 ∗ ← 𝑡𝑟∗ and 𝑚∗ 

5: Assuming that you know the related 𝑄∗ ( , 𝑎𝑡 , 𝜃)  

6: Observe 𝑠𝑡+1, and 𝑟𝑡 

7: Environment Status done ← Boolean 

8: To the Replay Memory, Insert the Experience of a Tuple. Rp ← ( , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑜𝑛𝑒)  

9: Update State 𝑠𝑡 ← 𝑠𝑡+1  

10: end while 

 

VI. EVALUATION OF PERFORMANCE 

Vehicular chain-RL is tested through computational simulations to see how well it can adapt to novel conditions, how 

much action-time it requires to achieve a desired result, and how well its proposed strategies converge on the reward 

function. 

 

Experiment Setup & Design Procedure 

We utilize a BM queue size of Q and a multiplicative factor (per episode) for epsilon decay of 0.999 to train our 

Vehicular chain-RL over 104 episodes (E). It's vital to keep in mind that as the number of miners grows, so will the risks, 

delays, and expenses associated with using the network. However, the delay and overall cost will rise as the number of 

transactions rises. Since consistency is of utmost importance, we've decided to give equal importance to all three goals 

(p, q, r). Table 2 details the weighting factor values and other optimization parameters in terms of safety, delay, and 

expense. 

 

Table 2. Variables Used in Optimization 

Variables Values 

B 0.52MHz 

SNu 12dB 

SNd 10dB 

Q 2.01 

Vf 0.52Mb 

St 1.0Kb 

Sc 1.0 

p,q,r 0.342 
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Convergence in Rewards 

The hyper parameters of the four Q-Learning methods are adjusted in Algorithm 1's training procedure using the values 

given in Table 3. Experiments and observations were used to determine these parameters, which were optimized for 

performance. In Fig 3, we see the training reward for a total of 104 episodes over four different neural network depths 

(plain vanilla DQN, DQN with ten hidden layers, DDQN, and D3QN). Rewards values displayed here are averaged over 

the past 50 episodes. Using the graphic, we can see that the proposed methods do, in fact, converge. For the first 1000 

episodes, all methods operate randomly with 𝜖 =1, allowing the agent to learn about its environment through trial and 

error. Subsequently, the agent gradually refines its random policy until it converges on the optimal version, using the 

exponential decay 𝜖 of described above [15] 

 

Table 3. Configuration Settings 

Variables Values 

tri 20.01 

mi 10.2 

E 104 

K 103 

Df 0.92 

𝜖 1, by means of 0.9999 Decay 

hl 4.0 otherwise 10.0 

Q-Network When hl= 4 → 70,45,45,79,150 

Neurons/layers When hl=10→70,45,45,45,45,45,45,45,45,45,79,150 

𝜑 3X 10-4 

|ρ| 45 

|𝑅𝑝| 105 

𝑟 10-3 

target steps update (soft) 4 

 

VII. RESULTS AND DISCUSSION 

To gauge the usefulness of Vehicular chain-policy RL, we have done a battery of experiments. Q-Learning methods have 

values that are close to one another, unlike the Greedy and RS policies. Vanilla DQN, by leveraging online and targeted 

networks, was able to reap the highest benefit (26,900). It is shown in below graph, how much each policy earned in 

rewards during the testing (real-time) episodes. We have a closer look at the payoff when latency, security, and cost are 

all considered. No goal may be pursued with more importance than the others. Considering this, any strategy's aggregate 

of these three competing goals needs to be less than or equal to one. The suggested multi-objective optimization 

paradigm involves a trade-off, while the reward function tends to maximize. It's important to tighten up security without 

compromising on speed or budget. Therefore, the incentive attempts to optimize the three competing goals while 

considering the limits imposed by the application. By assigning penalties to ensure that the requirements are met, the 

DQL algorithm and its variant find the policy that maximizes the long- term trade-off described by Eq. (10). To 

maximize safety, DQL methods consider not only the required level of security but also the time-sensitive nature of the 

transactions at hand. Therefore, it has the lowest latency when compared to the Greedy and RS methods. As was 

previously introduced, the reward function is directly affected by the reputation of the chosen miners. Since the RS 

strategy takes the best action given the current state, it achieves a high latency level, while the greedy approach, which 

simply considers the immediate future, is unable to manage the trade-off between security and latency. Greedy and RS 

methods have a hefty price tag compared to how well they perform. Increasing the security results in a higher cost 

objective, as the cost objective stated by Eq. (6) is directly related to the miners' cost. The delay goal is also strongly 

impacted by the volume of transactions that are chosen [16]. Therefore, the strategy should consider such details and 

maximize security while minimizing latency and expense. Fig 4 depicts the average accumulated rewards for all 

methods, demonstrating how similarly they function across the various Q-learning methods. As a matter of fact, the RS 

strategy has the worst performance, with the Greedy approach coming in second. In a stationary setting, Vanilla DQN 

performed best, with an average accumulated reward of 13450. 
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Fig 3. Sum of All Policies' Rewards from Their Testing (in-the-wild) Episodes. 

 

Action-Time 

 
Fig. 4. Simulated Policy Response Time in s, both With and Without a Shift in Miners' Pricing. 

 

Time-to-decision is viewed as crucial in VANET applications, especially in emergency situations. The time it takes 

for each technique to decide on an action after a series of trials is as follows: The Greedy strategy uses the most time 

because it simply does one pass over all the available actions to identify the optimal one considering the immediate 

payoff. In VANET systems, when quick decision-making is essential, the Greedy method may be judged untrustworthy. 

The Random Selection (RS) method, on the other hand, is lightning quick. It picks an action at random, without 

considering any of the potential benefits, later state transmission, entity-level requirements, or necessary tries to 

successfully solve the environment, resulting in little accumulated reward over time. Taking the proper action with a 

focus on the future and the reward now is crucial in VANET systems, making the RS approach an undesirable choice. 
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Our proposed training techniques perform similarly to one another, especially when there are no unexpected shifts in the 

environment. Proposed methods must account for the unexpected price shift while still rewarding miners for their future 

work. While vanilla D3QN may show to be the fastest way to perform major system changes, doing so is more labor-

intensive in practice. The vanilla DQN technique may be the most suitable option in a static system or while 

implementing extensive changes. As we saw   however, the odds of making a mistake are larger in DQN. Therefore, the 

characteristics of the system are relevant in determining the gravity of the problem. Considering their individual strengths 

and weaknesses as well as the system requirements of Vehicular chain-RL, DQN, DDQN, and D3QN can all be 

successfully implemented. If the methodologies presented in this work are to be used in Vehicular chain-RL, the system 

administrator can use the following guidelines to make an informed decision: Even while D3QN increases the time it 

takes to perform an operation; it is the preferred option when working with a dynamic and unpredictable environment. 

When compared to alternative methods, DQN's time to choose an action is the fastest. However, when there is an abrupt 

shift in the system, the temptation to act inappropriately increases. Fig 4 shows simulated policy response time in s, both 

with and without a shift in miners' pricing 

 

VIII. CONCLUSION 

We provide Vehicular chain-RL, which enables the safe, adaptive, and flexible exchange of medical data and Vehicles 

information among a wide range of entities. An “intelligent Blockchain Manager (BM) is introduced to address the trade-

off between system security, latency, and cost. The Blockchain Manager is implemented with one of three reinforcement 

decision-making algorithms (DQN, DDQN, or D3QN) depending on the needs of the VANET application and the 

robustness of the platform. For the time being, just one method may be used to put the smart Blockchain manager into 

action. The DQN method is useful when only little changes are made to the system, but the D3QN method can handle 

frequent fluctuations and converge smoothly in real time, as shown by the experiments. In the proposed Reinforcement 

Learning (RL) methods, the Block Manager (BM) takes on the role of agent, determining parameters like transaction 

volume per block size and the required number of miners for validation. The simulation findings show that reinforcement 

learning approaches are superior to greedy and random selection (RS) methods. Despite heuristic approaches, which 

make a rapid decision-making that results in an immediate drop in the accumulated reward, the given models consider 

the temporal characteristics and future behavior of the Blockchain to arrive at a sub-optimal solution. When compared to 

DQN, DDQN, and D3QN, the Greedy approach's processing overhead makes it unsuitable for usage in real-time or 

mission-critical circumstances”. 
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