Journal Pre-proof

The Deployment of Machine Learning and On-Board Vision Systems §
) . Journal) ——
for an Unmanned Aerial Sprayer for Pesticides | Machine and Compiting

Vi i -
/\Mﬂmg 01, Issue 01, January 2021

Karrar S. Mohsin, Chandravadhana S, Viharika Chaudhatri,

Balasaranya K, Pari R and Srinivasarao B

DOI: 10.53759/7669/jmc202505047
Reference: JIMC202505047

Journal: Journal of Machine and Computing.

Received 17 April 2024
Revised form 09 October 2024

Accepted 18 December 2024

Please cite this article as: Karrar S. Mohsin, Chandravadhana S, Viharika Chaudhari, Balasaranya K,
Pari R and Srinivasarao B, “The Deployment of Machine Learning and On-Board Vision Systems for an
Unmanned Aerial Sprayer for Pesticides”, Journal of Machine and Computing. (2025). Doi: https://
doi.org/10.53759/7669/jmc202505047

This PDF file contains an article that has undergone certain improvements after acceptance. These
enhancements include the addition of a cover page, metadata, and formatting changes aimed at enhancing
readability. However, it is important to note that this version is not considered the final authoritative version
of the article.

Prior to its official publication, this version will undergo further stages of refinement, such as copyediting,
typesetting, and comprehensive review. These processes are implemented to ensure the article's final form
is of the highest quality. The purpose of sharing this version is to offer early visibility of the article's content
to readers.

Please be aware that throughout the production process, it is possible that errors or discrepancies may be
identified, which could impact the content. Additionally, all legal disclaimers applicable to the journal remain
in effect.

© 2025 Published by AnaPub Publications.

“‘f@ AnaPub



The Deployment of Machine Learning and On-Board Vision Systems for an

Unmanned Aerial Sprayer for Pesticides

Karrar S. Mohsin'”, S. Chandravadhana?, Viharika Chaudhari®, K. Balasaranya*, R. Pari®°, B. Srinivasarao®
!Department of Information Technology, College of Science, University of Warith Al-Anbiyaa, Karbala, Irag.
*Corresponding Author Email: karar.sadeq@uowa.edu.iq
2Department of Mechatronics Engineering, Chennai Institute of Technology, Chennai, 600069, Tamil Naud, | Q

Email: chandravadhanas@citchennai.net

3Department of Computer Engineering, Government Engineering, Dahod, 389151, India. E

viharikachaudharil@gmail.com

“Department of Computer Engineering and Engineering, R.M.D. Engineering College

Nadu, India. Email: balasaranyal701@gmail.cog

SDepartment of Computer Science and Engineering, VELS Institute of Science,
Chennai, Tamil Nadu 600117, India. Email : pari_ramalingam@ySgap.com

5Department of Computer Science and Engineering, Koneru Lakshmayya Educ:ﬂr
Guntur, Andhra Pradesh, India. Email : drbs

FolW®ation, Vaddeswaram,
iversity.in
Abstract: In the Smart Farming (SF) domain, integrati m@is systems is revolutionizing

the efficiency and sustainability of Crop Mag CM)

ices. This paper introduces an
approach to Pest Control (PC) in Tea focusing on using an autonomous
Unmanned Aerial Vehicle (UAV) equipp a Pest Detection (PD) and precision spraying
system. Leveraging the capabilities of the D gras T40, a UAV specifically engineered for

agricultural use, this system inc ates a Deep Learning (DL) built on the DenseNet-121

architecture. This model is refg ccultely detect and accurately evaluate the infection rates
of six prevalent tea pests. I'@der telligently identify pesticide dispersion, the UAV uses
advanced technology targeted deployment, optimizes the utilization of resources,
and minimizes j environment. The method's effectiveness has been proved by
simulation [ recommending that it has real-world possibilities. A sustainable and
flexible 0 several pest cases can be achieved by pairing the Sprayer Control Module
. Such integration significantly advances autonomous Pest Control Systems
ces PC precision and performance, and minimizes the environmental impact.
¥ Sprayer Control Module, UAV, Smart Agriculture, Intelligent Autonomous Systems,
r anagement, Smart and Precision Agriculture

1. Introduction

Precision Agriculture (PA) and Smart Farming (SF) have transformed the landscape of

agriculture by integrating innovative technology and novel methods to approach agriculture to



enhance productivity, lifespan, and sustainability. Applying data-driven conclusions, PA provides
practical application of resources, accurate monitoring of agricultural performance, and effective
oversight of conditions in the soil. The productivity of crops, reduced waste, and input optimum
performance have all been substantially improved by integrating autonomous systems into SF

techniques. Systems that are automated like these factors have grown fundamental in many

processes related to agriculture, rapid the sector's progress towards more successful g0
sustainable approaches. Recent developments in fields such as soil testing, collectio Q
information, and precise fertilizer and water application have revolutionized g . &
agricultural operations. As a result, agriculturalists can reduce costs, improve % d

optimize Decision-Making Systems (DMS).

By providing an innovative method of using Chemicals used gpiucingWsks related

to hand spraying, permitting precise and accurate control across d ed environments, and
icles (UAVs) have

transformed the Pest Control System (PCS). Instead of bei consuming and susceptible to

sustaining agricultural products productivity and health, Unmanned pal

mistakes, autonomous UAYV sprayers enhance the effic ccuymmcy of protecting crops while

&

been rendered more challenging by recod"Qe@#g that autonomous UAV sprayers, fitted with

minimizing human monitoring necessities.

The invention of an intelligent a Pest ction (PD) and spraying system has

complex algorithms and sensors, can execute W@gllenging tasks without human involvement,
boosting the productivity of P hine Learning (ML), Computer Vision (CV), and
autonomous accuracy are reg@fte0™or agentire system to navigate productively, identify bug-

afflicted areas, and react fa der t0 evolve to new surroundings and pest types.

The present
Plantationg (TPle

ibes an experimental UAV-based PCS for Munnar Tea

cultiv es. Its intelligent Sprayer Control Module (SCM) guides the drone to the precise
i argeted pesticide application. The model demonstrated promising performance in
trials, meeting and exceeding expectations, showcasing a significant leap forward in
A, @hd presenting a sign into a future where innovative technology and SF practices intersect.
Integrating UAVs for agricultural PCS faces challenges such as model accuracy, real-time
processing, sensor calibration, navigation safety, regulatory compliance, environmental impact,

deployment infrastructure, and system maintenance. A proposed approach addresses these issues



by ensuring accurate PD, instantaneous processing, calibrated sensors, focused spraying, and
adherence to rules. This includes regulatory compliance, advanced obstacle detection, operator
training, real-time monitoring, environmental impact mitigation, system redundancy, and regular
maintenance.

The paper is divided into six sections: Section 2 discusses related work, Section 3 presents
methods and study area, Section 4 presents architecture and process explanation, Section 5 pres
results and simulation, and Section 6 concludes the work.

2. Literature Review

Integrating UAVs in agriculture, particularly pesticide appli
towards PA. Excessive pesticide use has adverse effects on soil ferts
UAVs can address these challenges by employing semi-automatic ajSg@aches and specialized
control systems with advanced sensors and hardware, enhancing precj

[11] introduces a cost-effective, robot-assisted pest} ﬁion solution guided by a
color sensor and microcontroller. This precision-driv d oot enhances efficiency and

reduces environmental and human health ha S ted esticide overuse.

9

or real-time identification of spraying areas in

The study emphasizes the imporg curateq@mrget recognition for UAV sprayers,

highlighting the use of Deep Learning (
coriander croplands, resulting in high F1 scores, [
spraying.

[13] test various mod

gntially improving the precision of UAV-based

Mgsing an autonomous UAV system. Based on the results

of this investigation, these niques are more accurate than conventional approaches to
distributing chemica

consumed

oth the natural environment and economic growth. Also, research analyses the
plet size and wind speed on the likelihood of drift by UAVSs, consequently feeding
guidelines with helpful information and reinforcing the environmental security of UAV
spraying compared to standard approaches.

The study introduces a visionary UAV sprayer system that uses RGB cameras to assess
vegetation vigor and adjust pesticide flow, highlighting the adaptability of UAV technology for

responsive and PA applications.




The study by [17-20] examines the use of UAVs in agriculture, particularly in developing
countries like India. They highlight challenges like farm size, income, knowledge transfer, and
infrastructure. However, their research on a Drone as a Service (DaaS model demonstrates UAVS'
potential for efficient weedicide application and suggests a significant increase in agricultural
UAV markets.

3. Materials Used
3.1 UAV Architecture

cide aMPlication in

and propellers, which ensures stability during flight.

The drone is equipped with advanced atomizing no

even distribution of the chemicals, optimizing the appigsa

: hch fa

in vaNgd terrains such as orchards and hilly
0 Ing a target area and allowing the drone to

ncy and minimizing waste.

The T40 is equipped with a 12-megapixel ates the creation of local maps

essential for precise spraying operations

regions. The mapping process involves
photograph and stitch together images for a co hensive 2D map. The rapid-charging battery
supports extensive use with up to rge cycles and can recharge in nearly 10 minutes using

a compatible high-voltage o rop@@can handle up to 50 kg for dry material spreading with

an efficient discharge s t maximizes coverage while minimizing refill frequency. An

enhanced obstacle a with an active phased array radar and a binocular vision

system for 3D antly reduces the risk of in-flight collisions, contributing to the safe

deploygen he UAQLin complex agricultural environments. Table 1 presents the specifications

Flight controller
Pesticide Tank
Motor Arm

Fluid pipe
Propeller

Battery

Camera
Atomized Nozzles

Landing Support




Figure 1: DJI Agras T40 UAV

Table 1: Specification for the DJI Agras T40

Category Specifications
Weight 38 kg (no battery), 50 kg (with battery)
Max Takeoff Weights Spraying: 90 kg, Spreading: 101 kg
Dimensions (mm) Operational: 2800x3150x780, Compact: 1125x750

Hovering Accuracy
Max Flight Radius

Max Wind Resistance

Motor Power

Propeller Diameter

Rotor Quantity

Tank Capacity
Spray/Spread Width

Operating Temperature

Radar System

Vision System Range

02-inch touch LCD, 1920x1200 resolution
W000-2.4835 GHz, 5.725-5.850 GHz
Internal: 3.3 hrs, External: 2.7 hrs
30000 mAh
52.22V

Remote Controller Display

Operating Frequency

Battery Life

Battery Capacity

Voltage

Approx. 10 mins
DC and AC outputs
30L
Approx. 500 ml/kWh

Charging Ti

Generator Ou

ate™on the green hills of Munnar, the southern state of Kerala, the study station is a
TE@Mat covers about 20 ha. The Munnar tea estates, situated 1,500 and 2,500 meters above

ean's surface, are renowned for their gently undulating hills adorned with green tea plants.

At these planned elevations, this specific farm experiences a unique environment that is perfect
for producing tea but, alas, is infested by pests. The environmental conditions have been defined

by substantial rainfall along with periodic clouds. The estate management team maintains the




highest priority on SF procedure, focusing on chemical consumption and sustainability. The
plantation thus provides an optimal location for the autonomous, accurate use of chemicals through
an autonomous UAV system. In support of the estate's focus on SF, the research investigation will
demonstrate how this technology may improve efficiency while reducing its environmental
impact.
3.3 Pest Threats in Munnar's TPs

The green tea plantations of Munnar are unparalleled and serve as centers for pests a

attraction for tea lovers owing to their flavorful, tasty tea and the pleasant climate

plants. Two major insects that may cause severe damage to tea plants are the r

mite (Oligonychus coffee) and the leaf-eating mosquito bug (Helopelti rayqggecause It eats

on sap from trees, the tea-consuming mosquito insect reduces produa Is the'Yof surfaces
of tea plants. On the other hand, lack of moisture is good for red-colorcSg@ider mites, which may
trigger the plant's health to decline and foliage to turn yellow. Th?‘ﬂ

(Biston Suppressaria) is a pest that may decrease the produ uality of crops by devouring

g looper caterpillar

plants. Dangerous crop arterial networks, insects, an ch 3 shot hole borer (Xyleborus

X bmona Coffearia). Despite proper management,

Fornicatus) burrow into stems.

The tea tortrix can impair a tea g heticsnd the health of the plants, and it is

additionally referred to as the tea leaf roll
fungal illnesses like blister rot (Exobasidiu exans) can remove plantations and inflict
significant losses. Blister blight i rial illness, and tea tortrix, which safeguards itself by
wrapping the leaf, is a differer@o e fogor. In Figure 2, images of each of the unwanted insects

are shown.

Biston suppressaria

Xyleborus fornicatus Exobasidium vexans




Figure 2: Pest Images
4. Proposed Model
The proposed Pesticide Spray Model (PSM) is presented in Figure 3. The detailed

description of the components are discussed in the following sections:

UAV Control Station .\\

Waypoint || Navigation ‘

planner Commands |

==l

B —— inputimage j

Farmer
| Database

Pest Detection Sprayer Control
Algorithm Module

Figure 3: UAV-based PD an
4.1 Waypoint Planner
To implement the proposed PSM, a plantatigWseg uld be divided into multiple

zones. The waypoint planner in the propo MPWS Mission Planner Software (MPS) to

create the autonomous flight path for the . 4). The defined segment, marked by the red

boundary in the image provided, targets the aNQuof interest for the UAV’s operation. Within the

MPS, the initial task is to impo e segments acquired geospatial data. This data is the

foundational layer upon which ight path is made. The software enables the setting of

precise coordinates for eac

ypoi ctively translating the 2-D map data into a 3-D flight

pecific to the plantation's geography.

s this level of precise UAV control. The precision of the UAV assures sustainability and
PC protection.
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landmarks; the monitoring software of the UAV enables rapid inte
or impediments in surroundings, thereby ensuring objective Success RAWESR) and accuracy.
4.2 Data Collection and Pre-Processing

Accurate PD can be found by obtaining high-resol es of TP leaves using the 12-

megapixel video cameras on the DJI Agras T40 UAV. molel uses specific leaf features.

Before subsequent research, the images recgg

\Z

¥AV moves following a path that MPS has set.

[IN@gary processing to ensure reliability and
quality by removing highly fuzzy ima oor bMghtness. In order to encompass the
geographical region that has been targeted,

The ML model examines a dataset that Wgpludes images of green tea leaves in order to

identify signs of a pest problem. #berfgams this by juxtaposing these images to the sequences of
pest features it discovered, t ectig® particular signs such as coloration or structural flaws.

Precise health of plant tests isYgde feasible by this non-invasive technique, enabling precise and

Concatenate Concatenate Concatenate

Figure 5: Structure of Denseblock
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Figure 6. Densenet network's model

4.3 PD Algorithm

Leveraging a DL model to extract basic features, the research focuses on PD in TP i
representations. To detect pests on tea leaves, the simulation must be equipped to d
spectral and textural patterns. The above model is more adept at coping with diye
with pests and is more applicable than DeepCNN. Having stated that theags
it being an overfit. Data processing, failure, batch standardization, ag @

of the techniques integrated into the framework to improve its geners

lea are a few
capabilities. These
methods enhance the model's value in precisely recognizing pests over VaRgals crop conditions.
The revolutionary design referred to as DenseNet, whiaaahads foundation in the ResNet
design, uses layer-wise direct connections to optimize the agke of data analysis. In a feed-
forward method, DenseNet links all of the layers dir
gtionJAps, seNet partitions its framework into
, but the geographical dimensions of the feature

these dense blocks: the data inputs and results

wi ther, compared to traditional

networks. Identical to ResNet's identity

"Dense Blocks," where the total filters are'8
maps remain fixed. A novel model is found w
of the following layers are integra Il of the "0 layers in a DenseNet of ‘D' layers perform a
nonlinear function. 'T;', a com that embraces batch normalization, ReLU activation,
and a 3 x 3 convolution, E 1).
ya = Tal{yo, y1, - , (1)

In this EQU (3 nifies the stating data input image to the network, ' y4 ' is the result

of the'd

pecify the integrated feature maps formed in the previous layers." y;
, and site function significant to the functions at layer ' d '. This connection
allo e et ($avoid the explosion gradient problem common in deep networks and permits
ore rOQst feature propagation.

seNet models integrate unique transition layers positioned between the dense blocks.
ore function is to perform dimensionality reduction through a sequence of operations that
includes batch normalization, a 1x11x1 convolution, followed by a 2x22x2 average pooling
process. The dense pairing of feature maps has a chance to substantially elevate a network's

confusion, considering these transition layers vital to complexity monitoring. The strengths of




DenseNet are manifold. Foremost, it addresses the challenge of vanishing and exploding gradients,
a common hindrance in standard deep neural networks. Additionally, it facilitates the reutilization
of features across the network. Unlike conventional networks that rely solely on the most abstract
feature set for classification tasks, DenseNet leverages a composite feature pool from different
levels of abstraction, significantly reducing the model's parameters and enhancing the efficacy of

the network.

In this study, we adapt the DenseNet-121 framework, recognized for its depth

study introduces two fully connected layers after the global averaggdFeQngN@Qer to turther

¥ modiT®ation aims

to refine the representation of high-level features specific to leaf cog@ons. The output layer
employs a SoftMax activation function, which provides a probabilist?(i

Figures 5 and 6 illustrate the architecture of the adapted an example of connectivity

on of pest presence.

within a dense block. Comprehensive details of the argi e, ij@luding layer configurations,
are presented in the following Table 2.
Table 2: Config

the |E8gping model

Layer name Outpu™@Qupixels) Layers
Input Image -
Convolution + ReLLU 112 x 112 Conv 7x7, stride 2
Max Pooling 6 x 56 3x3 max pool, stride 2
Dense Block (1) 56 x 56 6 x [1x1 conv + 3x3 conv]
Transition Layer, 28 x 28 1x1 conv + 2x2 avg pool, stride 2
28 x 28 12 x [1x1 conv + 3x3 conv]
14 x 14 1x1 conv + 2x2 avg pool, stride 2
14x 14 24 X [1x1 conv + 3x3 conv]
7x7 1x1 conv + 2x2 avg pool, stride 2
X7 16 x [1x1 conv + 3x3 conv]
1x1 -
ully nected + SoftMax - 6 [pest types]

The pre-trained model used a 782 image dataset with 1-5 pest species to refine its ability
to PD, utilizing the introduced dataset as a training ground.

4.4 Sprayer Control Module



The Sprayer Control Module (SCM) is a crucial component of the proposed UAV-PCS,
regulating pesticide dispensing based on pest infection rate on tea plants. It integrates PD data with
a precision spraying algorithm for optimal application.

1. Infection Rate Determination: The infection rate is calculated by the PD algorithm using the
input from the leaf image data. The infection rate (1) is the ratio of the infected leaf area to the

total surveyed leaf area within the image frame, EQU (2)

I — Ainfected X 100% 2)
Atotal

where A;,recteq 1S the total area of detected pests on the leaves and A, is the total le @

the image.

. Variable Rate Spraying: The SCM adjusts the spray rate (R) based ect ate, using
We needed, EQU (3)

R = f(l) = Rbase + (I X Sfactor) (3)
Here, Ry, IS the base spray rate, and Sg,.., 1S @ sensitivity factor cWe spray rate increase with

a pre-defined control function, f(I), which determines the amount o

infection severity.
3 Real-Time Adjustments: As the UAV travergd® th on, the SCM continuously

receives real-time data on infection rate troq@podule uses this data to adjust the spray

nozzle's flow rate. A feedback loop ent e amount of pesticide dispensed is responsive

to the immediate requirements of the plan
4 Spray Pattern and Distributiggay The SC programmed to optimize the spray pattern to
ensure maximum covera i inimal waste. This is accomplished by adjusting the
spray nozzles' anglegglhd the s altitude. A distribution algorithm, D(x, y), accounts
for the UAV's g

coverage of the infected regions while minimizing unnecessary spraying.

speed to adapt the spray pattern across the plantation grid.
t Path Optimization: Utilizing the infection rate data, the SCM

5 Pesticide Dosage
{ path to focus on areas with higher infection rates. The UAV follows

ation can be represented as a problem of reducing the function P(x, y, I) over
tatf®n area, where P represents the path that the UAV will take given the coordinates
d infection rates I

Environmental and Safety Compliance: The SCM adheres to predefined thresholds for
pesticide concentration to ensure environmental and human safety. If the required pesticide
dosage exceeds safety levels, the system alerts the operator and adjusts the spray

concentration to acceptable limits.



To ensure an effective and economical spray distribution, the SCM utilizes a mathematical
model that correlates the pesticide dispensing rate with the UAV's speed (V), nozzle discharge
coefficient (C;), and the desired droplet size (D). The spray flow rate (Q) is determined as
follows: EQU (4)

Q = Ca X Anone X\[2X g xH (4)

where A,,,.. 1S the nozzle cross-sectional area, g is the acceleration due to gravity, a
is the height of liquid pesticide in the tank, which decreases as spraying progresses.

4.5. Control Logic Implementation:

The SCM algorithm is implemented in the UAV's onboard computer, utilizj
processing and actuator control to adjust the spray mechanisms.
The control logic includes the following steps:
(a) The PD system will be used to collect real-time infection data.
(b) The variable rate spraying algorithm computes the infection’an etermines the most
suitable spray rate.
(c) The UAV's flight path will be adjusted usin izgl path algorithm for optimal

coverage.

(d) The sprayer's flow rate and patt tinuo adjusted in response to real-time
infection data and UAV dynamics.
(e) The goal is to ensure environmental and $gpety compliance through intelligent thresholds

and real-time adjustments

Integrating SCM into o -bas CS solution can significantly improve the precision

and effectiveness of p lication in TPs, resulting in a sustainable and cost-effective
approach that minimige ical footprint.
5. Simulagion

uscS@e Cup Carbon 5.0 simulator to simulate 10T device and UAV behaviors
inan S It created a virtual TP with distinct zones, varying in pest infection intensity,
terogeneous nature of agricultural fields, allowing for realistic simulations of

nd UAVs. UAVs were programmed to cover a field efficiently, using a bespoke PD

exclusively over the afflicted plants, mimicking the actions taken during an actual pest outbreak.

This data provides valuable insights into PC measures' effectiveness and response times.




Clusters of UAVS' preliminary trajectory and the techniques of infection spraying are
displayed in Figure 7. Researchers performed an extensive model with updated parameters to

determine how numerous variables, such as speed, weight resources, atmospheric conditions, and

©

aviga

chemical distribution sequences, impacted the PC's productivity.

(a)
Figure 7: Cup Carbon Simulation: a) initial path navigation b) PD §
5.1 Assumptions and Operation for UAV-Based PC

M1 Agras T40 UAV-

Certain presumptions form the core of the functional approac?th
periments, which represent

based PCS for TPs. Such hypotheses are the backbone fo
imagined scenarios that can be amended according to t xij@of the real world.

A. Assumptions:

that' ¥, DJI Agras T40 UAV functions at its

acturer's standards for flight designs, chemical

(a) Optimized UAV Performance: It ig
optimum effectiveness, fulfilling the
loads, and battery lifespan.

(b) Stable Weather Condition precedented weather situations, such as severe winds, rain,
or fluctuating humidi ot Mark the UAV's flight path or the pesticide spraying
method; such variabl ve no-significance in the function.

simulation attempts to consider unexpected anomalies, like

, or spacing, which may impact the frequency of pests and the

I Agras T40 UAV's embedded PD algorithm could fail to detect water in

enyipnmMents with dissimilar graphical limitations.

ctical Pesticide Application: The research demonstrates that chemical pesticides, when
distributed by UAV, effectively eradicate all of the detected pests, irrespective of whether
or not they are robust or have several levels of vulnerability.

B. Operation: The single-UAV system's functioning approach is executed systematically

following these hypotheses generated.



1. Initial Reconnaissance: A baseline crop study has been performed by the DJI Agras T40
UAV. It detects the initial symptoms of pest activity and defines areas within the plantation.

2. Infestation Detection: Targeted spraying treatments have been rendered feasible by the
UAV's advanced PD, which uses regular flight data to pinpoint diseased regions.

3. Precision Spraying: By accurately spraying chemical compounds onto diseased regions,
the UAV reduces resources and minimizes environmental impact.

4. Monitoring and Adjustment: The UAV maintains track of what was sprayed afte

aerosol spray treatment concludes, providing valuable data for further opgf

improving the PCS holistically.

5. Data Synthesis and Review: A process of investigation of stati 3 ormance, the

UAYV system enhances PCS and verifies farming legal co esultimgin overall

productivity benefits. It accomplishes this through the product"g@Of precise information

from each sortie. ,

5.2 Statistics Analysis

In order to evaluate how effectively a UAV g on B employed, the study used
statistical methods, including a One-Sample ed res ANOVA, and C-SGFT (C-

Square Goodness of Fit Test). The studig @ bd if

rates, evaluated the mean detection time to *gu#et time, and analyzed reliability and potential to

measured PD-SR equaled predicted

enhance across numerous UAVSs.

- One-Sample t-Test:

Mean UAV .
. . Targaifime Mean Difference 95% ClI 95% ClI
Test Detection Time df p-Value .
] (min) Lower Bound  Upper Bound
(min)

35 -2.33 29 0.026 -0.5 -0.9 -0.1
-1.05 29 0.300 -0.2 -0.6 0.2
-2.00 29 0.054 -0.4 -0.8 0.0
-1.50 29 0.141 -0.3 -0.7 0.1
-2.80 29 0.008 -0.6 -1.0 -0.2

k 4-minute PD target as a benchmark, the UAV's mean detection time varied
ween to 3.8 minutes in five distinct experiments performed by the One-Sample t-test. In

Te and 5, the UAV consistently PD faster than the target time, with p-values of 0.026,

marginally significant), and 0.008, respectively. These tests showed that the UAV detected
faster than expected (-0.5, -0.4, -0.6 minutes). However, in Test 2 and Test 4, the mean detection
times were not suggestively different from the target time (p-values of 0.300 and 0.141,

respectively), indicating that the UAVs met the performance benchmark. The narrower confidence




intervals in Test 1, Test 3, and Test 5 indicate a more precise mean difference from the target time,
signifying reliable UAV performance.
Table 4: Repeated measures ANOVA

. Detection Detection Detection Detection Detection F df df p-
Flight Rate 1 (%) Rate2 (%) Rate3 (%) Rate4 (%) Rate5(%) Value Between Within Value

1 88 91 93 94 95 4.67 4 16 0.007

2 85 89 90 92 93 3.50 4

3 87 88 92 90 94 2.56 4

4 86 90 89 93 95 512 4

5 84 87 91 92 94 4.20 4

Flight 3's p-value slightly
exceeds the conventional threshold for significance, it stil @ yward higher detection rates.

highlighting a potential learning effect an WS and increasing efficiency of the PD

Zone Observed SR (%) ¥2 Value df p-Value
A 90 1.88 1 0.170
B 88 0.53 1 0.466
C 93 4.71 1 0.030
D 85 0.00 1 1.000
E 0.94 1 0.332

es more effective than the alpha level of 0.05, with Zone D perfectly matching
ate. Zone C, with a p-value of 0.030, suggests a statistically significant higher SR
ted, which may imply that this zone's conditions are particularly conducive to detection
or that some zone-specific factors are at play, enhancing the UAV's effectiveness. The model's
performance is consistent with expectations, and Zone C's anomaly warrants further investigation

to determine what's causing the higher SR.



Autonomous UAV systems in TPs can reduce labor costs, optimize pesticide usage, and
minimize crop losses. Despite high initial investment, long-term savings and increased yields make
it a financially viable sustainable agriculture solution. With a dynamic DL approach to several
crops and pests, the approach is robust and adaptable, making it suitable for many farming uses.
6. Conclusion and Future Work

Applying a DenseNet-121 driven DL in a UAV, particularly the DJI Agras T40,
research shows how to autonomously detect pests and spray pesticides accurately in &
plantation area. The system was adept at precisely detecting and quantifying six cg
problems based on computer simulations performed on a Munnar, India TP. This

to select treatment regions precisely, minimizing harm to the environg sumption of

pesticides. In Smart Farming, the Sprayer Control Module contra ions OWed on PD

stages, so chemical treatments are put down when required. This\@@€thod promotes crops'
performance and health while minimizing the environmental effecigpFuNger investigation on
autonomous UAV sprayers is feasible through this researc pficant advance step in SF.

By implementing ML and UAV technological ggv the rming industry may predict

environmentally friendly approaches, whig | act , CM, the condition of the

&

environment, and total efficiency and prq
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