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Abstract: In the Smart Farming (SF) domain, integrating autonomous systems is revolutionizing 

the efficiency and sustainability of Crop Management (CM) practices. This paper introduces an 

approach to Pest Control (PC) in Tea Plantations (TP), focusing on using an autonomous 

Unmanned Aerial Vehicle (UAV) equipped with a Pest Detection (PD) and precision spraying 

system. Leveraging the capabilities of the DJI Agras T40, a UAV specifically engineered for 

agricultural use, this system incorporates a Deep Learning (DL) built on the DenseNet-121 

architecture. This model is refined to accurately detect and accurately evaluate the infection rates 

of six prevalent tea pests. In order to intelligently identify pesticide dispersion, the UAV uses 

advanced technology. This provides targeted deployment, optimizes the utilization of resources, 

and minimizes impact on the environment. The method's effectiveness has been proved by 

simulation experiments, recommending that it has real-world possibilities. A sustainable and 

flexible approach to several pest cases can be achieved by pairing the Sprayer Control Module 

(SCM) with the PD. Such integration significantly advances autonomous Pest Control Systems 

(PCS), enhances PC precision and performance, and minimizes the environmental impact. 

Keywords: Sprayer Control Module, UAV, Smart Agriculture, Intelligent Autonomous Systems, 

Crop Management, Smart and Precision Agriculture 

1. Introduction 

Precision Agriculture (PA) and Smart Farming (SF) have transformed the landscape of 

agriculture by integrating innovative technology and novel methods to approach agriculture to 
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enhance productivity, lifespan, and sustainability. Applying data-driven conclusions, PA provides 

practical application of resources, accurate monitoring of agricultural performance, and effective 

oversight of conditions in the soil. The productivity of crops, reduced waste, and input optimum 

performance have all been substantially improved by integrating autonomous systems into SF 

techniques. Systems that are automated like these factors have grown fundamental in many 

processes related to agriculture, rapid the sector's progress towards more successful and 

sustainable approaches. Recent developments in fields such as soil testing, collection of 

information, and precise fertilizer and water application have revolutionized conventional 

agricultural operations. As a result, agriculturalists can reduce costs, improve productivity, and 

optimize Decision-Making Systems (DMS). 

By providing an innovative method of using Chemicals used for pest-reducing risks related 

to hand spraying, permitting precise and accurate control across differed environments, and 

sustaining agricultural products productivity and health, Unmanned Aerial Vehicles (UAVs) have 

transformed the Pest Control System (PCS). Instead of being time-consuming and susceptible to 

mistakes, autonomous UAV sprayers enhance the efficacy and accuracy of protecting crops while 

minimizing human monitoring necessities. 

The invention of an intelligent autonomous Pest Detection (PD) and spraying system has 

been rendered more challenging by recognizing that autonomous UAV sprayers, fitted with 

complex algorithms and sensors, can execute challenging tasks without human involvement, 

boosting the productivity of PCS. Machine Learning (ML), Computer Vision (CV), and 

autonomous accuracy are required for an entire system to navigate productively, identify bug-

afflicted areas, and react fast in order to evolve to new surroundings and pest types. 

The present research describes an experimental UAV-based PCS for Munnar Tea 

Plantations (TP) in south India. The research utilizes the capabilities of the DJI Agras T40, a 

powerful and accurate UAV sprayer, to maximize TP's business operations. The DJI Agras T40 

UAV uses a DenseNet-121 learning model to detect and quantify pest infection rates across six tea 

cultivation pest types. Its intelligent Sprayer Control Module (SCM) guides the drone to the precise 

location for targeted pesticide application. The model demonstrated promising performance in 

simulation trials, meeting and exceeding expectations, showcasing a significant leap forward in 

PA, and presenting a sign into a future where innovative technology and SF practices intersect. 

Integrating UAVs for agricultural PCS faces challenges such as model accuracy, real-time 

processing, sensor calibration, navigation safety, regulatory compliance, environmental impact, 

deployment infrastructure, and system maintenance. A proposed approach addresses these issues 
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by ensuring accurate PD, instantaneous processing, calibrated sensors, focused spraying, and 

adherence to rules. This includes regulatory compliance, advanced obstacle detection, operator 

training, real-time monitoring, environmental impact mitigation, system redundancy, and regular 

maintenance. 

The paper is divided into six sections: Section 2 discusses related work, Section 3 presents 

methods and study area, Section 4 presents architecture and process explanation, Section 5 presents 

results and simulation, and Section 6 concludes the work. 

 

2. Literature Review 

Integrating UAVs in agriculture, particularly pesticide application significantly shifts 

towards PA. Excessive pesticide use has adverse effects on soil fertility and resistant pest species. 

UAVs can address these challenges by employing semi-automatic approaches and specialized 

control systems with advanced sensors and hardware, enhancing precision spraying. 

[11] introduces a cost-effective, robot-assisted pesticide application solution guided by a 

color sensor and microcontroller. This precision-driven wheeled robot enhances efficiency and 

reduces environmental and human health hazards associated with pesticide overuse. 

The study emphasizes the importance of accurate target recognition for UAV sprayers, 

highlighting the use of Deep Learning (DL) for real-time identification of spraying areas in 

coriander croplands, resulting in high F1 scores, potentially improving the precision of UAV-based 

spraying. 

[13] test various modules for PCM using an autonomous UAV system. Based on the results 

of this investigation, these techniques are more accurate than conventional approaches to 

distributing chemical substances, which might decrease the number of chemical products 

consumed.  

Given the results obtained from the research project, a modular system was suggested for 

equipping traditional sprayers with CV and specific nozzle controls [14-16]. This strategy provides 

improvements to both the natural environment and economic growth. Also, research analyses the 

impact of droplet size and wind speed on the likelihood of drift by UAVs, consequently feeding 

regulatory guidelines with helpful information and reinforcing the environmental security of UAV 

spraying compared to standard approaches. 

The study introduces a visionary UAV sprayer system that uses RGB cameras to assess 

vegetation vigor and adjust pesticide flow, highlighting the adaptability of UAV technology for 

responsive and PA applications. 
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The study by [17-20] examines the use of UAVs in agriculture, particularly in developing 

countries like India. They highlight challenges like farm size, income, knowledge transfer, and 

infrastructure. However, their research on a Drone as a Service (DaaS model demonstrates UAVs' 

potential for efficient weedicide application and suggests a significant increase in agricultural 

UAV markets. 

3. Materials Used 

3.1 UAV Architecture 

In our research, we utilized the DJI Agras T40 M/s. Shenzhen DJI Sciences and 

Technologies Ltd., Guangdong, China, is a UAV designed to apply agricultural pesticide spraying. 

The drone architecture is shown in Figure 1. The drone features a 40-liter spray tank and can cover 

an area of approximately 52 acres per hour, which is suitable for efficient pesticide application in 

large fields. Its structural design includes a coaxial twin-rotor system, each arm with dual motors 

and propellers, which ensures stability during flight. 

The drone is equipped with advanced atomizing nozzles, which create a fine mist to ensure 

even distribution of the chemicals, optimizing the application efficiency and minimizing waste. 

The T40 is equipped with a 12-megapixel camera, which facilitates the creation of local maps 

essential for precise spraying operations, especially in varied terrains such as orchards and hilly 

regions. The mapping process involves outlining a target area and allowing the drone to 

photograph and stitch together images for a comprehensive 2D map. The rapid-charging battery 

supports extensive use with up to 1,500 charge cycles and can recharge in nearly 10 minutes using 

a compatible high-voltage outlet. The drone can handle up to 50 kg for dry material spreading with 

an efficient discharge system that maximizes coverage while minimizing refill frequency. An 

enhanced obstacle avoidance system with an active phased array radar and a binocular vision 

system for 3D mapping significantly reduces the risk of in-flight collisions, contributing to the safe 

deployment of the UAV in complex agricultural environments. Table 1 presents the specifications 

of the UAV. 
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Figure 1: DJI Agras T40 UAV 

 

 

 

Table 1: Specification for the DJI Agras T40 

Category Specifications 

Weight 38 kg (no battery), 50 kg (with battery) 

Max Takeoff Weights Spraying: 90 kg, Spreading: 101 kg 

Dimensions (mm) Operational: 2800×3150×780, Compact: 1125×750×850 

Hovering Accuracy RTK enabled: ±10 cm, RTK disabled (radar): ±10 cm H 

Max Flight Radius 2000 m 

Max Wind Resistance 6 m/s 

Motor Power 4000 W/rotor 

Propeller Diameter 54 inches 

Rotor Quantity 8 

Tank Capacity Liquid: 40 L, Solids: 70 L 

Spray/Spread Width Spray: 11 m, Spread: 7 m 

Operating Temperature 0°C to 40°C 

Radar System Omnidirectional with obstacle avoidance 

Vision System Range 0.4-25 m 

Remote Controller Display 7.02-inch touch LCD, 1920×1200 resolution 

Operating Frequency 2.4000-2.4835 GHz, 5.725-5.850 GHz 

Battery Life Internal: 3.3 hrs, External: 2.7 hrs 

Battery Capacity 30000 mAh 

Voltage 52.22 V 

Charging Time Approx. 10 mins 

Generator Output DC and AC outputs 

Fuel Tank Capacity 30 L 

Fuel Efficiency Approx. 500 ml/kWh 

3.2 Area of Study 

Located on the green hills of Munnar, the southern state of Kerala, the study station is a 

private TP that covers about 20 ha. The Munnar tea estates, situated 1,500 and 2,500 meters above 

the ocean's surface, are renowned for their gently undulating hills adorned with green tea plants. 

At these planned elevations, this specific farm experiences a unique environment that is perfect 

for producing tea but, alas, is infested by pests. The environmental conditions have been defined 

by substantial rainfall along with periodic clouds. The estate management team maintains the 
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highest priority on SF procedure, focusing on chemical consumption and sustainability. The 

plantation thus provides an optimal location for the autonomous, accurate use of chemicals through 

an autonomous UAV system. In support of the estate's focus on SF, the research investigation will 

demonstrate how this technology may improve efficiency while reducing its environmental 

impact. 

3.3 Pest Threats in Munnar's TPs 

The green tea plantations of Munnar are unparalleled and serve as centers for pests and an 

attraction for tea lovers owing to their flavorful, tasty tea and the pleasant climate that nurtures 

plants. Two major insects that may cause severe damage to tea plants are the red-spotted spider 

mite (Oligonychus coffee) and the leaf-eating mosquito bug (Helopeltis theivora). Because it eats 

on sap from trees, the tea-consuming mosquito insect reduces production and curls the leaf surfaces 

of tea plants. On the other hand, lack of moisture is good for red-colored spider mites, which may 

trigger the plant's health to decline and foliage to turn yellow. The trimming looper caterpillar 

(Biston Suppressaria) is a pest that may decrease the production and quality of crops by devouring 

plants. Dangerous crop arterial networks, insects, and bugs such as shot hole borer (Xyleborus 

Fornicatus) burrow into stems. 

The tea tortrix can impair a tea garden's aesthetics and the health of the plants, and it is 

additionally referred to as the tea leaf roller (Homona Coffearia). Despite proper management, 

fungal illnesses like blister rot (Exobasidium Vexans) can remove plantations and inflict 

significant losses. Blister blight is a bacterial illness, and tea tortrix, which safeguards itself by 

wrapping the leaf, is a different possible factor. In Figure 2, images of each of the unwanted insects 

are shown. 
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Figure 2: Pest Images 

4. Proposed Model 

The proposed Pesticide Spray Model (PSM) is presented in Figure 3. The detailed 

description of the components are discussed in the following sections: 

 

Figure 3: UAV-based PD and PSM 

4.1 Waypoint Planner 

To implement the proposed PSM, a plantation segment should be divided into multiple 

zones. The waypoint planner in the proposed PSM employs Mission Planner Software (MPS) to 

create the autonomous flight path for the UAV (Fig. 4). The defined segment, marked by the red 

boundary in the image provided, targets the area of interest for the UAV’s operation. Within the 

MPS, the initial task is to import the segment's acquired geospatial data. This data is the 

foundational layer upon which the UAV’s flight path is made. The software enables the setting of 

precise coordinates for each waypoint, effectively translating the 2-D map data into a 3-D flight 

plan by incorporating altitude data specific to the plantation's geography. 

Waypoints are strategically aligned with the rows of tea bushes, creating an efficient 

navigation grid that enhances the UAV's coverage over the entire area. Setting waypoints that 

match the sloping terrain's elevations optimizes the drone's path for uniform pesticide application. 

MPS indicates if the UAV should be sprayed, sped up, or elevated at every route. These rules are 

essential for pesticide control in areas classified as "No-Spray Zones," such as the borders of 

plantations or locations close to rivers. Achieving Pest Control (PC) and environmental safety 

requires this level of precise UAV control. The precision of the UAV assures sustainability and 

PC protection. Auth
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Figure 4: Waypoint planning using MPS 

Automatic mode route selection, which applies algorithms to develop effective paths for 

particular regions, is also possible in UAV software, unlike manual route setup. The control unit 

of the UAV provides preliminary directions for GPS-guided self-piloting and provides terminal 

landmarks; the monitoring software of the UAV enables rapid intervention according to changes 

or impediments in surroundings, thereby ensuring objective Success Rate (SR) and accuracy. 

4.2 Data Collection and Pre-Processing 

Accurate PD can be found by obtaining high-resolution images of TP leaves using the 12-

megapixel video cameras on the DJI Agras T40 UAV. The ML model uses specific leaf features. 

Before subsequent research, the images receive preliminary processing to ensure reliability and 

quality by removing highly fuzzy images with poor brightness. In order to encompass the 

geographical region that has been targeted, the UAV moves following a path that MPS has set.  

The ML model examines a dataset that includes images of green tea leaves in order to 

identify signs of a pest problem. It performs this by juxtaposing these images to the sequences of 

pest features it discovered, thereby detecting particular signs such as coloration or structural flaws. 

Precise health of plant tests is made feasible by this non-invasive technique, enabling precise and 

fast PCS. By restricting the use of pesticides to specific regions, this technique improves 

productivity while also lowering the usage of pesticides and promoting a more sustainable 

approach to plantation health monitoring. 

 

Figure 5: Structure of Denseblock Auth
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Figure 6. Densenet network's model 

4.3 PD Algorithm 

Leveraging a DL model to extract basic features, the research focuses on PD in TP image 

representations. To detect pests on tea leaves, the simulation must be equipped to discern their 

spectral and textural patterns. The above model is more adept at coping with diverse problems 

with pests and is more applicable than DeepCNN. Having stated that there is a greater chance of 

it being an overfit. Data processing, failure, batch standardization, and transfer learning are a few 

of the techniques integrated into the framework to improve its generalization capabilities. These 

methods enhance the model's value in precisely recognizing pests over various crop conditions. 

The revolutionary design referred to as DenseNet, which has its foundation in the ResNet 

design, uses layer-wise direct connections to optimize the performance of data analysis. In a feed-

forward method, DenseNet links all of the layers directly with each other, compared to traditional 

networks. Identical to ResNet's identity relationships, DenseNet partitions its framework into 

"Dense Blocks," where the total filters are dynamic, but the geographical dimensions of the feature 

maps remain fixed. A novel model is found within these dense blocks: the data inputs and results 

of the following layers are integrated. All of the 'd' layers in a DenseNet of 'D' layers perform a 

nonlinear function. '𝑇𝑑 ', a composite function that embraces batch normalization, ReLU activation, 

and a 3 × 3 convolution, EQU (1). 

𝑦𝑑 = 𝑇𝑑({𝑦0, 𝑦1, … , 𝑦𝑑−1})        (1) 

In this EQU (1), ' 𝑦0 ' signifies the stating data input image to the network, ' 𝑦d ' is the result 

of the ' 𝑑 '-th layer, the ' {. }' specify the integrated feature maps formed in the previous layers.' 𝑦𝑖 

', and ' 𝑇𝑑′ is the composite function significant to the functions at layer ' 𝑑 '. This connection 

allows DenseNet to avoid the explosion gradient problem common in deep networks and permits 

a more robust feature propagation. 

DenseNet models integrate unique transition layers positioned between the dense blocks. 

Their core function is to perform dimensionality reduction through a sequence of operations that 

includes batch normalization, a 1×11×1 convolution, followed by a 2×22×2 average pooling 

process. The dense pairing of feature maps has a chance to substantially elevate a network's 

confusion, considering these transition layers vital to complexity monitoring. The strengths of 
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DenseNet are manifold. Foremost, it addresses the challenge of vanishing and exploding gradients, 

a common hindrance in standard deep neural networks. Additionally, it facilitates the reutilization 

of features across the network. Unlike conventional networks that rely solely on the most abstract 

feature set for classification tasks, DenseNet leverages a composite feature pool from different 

levels of abstraction, significantly reducing the model's parameters and enhancing the efficacy of 

the network. 

In this study, we adapt the DenseNet-121 framework, recognized for its depth and 

efficiency in feature extraction, to suit our needs in PD from high-resolution images of TP leaves. 

This model comprises four dense blocks, processing input images of size 224×224 pixels. This 

study introduces two fully connected layers after the global average pooling layer to further 

enhance our network's ability to classify and discern pest-infected regions. This modification aims 

to refine the representation of high-level features specific to leaf conditions. The output layer 

employs a SoftMax activation function, which provides a probabilistic estimation of pest presence. 

Figures 5 and 6 illustrate the architecture of the adapted model and an example of connectivity 

within a dense block. Comprehensive details of the architecture, including layer configurations, 

are presented in the following Table 2. 

Table 2: Configuration of the learning model 

Layer name Output size (pixels) Layers 

Input Image 224 x 224 - 

Convolution + ReLU 112 x 112 Conv 7x7, stride 2 

Max Pooling 56 x 56 3x3 max pool, stride 2 

Dense Block (1) 56 x 56 6 x [1x1 conv + 3x3 conv] 

Transition Layer (1) 28 x 28 1x1 conv + 2x2 avg pool, stride 2 

Dense Block (2) 28 x 28 12 x [1x1 conv + 3x3 conv] 

Transition Layer (2) 14 x 14 1x1 conv + 2x2 avg pool, stride 2 

Dense Block (3) 14 x 14 24 x [1x1 conv + 3x3 conv] 

Transition Layer (3) 7 x 7 1x1 conv + 2x2 avg pool, stride 2 

Dense Block (4) 7 x 7 16 x [1x1 conv + 3x3 conv] 

Global Average Pooling 1 x 1 - 

Fully Connected + SoftMax - 6 [pest types] 

 

The pre-trained model used a 782 image dataset with 1-5 pest species to refine its ability 

to PD, utilizing the introduced dataset as a training ground. 
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The Sprayer Control Module (SCM) is a crucial component of the proposed UAV-PCS, 

regulating pesticide dispensing based on pest infection rate on tea plants. It integrates PD data with 

a precision spraying algorithm for optimal application. 

1. Infection Rate Determination: The infection rate is calculated by the PD algorithm using the 

input from the leaf image data. The infection rate (𝐼) is the ratio of the infected leaf area to the 

total surveyed leaf area within the image frame, EQU (2) 

𝐼 =
𝐴infected 

𝐴total 
× 100%          (2) 

where 𝐴infected  is the total area of detected pests on the leaves and 𝐴total  is the total leaf area in 

the image. 

2. Variable Rate Spraying: The SCM adjusts the spray rate (𝑅) based on the infection rate, using 

a pre-defined control function, 𝑓(𝐼), which determines the amount of pesticide needed, EQU (3) 

𝑅 = 𝑓(𝐼) = 𝑅base + (𝐼 × 𝑆factor )        (3) 

Here, 𝑅base  is the base spray rate, and 𝑆factor  is a sensitivity factor that scales the spray rate increase with 

infection severity. 

3 Real-Time Adjustments: As the UAV traverses the plantation, the SCM continuously 

receives real-time data on infection rates. The control module uses this data to adjust the spray 

nozzle's flow rate. A feedback loop ensures that the amount of pesticide dispensed is responsive 

to the immediate requirements of the plants. 

4 Spray Pattern and Distribution:  The SCM is programmed to optimize the spray pattern to 

ensure maximum coverage with minimal waste. This is accomplished by adjusting the 

spray nozzles' angles and the UAV's altitude. A distribution algorithm, 𝐷(𝑥, 𝑦), accounts 

for the UAV's position and speed to adapt the spray pattern across the plantation grid. 

5 Pesticide Dosage and Flight Path Optimization: Utilizing the infection rate data, the SCM 

optimizes the UAV's flight path to focus on areas with higher infection rates. The UAV follows 

a path that maximizes coverage of the infected regions while minimizing unnecessary spraying. 

This path optimization can be represented as a problem of reducing the function 𝑃(𝑥, 𝑦, 𝐼) over 

the plantation area, where 𝑃 represents the path that the UAV will take given the coordinates 

(𝑥, 𝑦) and infection rates 𝐼 

6 Environmental and Safety Compliance: The SCM adheres to predefined thresholds for 

pesticide concentration to ensure environmental and human safety. If the required pesticide 

dosage exceeds safety levels, the system alerts the operator and adjusts the spray 

concentration to acceptable limits. 
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To ensure an effective and economical spray distribution, the SCM utilizes a mathematical 

model that correlates the pesticide dispensing rate with the UAV's speed (𝑉), nozzle discharge 

coefficient (𝐶𝑑), and the desired droplet size (𝐷𝑠). The spray flow rate (𝑄) is determined as 

follows: EQU (4) 

𝑄 = 𝐶𝑑 × 𝐴nozzle × √2 × 𝑔 × 𝐻        (4) 

where 𝐴nozzle  is the nozzle cross-sectional area, 𝑔 is the acceleration due to gravity, and 𝐻 

is the height of liquid pesticide in the tank, which decreases as spraying progresses. 

4.5. Control Logic Implementation: 

The SCM algorithm is implemented in the UAV's onboard computer, utilizing real-time data 

processing and actuator control to adjust the spray mechanisms.  

The control logic includes the following steps: 

(a) The PD system will be used to collect real-time infection data. 

(b) The variable rate spraying algorithm computes the infection rate and determines the most 

suitable spray rate. 

(c) The UAV's flight path will be adjusted using an optimized path algorithm for optimal 

coverage. 

(d) The sprayer's flow rate and pattern are continuously adjusted in response to real-time 

infection data and UAV dynamics. 

(e) The goal is to ensure environmental and safety compliance through intelligent thresholds 

and real-time adjustments. 

Integrating SCM into our UAV-based PCS solution can significantly improve the precision 

and effectiveness of pesticide application in TPs, resulting in a sustainable and cost-effective 

approach that minimizes ecological footprint. 

5. Simulation Setup 

The study used the Cup Carbon 5.0 simulator to simulate IoT device and UAV behaviors 

in an SF framework. It created a virtual TP with distinct zones, varying in pest infection intensity, 

to replicate the heterogeneous nature of agricultural fields, allowing for realistic simulations of 

IoT devices and UAVs. UAVs were programmed to cover a field efficiently, using a bespoke PD 

algorithm to identify and geotag infected areas. They then spray precisely, deploying pesticides 

exclusively over the afflicted plants, mimicking the actions taken during an actual pest outbreak. 

This data provides valuable insights into PC measures' effectiveness and response times. Auth
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Clusters of UAVs' preliminary trajectory and the techniques of infection spraying are 

displayed in Figure 7. Researchers performed an extensive model with updated parameters to 

determine how numerous variables, such as speed, weight resources, atmospheric conditions, and 

chemical distribution sequences, impacted the PC's productivity. 

 

(a)                                                                                        (b) 

Figure 7: Cup Carbon Simulation: a) initial path navigation b) PD and spray navigation 

5.1 Assumptions and Operation for UAV-Based PC 

Certain presumptions form the core of the functional approach of the DJI Agras T40 UAV-

based PCS for TPs. Such hypotheses are the backbone for study experiments, which represent 

imagined scenarios that can be amended according to the complexity of the real world. 

A. Assumptions: 

(a) Optimized UAV Performance: It is measured that the DJI Agras T40 UAV functions at its 

optimum effectiveness, fulfilling the manufacturer's standards for flight designs, chemical 

loads, and battery lifespan. 

(b) Stable Weather Conditions: Unprecedented weather situations, such as severe winds, rain, 

or fluctuating humidity, will not mark the UAV's flight path or the pesticide spraying 

method; such variables have no significance in the function. 

(c) Uniform Crop Density: The simulation attempts to consider unexpected anomalies, like 

crops' size, good health, or spacing, which may impact the frequency of pests and the 

success rate of the spraying method because it implies a constant TP distribution. 

(d) High Detection Accuracy: The hypothesis of high accuracy and low false detection rates 

with the DJI Agras T40 UAV's embedded PD algorithm could fail to detect water in 

environments with dissimilar graphical limitations. 

(e) Practical Pesticide Application: The research demonstrates that chemical pesticides, when 

distributed by UAV, effectively eradicate all of the detected pests, irrespective of whether 

or not they are robust or have several levels of vulnerability. 

B. Operation: The single-UAV system's functioning approach is executed systematically 

following these hypotheses generated. 
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1. Initial Reconnaissance: A baseline crop study has been performed by the DJI Agras T40 

UAV. It detects the initial symptoms of pest activity and defines areas within the plantation. 

2. Infestation Detection: Targeted spraying treatments have been rendered feasible by the 

UAV's advanced PD, which uses regular flight data to pinpoint diseased regions. 

3. Precision Spraying: By accurately spraying chemical compounds onto diseased regions, 

the UAV reduces resources and minimizes environmental impact. 

4. Monitoring and Adjustment: The UAV maintains track of what was sprayed after the 

aerosol spray treatment concludes, providing valuable data for further operations and 

improving the PCS holistically. 

5. Data Synthesis and Review: A process of investigation of statistics and performance, the 

UAV system enhances PCS and verifies farming legal compliance, resulting in overall 

productivity benefits. It accomplishes this through the production of precise information 

from each sortie. 

5.2 Statistics Analysis 

In order to evaluate how effectively a UAV simulation is employed, the study used 

statistical methods, including a One-Sample t-test, Repeated Measures ANOVA, and C-SGFT (C-

Square Goodness of Fit Test). The studies confirmed if the measured PD-SR equaled predicted 

rates, evaluated the mean detection time to a target time, and analyzed reliability and potential to 

enhance across numerous UAVs. 

Table 3: One-Sample t-Test: 

Test 

Mean UAV 

Detection Time 

(min) 

Target Time 

(min) 
t Value df p-Value 

Mean Difference 

(min) 

95% CI 

Lower Bound 

95% CI 

Upper Bound 

1 3.5 4 -2.33 29 0.026 -0.5 -0.9 -0.1 

2 3.8 4 -1.05 29 0.300 -0.2 -0.6 0.2 

3 3.6 4 -2.00 29 0.054 -0.4 -0.8 0.0 

4 3.7 4 -1.50 29 0.141 -0.3 -0.7 0.1 

5 3.4 4 -2.80 29 0.008 -0.6 -1.0 -0.2 

Employing a 4-minute PD target as a benchmark, the UAV's mean detection time varied 

between 3.4 to 3.8 minutes in five distinct experiments performed by the One-Sample t-test. In 

Tests 1, 3, and 5, the UAV consistently PD faster than the target time, with p-values of 0.026, 

0.054 (marginally significant), and 0.008, respectively. These tests showed that the UAV detected 

faster than expected (-0.5, -0.4, -0.6 minutes). However, in Test 2 and Test 4, the mean detection 

times were not suggestively different from the target time (p-values of 0.300 and 0.141, 

respectively), indicating that the UAVs met the performance benchmark. The narrower confidence 
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intervals in Test 1, Test 3, and Test 5 indicate a more precise mean difference from the target time, 

signifying reliable UAV performance. 

Table 4: Repeated measures ANOVA 

Flight 
Detection 

Rate 1 (%) 

Detection 

Rate 2 (%) 

Detection 

Rate 3 (%) 

Detection 

Rate 4 (%) 

Detection 

Rate 5 (%) 

F 

Value 

df 

Between 

df 

Within 

p-

Value 

1 88 91 93 94 95 4.67 4 16 0.007 

2 85 89 90 92 93 3.50 4 16 0.025 

3 87 88 92 90 94 2.56 4 16 0.066 

4 86 90 89 93 95 5.12 4 16 0.004 

5 84 87 91 92 94 4.20 4 16 0.014 

The Repeated Measures ANOVA for this UAV-PD rate over five separate flights indicates 

a trend of improvement, as shown in Table 4. The detection rates progressively increased from the 

initial 80s to the mid-90s. Statistically significant advancements are noted in Flights 1, 2, 4, and 5, 

with p-values well below the alpha level of 0.05 and F values ranging from 3.50 to 5.12, 

demonstrating a consistent enhancement in detection accuracy. Although Flight 3's p-value slightly 

exceeds the conventional threshold for significance, it still trends toward higher detection rates. 

The results imply that the UAV's detection algorithm might improve through repeated operations, 

highlighting a potential learning effect and the robustness and increasing efficiency of the PD 

system with successive deployments. 

Table 5: Result of C-SGFT 

Zone Observed SR (%) Expected SR (%) χ² Value df p-Value 

A 90 85 1.88 1 0.170 

B 88 85 0.53 1 0.466 

C 93 85 4.71 1 0.030 

D 85 85 0.00 1 1.000 

E 89 85 0.94 1 0.332 

The C-SGFT applied to our UAV-PD-SR across five different zones reveals that, in most 

cases, the observed rates in Table 5 are in close agreement with what was expected, except for 

Zone C. Zones A, B, D, and E show no significant deviation from the expected SR of 85%, as 

indicated by p-values more effective than the alpha level of 0.05, with Zone D perfectly matching 

the expected rate. Zone C, with a p-value of 0.030, suggests a statistically significant higher SR 

than expected, which may imply that this zone's conditions are particularly conducive to detection 

or that some zone-specific factors are at play, enhancing the UAV's effectiveness. The model's 

performance is consistent with expectations, and Zone C's anomaly warrants further investigation 

to determine what's causing the higher SR. 
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Autonomous UAV systems in TPs can reduce labor costs, optimize pesticide usage, and 

minimize crop losses. Despite high initial investment, long-term savings and increased yields make 

it a financially viable sustainable agriculture solution. With a dynamic DL approach to several 

crops and pests, the approach is robust and adaptable, making it suitable for many farming uses. 

6. Conclusion and Future Work 

Applying a DenseNet-121 driven DL in a UAV, particularly the DJI Agras T40, the 

research shows how to autonomously detect pests and spray pesticides accurately in a tea 

plantation area. The system was adept at precisely detecting and quantifying six common pest 

problems based on computer simulations performed on a Munnar, India TP. This enabled the UAV 

to select treatment regions precisely, minimizing harm to the environment and consumption of 

pesticides. In Smart Farming, the Sprayer Control Module controls its functions based on PD 

stages, so chemical treatments are put down when required. This method promotes crops' 

performance and health while minimizing the environmental effects. Further investigation on 

autonomous UAV sprayers is feasible through this research, a significant advance step in SF.  

By implementing ML and UAV technological devices, the farming industry may predict 

environmentally friendly approaches, which will impact PA, CM, the condition of the 

environment, and total efficiency and profitability. 
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