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Abstract – Improved greenhouse Crop Yields (CY) are now within reach due to the rise of "Smart Farming (SF)" based 

on the Internet of Things (IoT). The IoT presents a massive opportunity for precision farming, which has the potential to 

increase CY, optimize resource use, and decrease the environmental impact of agriculture. Kenya's climate challenges 

greenhouse CY, but this paper lays out an integrated model that works well for growing Capsicum there. A multi-layered 

system equipped with sensors allows for the real-time monitoring of critical Environmental Factors (EF) in the model. For 

faster responses and less dependence on distant cloud services, these sensors send data to a processing layer that acts as an 

intermediary and uses Edge Computing (EC) for data management and immediate action. The analytics layer successfully 

reads sensor data, predicts possible scenarios, and makes decisions using Random Forest (RF) algorithms to improve crop 

productivity and yield. Also, the framework's user-friendly interface integrates data display and control, enabling efficient 

human communication. Kenya's climate impedes the cultivation of horticultural crops. The current study demonstrates that 

a hybrid model using IoT + EC + RF substantially improves Capsicum growth. The research establishes a standard for SF 

operations by combining advanced data analytics with the IoT to demonstrate how to develop a sustainable and adaptive 

SF system. This research set the standard for SF production by proving how a dynamic SF environment can be developed 

by applying advanced analytics with IoT. 

 

Keywords – Internet of Things, Edge Computing, Random Forest, Smart Farming, Greenhouse Management. 

 

I. INTRODUCTION 

Over the past few decades, there has been a noticeable shift in farming methods from traditional techniques to increasingly 

revolutionary approaches. The development of novel innovations and the interest in improved Smart Farming (SF) practices 

have triggered the advancement of agriculture: global population growth and growing food consumption pressure farmers 

to enhance crop quality and reduce food waste. Owing to technological advancement, farmers may now address these 

problems in person, implementing new tools and techniques to boost production while decreasing the consumption of 

resources [1]. SF and Precision Agriculture (PA) are the upcoming horizons of agricultural growth. These approaches 

enhance the use of PA and management by applying data-driven technology. Global Positioning System (GPS) routing, 

automation systems, sensors, robotics, Unmanned Aerial Vehicles (UAVs), computerized machinery, dynamic rate 

technologies, and specialized applications are all elements of PA's toolbox. This technique permits an accurate optimization 
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of farming techniques to different farm situations, increasing the performance of resources such as water, fertilizer, and 

pesticides. [2-3]. 

A defined environment is most effectively demonstrated by greenhouse farming. In addition to preventing crops from 

extreme temperatures and maintaining them in an ideal condition for growth and development, it has the unique benefit of 

prolonging the period during which they grow. Crop Yield (CY), product quality, water consumption, and the application 

of pesticides may all be significantly enhanced with the use of greenhouses for cultivation. The capacity of these plants to 

grow produce throughout the year is an enormous advantage for maintaining an ongoing supply of nutritious foods and 

supplying demand for specific crops even when they don't belong in season. The positive aspects of greenhouse farming 

have been enhanced using the Internet of Things (IoT). Smart greenhouse settings may be refined with IoT sensors that 

monitor several environmental variables [4-5]. IoT tools improve plant conditions and CY by optimizing historically 

manually performed operations like cultivation, regulating temperatures, and fertilizer in the delivery process, thus 

decreasing labor costs and enhancing the precision with which resources are deployed. 

The IoT systems for Greenhouse Crop Management (GCM) incorporate sensors, Edge Computing (EC) devices, and 

advanced data analysis as key components. This enables enhanced CY and optimizes the use of resources. Regional data 

processing reduces delay, enhances real-time decision-making, and lessens the need for remote cloud services, resulting in 

better energy effectiveness and environmental sustainability. There is a significant risk to the future sustainability of India's 

agricultural sector from variables such as global warming, higher atmospheric temperatures, and an overall lack of 

groundwater. Within the frequency spectrum of thermal infrared radiation released by the Earth's surface, the environment 

absorbs and releases electromagnetic radiation at a particular wavelength. 

The recommended work aims to capitalize on the benefits of these advances while also addressing the problems with 

conventional GCM. Enhancing GCM effectiveness and productivity is a top priority due to the growing demand for 

environmentally friendly SF [6]. This attempt is motivated by a system that optimizes plant cultivation while mitigating 

resource consumption, environmental impact, and growing demand for food. The research proposal provides a four-layer 

approach to controlling capsicum greenhouses in Kenya that works synergistically to present a successful framework for 

GCM. At its core, the Sensing Layer continuously monitors crucial greenhouse parameters such as humidity and 

temperature through interconnected sensors. The Edge Layer rapidly analyzes data from different sensors, decreasing 

latency and allowing quick local decision-making. This has an immediate impact on environmental control. The Data 

Analytics Layer uses the Random Forest (RF) algorithm, recognized for its accuracy in predictive analytics, to determine 

the entire system's decisions. These results help to improve the environment so that Capsicum can grow to its fullest 

potential. The User Interface Layer improves network connections by providing an LCD dashboard. This panel provides 

an understandable overview of the greenhouse's state and enables human control over its several parts. This system achieves 

the necessary atmosphere control for optimal CY and efficient resource use. 

The paper is organized in the following manner: Section 2 provides an existing literature evaluation, Section 3 discusses 

the proposed framework, Section 4 analyzes the model's deployment, and Section 5 summarizes the research results. 

 

II. LITERATURE REVIEW 

A few recent studies have concentrated on how to use the IoT in greenhouse farming. In order to improve the precision of 

humidity and temperature control, an IoT intelligent GCM was presented in [7] that uses clustering methods and a fuzzy 

adaptive PID controller. With the help of cloud-based data visualization and the integration of mobile apps, this technology 

represents a revolutionary step forward in SF. 

An innovative GCM system that can automatically track and manage essential variables such as sunlight, moisture in 

the soil, and carbon dioxide (CO2) has been demonstrated in the SF field [8]. Despite customizing the greenhouse 

atmosphere for specific plants, their studies demonstrated the possible uses of the IoT to improve GCM-enabling methods 

for organic farming via remote IoT features. 

A smart GCM that is capable of controlling the surrounding environment via the use of sensor-based indicators has 

been developed [9]. By using ecological science to guarantee suitable developing situations, the study's tools were able to 

transmit data via the MQTT protocol, proving the accuracy and dependability of the IoT in monitoring in real time.  

An optimization approach that balances EC with maintaining temperatures has been suggested by [10] to deal with 

Energy Consumption (EC) challenges in greenhouse production, resulting in high costs and EC. The success of the system 

they developed has been verified using a simulation tool, and it presents an optimistic approach to real energy efficiency 

in greenhouses. 

Adaptive Particle Swarm Optimization with Artificial Neural Networks (APSO-ANN) has been examined in [11] as an 

innovative tool for ecologically conscious farming. A powerful Olive SF approach related to IoT technology was 

demonstrated by their framework, which constantly integrated new datasets to improve classification algorithms without 

restoring the system.  

Finally, [12] developed an innovative GCM that democratizes plant cultivation by maintaining an environment suitable 

for numerous plants, accessible through a mobile application. Their approach, based on Raspberry Pi and Arduino, 

automates environmental control, illustrating the feasibility of IoT for users with varying levels of expertise in plant 

cultivation [13-15]. 
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To optimize GCM and resource utilization, the implementation of IoT in SF requires improved control systems and 

continuous tracking to address precise environmental factor management, EC reduction, and environmentally conscious 

procedures. In order to enhance SF and PA practices, the present article examines numerous GCMs based on the IoT. This 

study investigates the platforms, focusing on adaptive controllers, clustering algorithms, real-time data transfer, energy 

optimization approaches, and user-friendly user interfaces. 

 

 
Fig 1. Proposed GCM System. 

 

III. PROPOSED ARCHITECTURE 

Fig 1 illustrates the projected model, organized into four distinct layers. The first layer, the sensing layer, is responsible 

for data collection. This is followed by the edge layer, which transmits the gathered data to the next tier and controls the 

edge devices. Data is received and processed on the third layer, known as data analytics. The user interface layer, positioned 

at the topmost level of the system, is accountable for rendering the data being processed accessible to end users.  

 

Every element of this proposed design will be addressed thoroughly in the sections that follow: 

Sensing Layer 

In order to comprehend every variable controlling GCM and health, this layer is intended to gather a range of data inside 

and outside the greenhouse. This accurate sensing is performed so that the internal microenvironment of the greenhouse 

can be monitored and controlled for optimal GCM and that researchers are aware of how external factors could impact 

these circumstances. 

 

Internal Sensing 

The key objective of the greenhouse is to develop and maintain an optimal environment for crop development.  

Several sensor categories are employed to accomplish this: 

 

Temperature Sensors 

These check if the greenhouse temperature is within the ideal range for different types of crops. 

 

Humidity Sensors 

These are useful to sustain crop health and avoid diseases. They evaluate the moisture level of the atmosphere. 

 

Soil Moisture Sensors 

An essential tool for measuring the moisture in the soil while providing plants with precisely the proper quantity of water. 

 

pH Sensors 

Use to measure the pH or alkalinity of the soil, which impacts the supply of nutrients and how plants consume nutrients. 
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NPK Sensors 

Soil tests like this show the percentage of plant essential factors like potassium, phosphorus, and nitrogen detected in the 

soil's composition. 

External Sensing 

The environmental circumstances of the greenhouse exterior may influence the one inside significantly.  

Thus, it is necessary to use sensors to keep track of these external impacts: 

 

External Temperature Sensors 

The intention is to understand and predict how the temperature inside the greenhouse will respond to deviations in the air 

temperature outside. 

 

External Humidity Sensors 

These are used to find out how to control the humidity level within the greenhouse according to readings collected of the 

air around it and moisture levels. 

 

Rainfall Sensors 

Both inside and outside irrigation systems shed light on rainfall levels. 

 

Wind Sensors 

 Collecting precise wind speed readings and direction is essential for greenhouse temperature control and air circulation. 

 

Sunlight Sensors 

Sensors play an important part in measuring the quantity of natural sunlight and regulating any LED lighting that may be 

needed inside the greenhouse. 

The design provides a flexible and adaptable system capable of managing the greenhouse's in-house microclimate and 

its outside environmental factors by including internal and external sensors in the Sensing Layer. This encompassing 

sensing technique is essential if greenhouse agricultural systems are to be maintained effectively and effectively. 

 

Edge Layer 

The Sensing Layer has links to the more advanced data processing and analysis features via the edge layer. For the 

greenhouse system to function productively, in this instance, data analysis and rapid control actions are performed in real 

time. The control panels and gateway devices that make up this layer are responsible for various facets of the GCM. 

 

Gateway Devices 

They constitute the core of the Edge Layer. Their primary function is to act as communication hubs, processing data from 

internal and external sensors. In order to execute control actions internally or send the data to higher-level systems for 

processing, such devices complete the initial processing of the data, such as filtering and initial analysis. In addition to 

helping transmit data from the greenhouse to the cloud or local data centers, gateways additionally perform an essential 

role in securing the reliability and privacy of the data. 

 

CO2 Controller 

The ideal level of carbon dioxide in the greenhouse is set by the CO2 Controller. The photosynthesis process of plants 

utilizes CO2, and the level of CO2 has a direct impact on how plants grow and CY. In order to sustain optimal CO2 levels 

for the development of crops, this device constantly monitors and responds to data from CO2 sensors. 

 

Irrigation Controller 

This controller is responsible for the drip system in the greenhouse. The irrigation controller ensures that crops obtain a 

suitable quantity of water through data from moisture levels in the soil sensors. This eliminates either over- or under-

watering. Aside from minimizing water waste, this approach of accurately regulating water use supports plants' robust 

growth. 

 

Nutrient Controller 

The Nutrient Controller is vital to soil-based cultivation and hydroponic gardening systems. To regulate the water's level 

of nutrients and substances, data from pH and NPK sensors are employed as an indication. In this manner, crops can be 

sure they are receiving the nutrients they require at an appropriate time for their particular growth phase. 

 

Temperature Controller 

This controller preserves the optimal range of temperatures for the greenhouse. Incorporating data from both internal and 

external temperature measurement devices regulates the HVAC. This provides a constantly ideal atmosphere for the 

development of plants, ignoring modifications to the external climate. 
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The Edge Layer's elements function together to develop a controlled, automatically adaptable, and productive 

greenhouse atmosphere. More accurate regulation of greenhouse conditions can be obtained by the Edge Layer's processing 

of the data analytics layer's output, significantly decreasing response times. The green design principles boost CY while 

enhancing the system's overall EC. 

 

Data Analytics Layer 

Stored, analyzed, and processed here are valuable findings from the enormous quantities of data the Sensing and Edge 

Layers collected. Its main tasks are data management, analysis, and Machine Learning (ML). 

 

Data Storage 

Protecting a chronological repository of collected data depends on this function. The capacity to store data for a longer 

time in a greenhouse makes it feasible to study correlations in factors like climate, crop development, and the use of 

resources. To ensure the confidentiality of data, its availability, and compliance with privacy laws, the selection of storage 

solutions—whether cloud-based or onsite—depends on the quantity of data, privacy concerns, and accessibility. 

 

Data Processing 

Data cleansing, the normalization process, and transformation are all phases in the processing and conversion process that 

must be performed for data storage in order to render it appropriate for analysis. There are two primary types of data 

analysis: batch processing, which analyzes enormous data sets at scheduled times, and accurate-time processing, which 

starts immediately after data is collected. In order to prepare the data for practical analysis, this phase is essential in 

eliminating noise, correcting errors, and cleaning the data. 

 

ML 

Findings, developments, and predictions in data processed have been rendered possible by this layer's ML algorithms. 

ML is employed for predictive analytics in the context of greenhouses to perform tasks like predicting crop development 

patterns, predicting when diseases will occur, and optimizing the use of resources. To determine when crops require more 

water or nutrients, an ML model could look at historical and current data. Determining the best times for planting and 

harvesting crops is merely one instance of how it may support DSS. 

With the integrated Data Analytics Layer's elements, researchers can recognize the greenhouse environment and the 

agricultural product's life cycle from start to finish. The effectiveness, profitability, and environmental impact of 

greenhouse systems can be improved with their support in making intelligent choices. To make better, more data-informed 

decisions and more accurate predictions, statistics have grown more complicated with the incorporation of ML. 

 

User Interface Layer 

Turning complicated data and analytics into acceptable practical findings for end-users is the task of the User Interface 

Layer. Using this layer's user-centric layout, the entire system's features and data are simple to find. This methodology 

includes systematic decision-making, continuous control, and cultivation management. 

 

Integrated Control System 

Users can manually control the greenhouse's relative humidity, temperature, CO2 levels, and sunlight via the Integrated 

Control System or allow the device to adapt to shifting conditions based on sensor data. For GCM, the Cultivation 

Management System is beneficial for scheduling, tracking, and monitoring development and health. Planting and 

harvesting times, development stages, and nutrient forms and quantities are all components of this procedure. 

 

Decision Support System (DSS) 

The key component of the framework, the User Interface Layer, uses ML and data analytics to help with decisions. It can 

make recommendations based on past information, current state, and predictive modeling. The DSS could, for example, 

propose when to plant or harvest crops, predict when pests will strike, or direct the proper use of resources to achieve the 

highest yields while limiting the negative environmental effects. GCM can use this framework to assist people in generating 

decisions based on information. 

The User Interface Layer integrates the system's complex analytics and data processing into the greenhouse's routine 

duties. It enables control and monitoring, supports transforming data into useful information, and reinforces strategic 

DSS with an easily accessible and user-friendly interface. This layer is essential to maximize the benefits of cutting-edge 

analytics and IoT technologies in the practical GCM. 

 

Study Area 

A suitable location for research for the previous model would be a capsicum farm in Kenya's Naivasha geographic area. 

Naivasha State provides an appropriate and feasible context for this research due to its pleasant weather and history as an 

agricultural powerhouse. 
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(a)                                                 (b)                   

Fig 2. Capsicum Cultivation A) Greenhouse, B) Open-Field. 

 

Capsicum Farm in Naivasha, Kenya 

Capsicums grow in Naivasha's moderately temperate environmental conditions, which provide approximately an adequate 

amount of direct sunlight, moderate rainfall, and suitable temperatures. Production is possible year-round, yields are higher, 

and nutritional value is improved due to the farm's use of regulated greenhouse conditions for optimal development. 

However, a more environmentally friendly and balanced approach to SF is open-field cultivation, which involves growing 

capsicums in their natural environment Fig 2 (a) and (b). The technique provides unique challenges regarding development 

dynamics compared to greenhouse cultivation because it relies on local climate and seasonal changes. While the soil and 

weather are suitable for open-field cultivation in Naivasha, farmers must be adaptive to deal with the unpredictability of 

their surroundings. 

This capsicum farm in Naivasha demonstrates a dynamic and constantly evolving use for the SF environment. 

Integrating cutting-edge GCM and traditional open-field farming techniques provides a perfect experiment for using an 

IoT-based agricultural system to improve CY, efficiency, and lifespan in many different farming conditions. Numerous 

capsicum varieties and local climate factors impact the overall recommendations for the Capsicum plant, which are laid 

out in Table 1. 

 

Table 1. At Different Growth Stages, Capsicum Needs 

Growth Stage 
Temperature 

(°C) 

Humidity 

(%) 

Soil 

Moisture 

(%) 

pH 
Light 

(Hours/Day) 

Seed Germination 

(0-14 days) 
22 - 25 60 - 70 40 - 50 6.0 - 6.8 14 - 16 

Seedling 

(15-42 days) 
20 - 22 60 - 70 50 - 60 6.0 - 6.8 14 - 16 

Vegetative Growth 

(43-103 days) 
18 - 22 50 - 60 60 - 70 6.0 - 7.0 14 - 16 

Flowering 

(104-124 days) 
18 - 20 40 - 50 70 - 80 6.5 - 7.0 12 - 14 

Fruit Development 

(125-195 days) 
20 - 22 40 - 50 70 - 80 6.5 - 7.0 12 - 14 

Ripening (196-225 days) 18 - 20 40 - 50 60 - 70 6.0 - 6.8 12 - 14 

 

Integration of the Proposed Architecture 

In order to include the recommended GCM in an indoor capsicum farm, several types of sensors are set up to monitor and 

regulate the environmental factors.  

The sensors that were used in the present investigation are explained below: 

 

Temperature and Humidity Sensor 

The DHT11 is an energy-efficient sensor Fig 3, operating within a voltage range of 3.5 V to 5.5 V. It's notable for its low 

power consumption, using only 0.3 mA during active measurement and 60 uA in standby mode.  Using serial data output, 

the sensor accurately measures temperatures from 0°C to 50°C and humidity from 20% to 90%. The 16-bit resolution 

provides accurate temperature and humidity reports of ±1°C and ±1%, respectively. The DHT11 excels at monitoring vital 

environmental conditions in the capsicum greenhouse, providing accurate data for GCM. 
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Fig 3. DHT11 Temperature and Humidity Sensor. 

 

PH Sensor 

The E201-C BNC Electrode pH Sensor Fig 4 is an energy-efficient option for soil pH measurement in greenhouse settings, 

operating at a 5-0.2 V voltage range and 5-10 mA current. The pH test range is 0–14, and it detects water temperatures 

from 0–80°C with high precision. With an initial stabilization interval of 60 seconds and a response time of less than 5 

seconds, the sensor provides precise and on-time results. Designed to handle the variable temperatures of a capsicum 

greenhouse, it features a low EC of a maximum of 0.5 W, can operate from -10 to +50°C, and can support moisture levels 

up to 95% RH. There are four M3 mounting holes and analog output on a tiny device that measures 42x32x20 mm, which 

makes it simple to integrate into prior systems for farming. 

 

 
Fig 4. E201-C BNC Electrode pH Sensor. 

 

Soil Moisture Sensor 

The sensor for soil moisture associated with SKU: SEN0114 Fig 5 can be used in greenhouses; it requires an electrical 

power source of either 3.3 or 5 volts and gives a signal voltage value between 0 and 4.2 volts. It has a simple three-wire 

interface that requires only 35 mA of current, allowing it to be installed entirely. Suitable for accurate irrigation 

management in capsicum cultivation, this small (60×20×5mm) moisture sensor precisely measures moisture in the soil 

levels from 0 to 300 for dry ground, 300 to 700 for humid soil, and 700 to 950 when submerged in water. 

 

 
Fig 5. SEN0114 Soil Moisture Sensor. 

 

Nutrient Sensor 

Built for application in agricultural environments, the JXBS-3001-NPK-RS sensor Fig 6 functions on a 9.24V electrical 

supply. With a range of 0–1999 mg/kg (ml/l), it precisely measures NPK levels, which makes it suitable for precise nutrient 

management in greenhouse soils. The sensor's automated temperature compensation (ATC) enables it to function 

accurately in a range of temperatures, from 5-45°C (41-133°F), subject to outside conditions. Accurate nutrient data can 

be collected with its 1mg/kg (ml/l) level and ±2% F.S. precision. The sensor outputs data via RS485 signal, with an 

additional 0-10V output option, making it compatible with various control and monitoring systems. This focus on NPK 

measurement makes it an essential tool for optimizing fertilizer application and ensuring healthy capsicum growth. 

 

 
Fig 6. JXBS-3001-NPK-RS Sensor. 
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The sensor layer of the system is centered around the ATmega328 microcontroller ESP8266 Wi-Fi module and is 

powered by a tps563201 drive. The ATmega328 Fig 6 (a) is a versatile 8-bit microcontroller with 32 KB ISP Flash memory, 

2 KB SRAM, 1 KB EEPROM, various I/O lines, and communication interfaces like USART, SPI, and a two-wire serial 

interface. It also includes a 6-channel 10-bit A/D converter and operates between 1.8-5.5 volts. The ESP8266 module Fig 

6 (b), running on a 32-bit RISC processor at 80 MHz, offers substantial memory (32 KiB instruction RAM and 80 KiB 

user-data RAM), supports up to 16 MiB external flash, and features IEEE 802.11 b/g/n Wi-Fi, multiple GPIO pins, and 

interfaces like SPI, I²C, and UART. Together, these components facilitate robust data collection and wireless transmission 

in the greenhouse management system. 

 

 
Fig 6. a) Atmega328 Microcontroller B) ESP8266 Wi-Fi Module. 

 

The edge layer of the system is constructed using the ATmega328 microcontroller, integrated with the ESP8266 Wi-Fi 

module and the SX1278 LoRa Module Ra-02 Fig 7 for wireless communication, all powered by the tps563201 power 

module. The ESP8266 provides robust Wi-Fi connectivity, while the SX1278 LoRa Module, operating at 433MHz and 

based on SEMTECH’s SX1278 wireless transceiver, is pivotal for long-range communication up to 10,000 meters. It 

utilizes advanced LoRa spread spectrum technology, offering significant anti-jamming capabilities and low power 

consumption with air wake-up functionality. The SX1278 module stands out for its high sensitivity (-148 dBm) and power 

output (+20 dBm), ensuring long transmission distances and high reliability. This integration of Wi-Fi and LoRa 

technologies, coupled with the efficient power management of the tps563201 module, makes the edge layer highly capable 

of handling long-distance, low-power, and reliable communication in diverse and challenging agricultural environments. 

 

 
Fig 7. SX1278 LoRa Module. 

 

The edge devices in the system are designed to receive sensor data from the sensor layer and then forward this data to 

the data analytics layer. Once they receive analyzed insights and decision directions from the analytics layer, these devices 

effectively control the greenhouse's water, fertilizer, and cooling systems. To facilitate this, the edge devices are equipped 

with specific components like solenoid valves, flow sensors, and air and pad systems, ensuring a controlled and optimized 

environment for capsicum cultivation. 

The A3-7IRU-ZZN0 Solenoid Valve Fig 8 (a) and YF-S201 Flow Sensor are used in this work to manage irrigation 

and environmental control. The solenoid valve, designed to control air, water, oil, and gas flow, is a directly driven, 

normally closed valve with a 16 mm flow bore, operating within a temperature range of -5 to 80°C and a pressure range of 

0-10 kg/cm². AC220V powers it and has a brass body. The YF-S201 Flow Sensor Fig 8 (b), operating on 5~18V, measures 

water flow rates from 1 to 30 L/min with an accuracy of ±10%. It functions effectively in temperatures from -25 to +80°C 

and can handle water pressures up to 2.0 MPa. These components are integral for precision control in greenhouse irrigation 

and environment management. 

 

 
Fig 8. a) A3-7IRU-ZZN0 Solenoid Valve, b) YF-S201 Flow Sensor, and c) Celdek Evaporative Cooling Pad System. 
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The Celdek Evaporative Cooling Pad System ensures that an optimal environment within the greenhouse is made more 

accessible Fig 8 (c). It depends on the evaporative cooling method, which consists of flowing water through unique 

feminine hygiene products, for its operation. Crops like capsicum thrive in the atmosphere that flows through these Celdek 

pads as they become more excellent and humid. Because it regulates humidity and temperature, this control system is 

invaluable in dry, hot climates. The Celdek system is prominent for its success and lifespan; it generates an atmosphere 

that eliminates plant trouble, supporting proper development and higher CY. Enhancing energy efficiency and region 

control and integrating them is essential for contemporary GCM. 

 

Data Analytics Using RF 

The preprocessing step of sensor data plays a role in the Data Analytics stage of the GCM, particularly for its subsequent 

evaluation using RF algorithms. When data is prepared correctly, the ensemble learning method RF is highly used in 

classification and regression tasks. To ensure the RF model is as precise as feasible, the primary phase in preliminary 

processing is to clean the sensor data to eliminate noise or unnecessary data. Key measurements such as temperature, soil 

moisture, humidity, and levels of nutrients must be inspected for anomalies. The following phase uses standardization or 

normalization techniques to ensure that all the sensor data has an identical scale. While RF algorithms are not concerned 

significantly about data size, it is still an excellent idea to standardize the data so that various data types remain coherent. 

A further significant step in preliminary processing is Feature Selection (FS), which requires identifying and selecting 

appropriate features that impact the crop's development and health. Because they impact the model's prediction accuracy, 

FS is essential for RF. Soil moisture, nutrient levels, and temperature in the environment are all essential factors that might 

serve as predictors in this scenario. Finally, the appropriate RF processing of the data was finished. This involves inventing 

new features that might give the model additional information or converting statistical formats from classification data. To 

make accurate predictions and decisions about GCM, it is essential first to preprocess the data so that the RF algorithm can 

identify patterns and developments. 

For many types of data analysis tasks, such as FS, classification, and regression, RF—a secure and adaptable ML—

works considered in a GCM. After training, this model develops several decision trees, which it applies to identify the type 

of classification it experiences frequently or to determine an average prediction for regression. 

Key Aspects of RF in Greenhouse Data Analysis: 

 

Ensemble Learning 

When addressing large datasets, RF can help avoid bias by integrating the predictions from different ML. 

 

Handling Multifaceted Data 

The data extracted from greenhouses is heterogeneous and non-linear. Crop environmental factor evaluation is an excellent 

match for RF due to the complicated relationship of its factors.  

 

Feature Importance Analysis 

According to the RF's potential to evaluate moisture in the soil, relative humidity, and the outside temperature, modeling 

accuracy is substantially improved. With that information, researchers can identify the most essential factors affecting 

health and CY. 

 

Versatility with Data Types 

RF analyzes data that is simultaneously statistical and classified. The data from greenhouses, including soil pH and 

temperature tests, are suitable for this adaptable sensor. 

 

High Accuracy and Noise Resistance 

With the support of decision tree standard deviations, RF reaches outstanding accuracy and resilience. It enables it to 

control noise in practical problems and sensor data efficiently. 

 

User-Friendly and Interpretable 

Deep Neural Networks (DNNs) are more complicated and complex to comprehend and operate with than RF. Because of 

this, models are suitable for use in the agricultural sector, where the model's accuracy is as important as the decisions made. 

 

Dynamic Adaptability 

If updated with fresh data, greenhouse RF can adjust to changing crop development patterns and environmental changes 

in the climate. 

Improved DSS and productivity in greenhouses result from using the RF model as a predictive and analytical tool for 

GCM. This model improves at processing complex data sets while maintaining accuracy, adaptability, and accessibility. 
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Fig 9. Dashboard of the GCM. 

 

User Interface Layer 

The GCM's state-of-the-art interfaces indicate the present greenhouse gas emissions. This console acts as a dashboard, 

displaying real-time updates from all sensors and control devices to control environmental parameters and components like 

temperature and humidity sensors, soil moisture meters, and automated irrigation systems Fig 9. Users can adjust irrigation 

system settings and nutrient delivery rates for optimal crop care using the console's advanced manual adjustment features. 

Graphs and color-coded alerts make the control system console easy to use for non-technical users. It uses predictive 

analytics and decision support for proactive GCM. 

 

IV. IMPLEMENTATION ANALYSIS 

The analysis of the graphs Fig 10 and Fig 11 provided for a greenhouse environment over 24 hours reveals critical insights 

into the climate control system's performance, particularly concerning temperature and humidity management, as well as 

irrigation practices for capsicum cultivation in Kenya during September. 

 

 
Fig 10. a) Temperature Measurement B) Humidity Measurement. 

 

The temperature graph Fig 10 (a) indicates a stable internal greenhouse environment, with temperatures ideal for 

capsicum plant growth. Inside temperatures start at 18°C in the early hours, gradually increasing to a peak of 30°C during 

the midday before tapering off in the evening.  

Despite the outside variations in temperature, which have a more evident daily cycle, this regulated temperature range 

is maintained. Additionally, the greenhouse's temperature control system has effectively minimized the impact of outside 

factors, such as warmer peak temperatures and more relaxed night temperatures, consequently maintaining an atmosphere 

good for capsicum growth. A controlled increase in internal humidity levels in the early morning hours is shown in the 

humidity histogram Fig 10 (b), which is probably caused by routine watering or rainfall impacts. For capsicum plants to 

avoid becoming turgid and ensure photosynthesis and transpiration are productive, the humidity inside the greenhouse must 

be much greater than outside all day. The dip in external humidity during midday suggests an increase in temperature, 

which is well-managed within the greenhouse to prevent excessive plant transpiration stress. 
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Fig 11. Soil Moisture and Water Valve Status. 

 

The soil moisture and water valve status graph Fig 11 demonstrates an irrigation event between 06:00 and 08:00, where 

the soil moisture level rises sharply from 30% to 60% before gradually decreasing as the plants utilize the water. The water 

valve status indicates that the irrigation system is automated, turning on when soil moisture drops to a certain threshold, 

ensuring that the capsicum plants have adequate water supply without the risk of waterlogging. The climate control and 

irrigation systems effectively maintain the greenhouse conditions within the optimal ranges for capsicum cultivation. The 

precision in temperature and humidity regulation, alongside timely irrigation, suggests that the greenhouse management 

system is well-tuned to the needs of the crop and the local Kenyan climate in September. This balance is crucial for the 

capsicum plants' health and maximizing yield and resource efficiency. 

 

Table 2. Comparison of Performance  

Algorithm Prediction Accuracy (%) Energy Consumption 

FA-C 89 0.567 

APSO-ANN 90.5 0.687 

RF 94 0.262 

 

 
Fig 12. Comparison of Accuracy. 

 

Table 2 analyzes the prediction accuracy and EC of three algorithms (RF, FA-C, and APSO-ANN), and the findings 

demonstrate the following: With a prediction accuracy of 94%, the RF algorithm superiors the other two algorithms. In 

second place, with a prediction accuracy of 90.5%, APSO-ANN is closely following RF but superior to FA-C, which comes 

finally with an accuracy of 89%. 
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Fig 13. Comparison of EC. 

 

Among the algorithms investigated, RF has the highest EC at 0.262, thus being probably the most efficient. With an 

EC of 0.567, FA-C improves RF but drops low APSO-ANN. The highest EC, at 0.687, was achieved by APSO-ANN, 

which has an approximate high accuracy. Fig 12 illustrates the prediction accuracy, and Fig 13 provides the EC of the 

algorithms, which can be evaluated graphically. When comparing algorithms, RF represents the best solution due to its low 

EC and high accuracy. 

  

V. CONCLUSION AND FUTURE WORK 

At the end of introducing an IoT-based Greenhouse Crop Management (GCM) system, there has been tremendous promise 

in enhancing the productivity and lifespan of capsicum production in Kenya. Smart Farming (SF) innovations are 

demonstrated by the system's multilayer design incorporating real-time data acquisition, intelligent analytics, and user-

centered control. The model enhances Crop Yields (CY) and Decision-Making Systems (DMS) through the use of Edge 

Computing (EC) and ML, specifically the RF, to provide accurate, data-driven conclusions. By reducing problems to entry 

according to a farmer's level of knowledge in the field, the user interface renders SF technology more functional in practical 

problems in agricultural conditions.  

A significant development could be the introduction of IoT and intelligent data analysis into SF; this could set 

benchmarks for other areas with similar agricultural histories, boosting the global trend toward food safety and sustainable 

farming. 

 

CRediT Author Statement 

The authors confirm contribution to the paper as follows: 

Conceptualization: Nabeel S Alsharafa, Sudhakar Sengan, Santhi Sri T, Arivazhagan D, Saravanan V and Rahmaan K;  

Methodology: Arivazhagan D, Saravanan V and Rahmaan K; Software: Sudhakar Sengan, Santhi Sri T and Arivazhagan 

D; Data Curation: Nabeel S Alsharafa, Sudhakar Sengan and Santhi Sri T; Writing- Original Draft Preparation: 

Sudhakar Sengan, Santhi Sri T and Arivazhagan D; Visualization: Arivazhagan D, Saravanan V and Rahmaan K; 

Investigation: Nabeel S Alsharafa, Sudhakar Sengan and Santhi Sri T; Supervision: Arivazhagan D, Saravanan V and 

Rahmaan K; Validation: Nabeel S Alsharafa, Sudhakar Sengan and Santhi Sri T; Writing- Reviewing and Editing: 

Nabeel S Alsharafa, Sudhakar Sengan, Santhi Sri T and Arivazhagan D; All authors reviewed the results and approved the 

final version of the manuscript. 

 

Data Availability 

No data was used to support this study. 

 

Conflicts of Interests 

The author(s) declare(s) that they have no conflicts of interest. 

 

Funding 

No funding agency is associated with this research. 

 

Competing Interests 

There are no competing interests 

 



 

ISSN: 2788–7669                                                                                          Journal of Machine and Computing 5(1)(2025) 

 

588 
 

References 
[1]. R. Chand, & J. Singh, “From Green Revolution to Amrit Kaal,” (2023). 

[2]. I. Khan, & S. A. Shorna, “Cloud-Based IoT Solutions for Enhanced Agricultural Sustainability and Efficiency,” AI, IoT and the Fourth 

Industrial Revolution Review, vol.13, no.7, pp.18-26, (2023). 

[3]. N. Chamara, M. D. Islam, G. (Frank) Bai, Y. Shi, and Y. Ge, “Ag-IoT for crop and environment monitoring: Past, present, and future,” 

Agricultural Systems, vol. 203, p. 103497, Dec. 2022, doi: 10.1016/j.agsy.2022.103497. 

[4]. A. Badji, A. Benseddik, H. Bensaha, A. Boukhelifa, and I. Hasrane, “Design, technology, and management of greenhouse: A review,” Journal 

of Cleaner Production, vol. 373, p. 133753, Nov. 2022, doi: 10.1016/j.jclepro.2022.133753. 

[5]. A. Zaguia, “Smart greenhouse management system with cloud-based platform and IoT sensors,” Spatial Information Research, vol. 31, no. 5, 

pp. 559–571, May 2023, doi: 10.1007/s41324-023-00523-3. 

[6]. A. I. Rokade, A. D. Kadu, and K. S. Belsare, “An Autonomous Smart Farming System for Computational Data Analytics using IoT,” Journal 

of Physics: Conference Series, vol. 2327, no. 1, p. 012019, Aug. 2022, doi: 10.1088/1742-6596/2327/1/012019. 

[7]. A. Sofwan, S. Sumardi, A. I. Ahmada, I. Ibrahim, K. Budiraharjo, and K. Karno, “Smart Greetthings: Smart Greenhouse Based on Internet of 

Things for Environmental Engineering,” 2020 International Conference on Smart Technology and Applications (ICoSTA), pp. 1–5, Feb. 2020, 

doi: 10.1109/icosta48221.2020.1570614124. 

[8]. I. Ullah, M. Fayaz, M. Aman, and D. Kim, “An optimization scheme for IoT based smart greenhouse climate control with efficient energy 

consumption,” Computing, vol. 104, no. 2, pp. 433–457, Jun. 2021, doi: 10.1007/s00607-021-00963-5. 

[9]. M. A. Tawfeek, S. Alanazi, and A. A. A. El-Aziz, “Smart Greenhouse Based on ANN and IOT,” Processes, vol. 10, no. 11, p. 2402, Nov. 

2022, doi: 10.3390/pr10112402. 

[10]. J. Rho, M., J. Y. Kang, K. Y Kim, Y. J. Park, & K. S. Kong, “IoT-based Smart Greenhouse System,” Journal of The Korea Society of Computer 

and Information, vol.25, no.11, pp.1-8, (2020). 

[11]. M. Ravishankar, S. Siddharth, A. A. Yadav, and S. R. Kassa, “Integrating IoT and Sensor Technologies for Smart Agriculture: Optimizing 

Crop Yield and Resource Management,” 2023 IEEE Technology &amp;amp; Engineering Management Conference - Asia Pacific 

(TEMSCON-ASPAC), pp. 1–5, Dec. 2023, doi: 10.1109/temscon-aspac59527.2023.10531339. 

[12]. S. Sudhakar and S. C. Pandian, “Hybrid cluster-based geographical routing protocol to mitigate malicious nodes in mobile ad hoc network,” 

International Journal of Ad Hoc and Ubiquitous Computing, vol. 21, no. 4, p. 224, 2016, doi: 10.1504/ijahuc.2016.076358. 

[13]. S. Punia, H. Krishna, V. N. B, and A. Sajjad, “Agrosquad - An IoT based precision agriculture using UAV and low-power soil multi-sensor,” 

2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), pp. 1–6, Jul. 2021, doi: 

10.1109/conecct52877.2021.9622639. 

[14]. T. Raj, T. A. Johny, S. Khetawat, R. B, and S. Prasad, “Ambient Parametric Monitoring of Farms Using Embedded IoT &amp; LoRa,” 2019 

IEEE Bombay Section Signature Conference (IBSSC), pp. 1–6, Jul. 2019, doi: 10.1109/ibssc47189.2019.8973084. 

[15]. E. M. Baesa and T. D. Palaoag, “SwineTech Precision: Revolutionizing Breeding and Farrowing Management with Intelligent Decision 

Support,” 2024 10th International Conference on Applied System Innovation (ICASI), pp. 247–249, Apr. 2024, doi: 

10.1109/icasi60819.2024.10547768. 

 


