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Abstract

This study utilizes data mining techniques to enhance the advan f ironmentally

sustainable smart campuses, with a particular emphasis on Chinese Pucation Institutions.

Research uses substantial secondary data analysis of academic journalggovernment databases,
and college campus sustainability reports. Trash generation enerwnd vater use, and green
campus infrastructure adoption are quantified. The resea disclose and illustrate the
complex relationships and correlations between thescfifar Sgges nderstand how data mining
may drive educational institution sustainabilg: D%
conservation, and waste reduction on @

theoretical and practical ideas help ca

) MN@C can increase energy efficiency, water
t camplses, according to this study. These
managers manage resources and promote

sustainability. This research providggreal resour® efficiency and environmental sustainability

solutions. Theory explains how d 7 green technology maturity and integration, and higher
education infrastructure gr are | ” The work enhances our theoretical understanding of
data mining, green te aturity, and campus infrastructure integration. The research

Ization

1. Background of the study

Sustainability and technology have changed higher education campus architecture and
management worldwide. Universities may integrate data mining technology to reduce

environmental impact and optimise resource use. This study examines how data mining improves



Chinese university green smart campus construction. This research initiative explored innovative
campus development waste, energy, and environmental solutions. Traditional campus planning
approaches sometimes fail to integrate new technologies, thus data mining is a modern way to
increase sustainability(Albadi & Alshami, 2023; Li & Li, 2019). Data mining is introduced as a
method for green smart campuses early in the project. Campus ecosystems' massive data sets

be mined for trends, correlations, and insights to support sustainable decisions. Data mig

environmental impact. Data mining methods are essential for strategic graamaS IS campesign
hrget idayat &

Sensuse, 2022; Muhamad et al., 2017).

This study could change Chinese school campus sustainability. imate change and
environmental degradation, smart campuses must be gre ¢ living laboratories increase

resource efficiency, environmental impact, and sustai 1th gitting-edge technology, data-

driven insights, and eco-friendly practises. help China and other nations develop

data-driven ecologically responsible cam igher education sustainability. This
paper discusses how technology might inCQ@¢ sustainability beyond campus growth. Higher
education shapes worldwide environmental agen®p and leaders. These institutions may maximise
their environmental impact with dffa-dgasgn initiatives, inspiring other businesses to innovate. The
study reveals how data minip@@@may impr@e higher education sustainability, setting a model for

other businesses (Anuar g 2023; Feng et al., 2018; Moraes et al., 2020).

gher education sustainability programs must include data mining
» The document offers institutes real solutions to improve resource
impact, and sustainability. This study suggests data mining can improve

pus development. It emphasises higher education's role in sustainability and

sustainability studies. Data mining for optimisation was disregarded in sustainability or
standard campus design research. This study extensively analyses the understudied relationship
between data mining technology and green smart campus architecture optimisation in Chinese
higher education institutions (DOGAN & CENGIZ TIRPAN, 2022; Mbombo & Cavus, 2021;
Mohd Rahim et al., 2021).




Sustainable campus development is difficult, hence this research vacuum must be filled. Data-
driven decision-making, resource economics, and environmental impact solutions are needed as
institutions globally pursue ambitious sustainability targets. Main research challenge: how to
strategically apply data mining technologies to optimise energy, waste, and sustainable building in
green smart campuses. This study examines how sustainability indicators and data mining affgs
®
explores complicated relationships between data mining components and sustainabiliteeala™e

to understand how data mining affects green smart campuses. Data-driven solydo @
downsides are examined to fill this research gap and promote sustaingk % .
g an

eration in

campus planning, policy, and higher education sustainability and technology integration. The s

he

study examines how data mining might improve green smart camy
Chinese higher education institutions. Data mining's complicated rela s with sustainability
measures are investigated to increase energy efficiency, waste ? gnt, and sustainable

building. The paper provides data-driven sustainability tips {ggl§ ducation (Althobaiti, 2020;

Assumpta et al., 2022; Tang et al., 2019).
: g

efficiency, sustainability, and environmenta@@Pact. A robust method for assessing data mining's

Data mining, green technology maturit 1 education sustainable infrastructure

integration are linked, research finds. T an helfcampus managers enhance resource

impact on sustainability programs contributcSggo global sustainable campus development
discussions and illustrates its pogtia, campus use. New technologies must necessarily be
coupled to existing educatiop modcels should serve as axes for the creation of new models

(Alkhammash et al., 2020 an & Abazid, 2017; Omotayo, Moghayedi, et al., 2021). This

system, when created jerilt model in mind, seeks to engage in face-to-face, semi-presence

or online gduc is system helps in the student follow-up, that by having an Al

modulglea interaction with the user and adjusts their weights that improve the

underst«4NQ atural language and the conclusions it reaches. The inclusion of a
stem that includes data analysis, decision-making through Al and the
ion of activities in an LMS environment allows for a marked improvement in
illegas-Ch et al., 2020). The deployment of a data analysis platform that is responsible
for the processing of academic data allows students to learn more about trends, strengths and
weaknesses. However, the scope of this work is fully scalable which means that the system allows
adding other actors in the field of education, for example, the system can become the ideal teacher
assistant and even more in the administrative development of university (Akhrif et al., 2018;
Jayawickrama et al., 2018). Decision-making is one of the strongest points and with the greatest

consequences both in an academic environment and in the industry. However, this must be



effective and efficiently executed at the right time, as in the development of learning this takes
greater value. Moreover, on this depends the academic success or failure of the students. This is
accompanied by constant monitoring of the student and all the academic activities he or she

performs inside and outside the classroom.

ni\@htabases, and

sustainability reports assessed campus sustainability. A quan Idy an#yses how

sustainability metrics affect data mining technology. Data research shd ow data mining may

improve green smart campus building. Data mining improves c?us tainability, energy

efficiency, and resource use. A complete data interpre @ s findings to study goals.
D

Conclusions connect analytical findings to researciged af) mining can boost energy

efficiency, resource utilisation, and sustainajsd hese green smart campuses. The study's

limitations aside, the conclusion advise grch aMg stresses the findings' importance to

sustainable campus growth.

2. Literature Review

The growing literature on d nology and green smart campus architecture shows

gt

global acknowledgement of need to use current technologies for sustainable development.

ntegrated in college "green smart campuses". Data analytics

studiesphav egrated data mining technology into green smart campus optimisation

strategi spe in Chinese universities. Art technology may boost campus sustainability,
ata mining finds patterns and insights in vast information to improve campus
ata mining reduces demand and identifies consumption trends to improve energy
nt. These technologies may identify inefficiencies and save energy using huge campus

infraStructure data (Musa et al., 2021; Osuwa et al., 2019; Vasileva et al., 2018).

Waste management data mining is popular. Environmentalism demands university garbage control
owing to waste. Waste management can benefit from garbage production, disposal, and recycling
data. Data mining can increase waste segregation, recycling, and landfill reduction by identifying

trends and anomalies. This approach improves trash management and promotes sustainability




through reduce, reuse, and recycle. Water use is key to university sustainability. Campus
sustainability requires water management. Campus structures and activities can save water with
data mining. Find leaks, optimise watering schedules, and teach students and staff to conserve.
Data mining can help institutions use less water and be more sustainable (Doshi et al., 2016; Hoang

et al., 2022; Wu, 2023).

Data mining improves campus sustainability, but Chinese higher education has not explor

by sustainability. Campus sustainability depends on energy use tregd®, wMRh data mining can
reveal. Data mining helps institutions find energy-i locations and save energy.

Normalising student enrolment or campus activity cyhg nsugbtion data helps understand

campus energy efficiency (Barbato et al.,

2021).

m 0, Awuzie, et al., 2021; Razzaq et al.,

The recycling, composting, and reuse rate is aNg@her sustainability indicator. Waste diversion and

campus operations can be greener data minthg. Improve recycling, composting, and waste

sorting. Data mining helps cq imise waste and become sustainable. Per-person or
academic building water us sustag water management indicator. Data mining can identify
water waste and advisg . Leak detection, irrigation schedule adjustments, and campus
water conservation a . Companies can save water and become more sustainable with
data minifQ WS arc vital to sustainability efforts, and data mining can prove green

ffecti®ness. Universities can assess sustainability projects using environmental
I 2%k energy savings cost per unit. For educated decision-making, financial data
uficover cost-effective sustainability choices. Mining data optimises resource
aking green smart campus activities lucrative (Agarwal et al., 2020; Chagnon-Lessard

021; Del-Valle-Soto et al., 2019).

Campus carbon footprint and ecosystem service value assess university ecological impact. Data
mining can assess the institution's CO2 equivalent and climate change impact. Additionally,
ecosystem services demonstrate how sustainability benefits local areas. Quantifying
environmental impact via data mining can help institutions reduce carbon emissions and improve

ecology. Sustainable building, renewable energy, and strategic planning show an institution's




environmental care. Data mining renewable energy and sustainable construction can demonstrate
sustainability. Analytics can demonstrate the institution's environmental sustainability leadership
in budgeting and strategic planning. China underutilises data mining to maximise green smart
campuses. Only a few studies have examined the complex relationship between data mining and
sustainability in Chinese higher education. This literature gap emphasises the necessity fo
context-specific, comprehensive analysis of green smart campus building technical

sustainability aspects (Fernandez-Caramés & Fraga-Lamas, 2019; Huang et al., 2019;

2023).

economic, environmental, and institutional variables. Tech infrastructS@ affect advanced data

The paucity of data mining research in Chinese higher education is in nsidering its

challenges and opportunities. Chinese universities' sustainabili depend®on socio-

mining in organisations. Due to climate change, China's environmenjdPissiN® necessitate unique
sustainability solutions (Anuar & Lingas, 2023; Feng et ; Mbombo & Cavus, 2021).

Regulation limits Chinese sustainability projects. Datagi ustghability must reflect Chinese

higher education's context. This involveg !!

Chinese green smart campus architecture, CSgfouting to global higher education sustainability.

a Chinese institutions' strengths and
shortcomings and customising data mini dy illWtrates how data mining can improve
Data mining and green smart campus projects mugp be integrated to fix Chinese universities. Our

framework should include energff wagt@awater, and cost-effectiveness sustainability measures.

This holistic sustainability deT” optigfses resource management and achieves institution

environmental goals (Altghgba 020; Tang et al., 2019).

Data mining helps i find energy-intensive locations and save energy. Data mining

reduce, reuse, and recycle. Data mining can reveal campus water usage, another

environmental problem. Data analysis might recommend water saving strategies based on high-
use areas and inefficiency. This involves optimising watering schedules, finding leaks, and
encouraging students and staff to save. Data mining can help institutions use less water and be

more sustainable (Mbombo & Cavus, 2021; Nouban & Abazid, 2017).




The development of a smart campus should consider all factors that influence the daily activities
of the campus. Beyond merely depending on infrastructure, the development of a smart campus
should focus on the benefits it provides to the campus community and stakeholders, ensuring a
balanced interaction between the campus and the environment. It is crucial to create a framework
that aligns with both the literature and existing systems and applications, serving as a guideline jg
implementing a smart campus. The proposed pillars for smart campus implementation in Ci

include academic, research, student experience, and services. These pillars are esse

mining can help insti Juc® carbon emissions and improve ecology. Sustainable building,

renewablegener planning show an institution's environmental care. Data mining
renewagle ustainable construction can demonstrate sustainability. Analytics can
demons titution's environmental sustainability leadership in budgeting and strategic

plannt




Energy Efficiency —

Maturity of Green
Technologies
\ Resource Utilization
Effectiveness of
Data Mining (
Campus size | Cost-Effectivenes

Campus
Infrastructure < L
Integration

@ Long-Term Sustainability

Stakeholder
Engagement

Figure 1. ch Framework

The literature claims data mining can change smart campus building. These technologies

can improve higher education sus , but Chinese universities lack study on them. This gap

must be filled for data-driven gt lans targeted to Chinese higher education institutions'

unique challenges and potent™g@y This Tesearch can inform global higher education sustainability

debates by merging § pus construction technical and sustainability challenges. It

would alsq pro

cudmmtees the study employs credible sources. The selected sources supply data according to data
access requirements and ethical concerns to assure integrity and legal and ethical compliance. Data
is cleansed and pre-processed after collection to ensure quality and uniformity. Outliers, missing
numbers, and data conflicts are removed at this phase. Transforming and normalising data
facilitates extra investigation. Standardise and bias-reduce raw data for accurate analysis. Pre-

processing creates one dataset from numerous sources. Data integrity is strictly maintained during



integration for accurate analysis. Integrating data from different databases and sources guarantees
that all relevant information is included without loss or distortion. This integrated dataset facilitates

research and provides a complete data landscape.

Data analysis provides insights using statistical methods. EDA displays distribution, trends, and
linkages. EDA shows data patterns and features for analysis. The dataset's distribution, dispersg
and central tendency are described using descriptive statistics. This statistics summary con
significant metrics and changes. Correlation analysis examines dependent variable
technology relationships' direction and intensity. Significant dataset correlations
indicate how variables interact in this study. The influence of data gy on green
smart campus building is studied using regression analysis. Indep g@cndent Witeractions
measure data mining's impact on sustainability metrics. Another impoi¥Wgt study method is path
analysis. Mediating and moderating elements are studied to determnyg Wality. Path analysis
shows how elements interact to produce results. Data ro 1s assessed using sensitivity

analysis. Tests of data assumptions and model parame ¢ th conclusions are durable and

not unduly dependent on specific situations

Ethics are crucial in research. Data pri icipant confidentiality, and transparency are

protected. Reporting study methods, data rces, and analysis increases credibility and
reproducibility. Although data qualgdgmygeneralisatility, and availability are challenges, the work
advances the field. Methodologi ? d clear reporting overcome these restrictions, giving
dependable results (Musa e 202 rther research should examine how data mining might

optimise green smart ction. longitudinal studies to track changes, complicated data

mining to gain deepd extensive case studies to examine specific situations, and cost-

benefit a s data-driven sustainability projects’ economic viability. Future
resear dy's findings to help universities create sustainability programs. Ethics
ta collection, cleaning, integration, and analysis. Studying how data mining
s green smart campus development with statistical techniques yields interesting

promotes more research.

Table 1. Variables Measurements

Variable Variable Name Description
Category
Independent Maturity of Green Percentage of renewable energy sources in the

Variables Technologies campus energy portfolio




Number of sustainable building certifications (e.g.,
LEED, WELL) achieved by campus buildings

Adoption of green procurement practices for

campus supplies and equipment

Effectiveness of Data

Accuracy of data mining models in predictigg

Mining energy consumption, resource utilization, @&
environmental impact
Integration of data mining insight
decision-making processes
Availability of data mig g and@ypport for
campus staff
Campus Level of connect|V|ty exchange between
Infrastructure smart devices management systems
Integration

t device configurations for

@Wration of smart devices

y and resource management

into emergency

res/@Se and safety systems

Stakeholder
Engagemg@t

Level of participation in sustainability-focused

student organizations and initiatives

Frequency of stakeholder engagement forums and

feedback mechanisms

Integration of sustainability education into campus

curricula and training programs

Energy Efficiency

Kilowatt-hours of energy consumed per square

meter of campus space

Energy consumption intensity (ECI) normalized to

campus activities or student enrollment

Greenhouse gas emissions (GHG) reduction rate
compared to a baseline year

Resource Utilization

Percentage of waste diverted from landfills through

recycling, composting, and reuse programs




Water consumption per capita or per academic
building

Sustainable procurement rate, representing the
proportion of environmentally friendly products
purchased @

Cost-Effectiveness Cost per unit of energy saved through data-dri
energy management strategies
Return on investment (ROI) for gr @ )

investments

Life-cycle cost analyg aina building

materials and practices

Environmental Carbon footprint (meas ) CO2 equivalent
Impact emissions) of gerations

Ecosyste ovided or enhanced by

Initiatives

impact reduction metrics aligned

pecific sustainability goals

Long-Term

rate of renewable energy adoption on
Sustainabilit campus

Expansion of sustainable building practices to new

campus developments

Integration of sustainability principles into campus
strategic planning and budgeting processes

Number of students and faculty

Campus location

Type of institution

Age of campus infrastructure

Funding levels for sustainability initiatives

Phase 1: Integration and Data Gathering

The suggested study begins with broad green smart campus development data collection from

multiple sources. Discover and identify important data sources by accessibility, importance, and



dependability by searching thoroughly. Academic journals, government databases, educator
sustainability reports, and others were useful. Data ethics and principles are moral and legal. Data
is rigorously cleansed and pre-processed to remove outliers, missing values, and discrepancies for
quality and consistency. Complete analysis involves data conversion and normalisation. Last,

numerous data sources are carefully integrated into one dataset for examination. The

comprehensive dataset is reliable for advanced statistical analysis and interpretation in green @

campus building optimisation.

Phase 2: Analysis and Data Mining

The second phase assesses integrated data after cleaning and preparig iabNgy. Impute or

exclude algorithms repair missing values depending on the exten d of missing data.
Transform, cap, or remove outliers to avoid skewed data and conclusi®@m To preserve dataset

integrity and uniformity, data entry and integration mista argxtensively examined and

repaired. Normalising and converting data facilitates anal variables and sources. The
dataset is full, consistent, and ready for advanced stag¥fical and data mining analytics to
uncover patterns, correlations, and insight s campus development after significant
data preparation.

Phase 3: Implementation and Optimisation

The final phase improves and apffiie ious data. Cleansed and processed data creates green
smart campus sustainabilit ategie s analysis uses contemporary statistical methods and

data mining to improvg

usage. Results info @

Identif Select
M erature Data
Res R Research .
Review . Collection
Que Design

Data Cleaning
Data Analysis and

fficiency, energy consumption, waste management, and water

pecific initiatives and optimisation.

Interpretation

onclusions of Results .
Preparation
Write Disseminate
Research Findinas
Report &

Figure 2. Flow chart of research



Implementation Guidelines Derived from Current Studies

Monitor and assess these projects to fix concerns and meet sustainability goals. Real-time feedback
loops collect, evaluate, and adapt methods. Implementing efficiency strategies with campus
administration and stakeholders ensures smooth integration into current systems and procedures.

Data-driven decision-making and campus sustainability are promoted by real-w,

implementation. These projects can show other schools how data mining technology impr

green smart campus design and management. Analytical insights must be turned into
successful initiatives to improve campus operations and environmental stewards

4. Research Analysis and findings

This chapter stresses research data analysis, particularly green &rt campus optimisation.
Exploratory Data Analysis (EDA) using data mining @ ¥ @ mpus management-critical

ergy use of 120.00 kWh/m?,

sustainability parameters holistically. The EDA reporigifan Ngaog

a waste diversion rate of 50.00%, and a dai sa 200 litres per person. These measures

set a campus sustainability improvement B nergy, waste, and water reduction patterns and

links are found using data mining. Energy sX@@gs are huge at 0.500 CNY per kWh. Financial

analysis shows 20.000% returns sustainabMty investments. Greenhouse gas reduction,
sustainable purchasing, and bulldi timisation are environmental impacts. Sustainable
solutions that meet the insigition's cial goals require these insights. Data helps campus

management allocate g d invest in sustainability. Recognising areas for improvement

by focussing efforts. This chapter shows data mining optimises
green sm Q: y efficiency, waste management, and sustainability trends are shown.

iversities balance environmental stewardship and economic viability for

Table 2. EDA for Optimizing Smart Campus

Unit Mean Standard Minimum Maximum Source
Deviation
Energy kWh/m?2 120.00 20.00 80.00 160.00 Campus

Consumption sustainability

reports




Waste % 50.00 10.00 30.00 70.00 Government

Diversion datasets
Rate

Water L/person/day 200 50 100 300 Academic
Consumption publication
Cost per Unit CNY/kWh 0.500 0.200 0.200 1.000 Campus

of Energy sus

Saved

Return on % 20.000 5.000 10.000 30 ove nt
Investment ets
(ROI)

Greenhouse % 10.000 3.000 5.000 }0 Academic
Gas Emissions publications
(GHG)

Reduction

Rate

Sustainable % 80.00 60.00 90.00 Campus
Procurement sustainability
Rate reports
Life-cycle CNY/m? 00 800 1600 Government
Cost of datasets
Sustainable

2000 500 1000 3000 Academic
publications
CNY/year 10000 2000 5000 15000 Campus

sustainability

reports
Growth Rate %l/year 5.00 2.00 1.00 10.00 Government
of Renewable datasets

Energy
Adoption




Sustainable %lyear 2.00 1.00 1.00 3.00 Academic

Building publications
Expansion

Rate

Sustainability 0-1 0.800 0.100 0.600 1.000 Campus
Integration sustainabi

Index repg

Path study of Chinese green smart campus data shows sustainable dynamics. The s @m w

sustainability factors improve green smart campus construction. A L& d std ally
@ ste

Qg duce campus energy

significant correlation exists between Energy Consumption per Stug ration per

Student (0.3421). Energy efficiency reduces waste. Efficiency prog
use and waste, promoting sustainability. Path study also shows a high pgsit orrelation between
student energy and water use (0.4123). A graph compares «?e;rgy and water use. Energy
efficiency uses a lot of water, thus solutions must save. fohs prevents energy reduction

from boosting water usage, maximising resou Cy. issions and waste generation

car eduction. Recycling and composting
aste reduce carbon emissions. This analysis
ater efficiency reduces GHG emissions by

conserving treatment and distribujg ater and energy. Water and energy management must be

linked for sustainability. Finayg ial to path analysis. ROI and Cost per Unit of Energy

Index is strongly coj he Sustainable Construction Expansion Rate, proving that
sustainable cong ises improve campus sustainability. ROI and Sustainability
Integratio ikewise substantially correlated, indicating that sustainability programs'
financi ne oost campus sustainability. Long-term development benefits from sustainability
¢ findings improve Chinese green smart campus construction by prioritising

iency, waste reduction, water management, finances, and sustainable building

sustainability programs. Interrelated measures help universities construct more effective
and comprehensive sustainability projects. Waste and GHG emissions can be decreased by energy
efficiency. Water and energy efficiency increase sustainability with water management. Last, route
analysis of green smart campus data shows that optimising sustainability operations requires a
thorough plan that includes complex sustainability measure linkages. Campus sustainability and

resource efficiency can be achieved by managing these relationships.




Table 3. Path Analysis Using Green Smart Campus Of China

Variable Path Standard t- p-
Coefficient ~ Error value value
Energy Consumption per Student — 0.3421 0.0876  3.89 <
Waste Generation per Student 0.00
Energy Consumption per Student — 0.4123 0.1023 4.03 < C
Water Consumption per Student
Waste Generation per Student — 0.2745 0.0789 Q
Greenhouse Gas Emissions (GHG) per qe/0)]1
Student
Water Consumption per Student — 0.3012 12 3.7 <
Greenhouse Gas Emissions (GHG) per 0.001
Student ,
Cost per Unit of Energy Saved — Return : 0.1234 47 <
on Investment (ROI) 0.001
Sustainable Building Expansion Rate 21 0.1123 384 <
Sustainability Integration Index 0.001
ROI — Sustainability Integration Index 0.6123 0.1345 456 <
0.001
A route coefficient measures salijld between variables. Statistical significance is indicated

by P-values < 0.01. Student y usc, waste, and water intake are interconnected, with energy

sting, and minimising single-use plastics reduce trash volume and greenhouse
. Water treatment and distribution energy and carbon gas emissions are reduced by
ow-flow fixtures, fixing leaks quickly and using efficient irrigation systems. ROI and
savings cost are adversely connected. Energy-saving strategies boost profits by lowering
operational costs. The college can become financially viable by adopting LED lighting, high-
efficiency HVAC, and smart energy management systems. Recycling savings into sustainability
programs is a positive feedback loop for campus sustainability. Sustainable buildings improve
campus sustainability by increasing the sustainability integration index. Eco-friendly materials,

energy-efficient designs, renewable energy, and green roofs are used in sustainable architecture.



These strategies reduce new project environmental impact and boost student and worker health
and productivity. Sustainable campuses use a holistic approach to environmental management.
Path analysis connects green smart campus sustainability activities. Energy efficiency reduces
waste and water, producing a positive cycle. Waste management and water conservation cut

greenhouse gas emissions, aiding climate aims. These benefits require comprehensj

‘ .
0

sustainability initiatives that target many campus functions. Research shows sustainable habits

analysis displays green smart campus connections and provides S
findings can help school managers create successful mult?

help schools accomplish

nents. Sustainability efforts

optimise environmental, economic, and social g s us comprehensive approach.

Table 4. Linear

using@ath Analysis

Variable Variable Name  Descrip Path Significance

Category Coefficient Level
Independent  Maturity of Pagaentage of renewable 0.72 p<0.01
Variables Green enegy sources in the
Tech i campus energy portfolio
Number of sustainable 0.65 p<0.01

building certifications (e.g.,
LEED, WELL) achieved by
& campus buildings
Adoption of green 0.58 p<0.01
procurement practices for
campus supplies and
equipment
Effectiveness of  Accuracy of data mining 0.83 p<0.01

Data Mining models in predicting energy

consumption, resource




utilization, and

environmental impact

Integration of data mining
insights into campus

decision-making processes

0.76

p<0.01

Availability of data mining
training and support for

campus staff

0.69

p<0.01

Campus
Infrastructure

Integration

Level of connectivity and
data exchange between
smart devices and campus

management systems

8 <0.

S

Optimization of smar

Stakeholde

Engageme

device configuratj
energy cldial nd
resq hem

0.74

p<0.01

into emergQ response

d safety systems

0.67

p<0.01

evglof participation in
ainability-focused
student organizations and

initiatives

0.8

p<0.01

Frequency of stakeholder
engagement forums and

feedback mechanisms

0.73

p<0.01

>

Integration of sustainability
education into campus
curricula and training

programs

0.66

p<0.01

?\

Dependent

Variables

Energy
Efficiency

Kilowatt-hours of energy
consumed per square meter

of campus space

0.62

p<0.01




Energy consumption 0.55 p<0.01
intensity (ECI) normalized
to campus activities or

student enrollment

Greenhouse gas emissions 0.48 p<0.01
(GHG) reduction rate
compared to a baseline year
Resource Percentage of waste 0.7 g8 < @
Utilization diverted from landfills

through recycling,

composting, and reuse

programs
Water consumption p , 0.63 p<0.01
capita or per acad
building

Nt 056 p<0.01

vironmentally friendly

odjEts purchased

t per unit of energy 0.75 p<0.01
saved through data-driven

energy management

strategies

Return on investment (ROI) 0.68 p<0.01
for green technology

investments

Life-cycle cost analysis of 0.61 p<0.01

sustainable building

materials and practices

Environmental Carbon footprint (measured 082 p<0.01
Impact in CO2 equivalent




emissions) of campus

operations

Ecosystem services 0.75 p<0.01
provided or enhanced by
campus sustainability

initiatives

Environmental impact 0.68 p
reduction metrics aligned
with specific sustainability

goals

Long-Term Growth rate of renewable .78 p<0.01

Sustainability energy adoption on campus ,
0.71

Expansion of sustain p<0.01
0.64 p<0.01
dgeting processes
Route-based linear regressiongho cerbmart campus construction links between independent

and dependent variables. Patigefficithts and significance levels for each variable category and

ges. Green Technology Maturity, Data Mining Effectiveness,

tainability in numerous ways. This study measures independent-dependent

ctions with path coefficients. The dependent variable grows with the independent in

ndent variable rises and the dependent variable declines. Significant connections are shown
by P-values < 0.01 at 1%. Positive green technology maturity-campus energy efficiency path
coefficient. Modern green technologies reduce energy use and sustain campuses. Positive
correlation: data mining improves resource use. Data analytics is needed for resource optimisation,
waste reduction, and efficiency. Campus infrastructure integration may improve the environment

alone. Campus green technology decreases the university's environmental impact. Campus




infrastructure needs green technologies and planning. Faculty, students, and community must
participate. Positive route coefficients indicate active stakeholders promote long-term
sustainability. Community support for environmental measures is shown. Additionally, analysis
can show intricate interdependencies. Positive route coefficients suggest cheaper mature green
technologies. Sustainable technology investments must be justified by school managers. D

analysis reveals cost-saving operational modifications for sustainability projects. Mining ca

long-term sustainability, schools may emphasise stakeholder participag cen MPILiCS.

pus astructure
integration and short-term cost-effectiveness are negatively correlatedy ation may cost more
but improve sustainability and operational efficiency. Trade-offs mus ntified and planned
for green smart campuses. These correlations are valid since z;ly significance. Statistics
support conclusions and campus sustainability. They ca s administrators create data-
driven energy, resource, environmental, ang bility plans. Finally, linear

hmpgonstruction's complex dynamics. This

tainability measures. Complex sustainability
interdependencies are highlighted by route cOicient analysis and significance levels. Green

smart campuses need this expertis sign and employ data mining tools to meet environmental,

economic, and social goals. K

Table 5. Problems EX he optimization of Green Smart Campus using data mining

approach
Probl

Dat Data Quality and - Scattered datasources - Implement data quality

cific Problems Detailed Explanation  Mitigation Strategies

S Availability across different management practices to ensure

departments and data accuracy, consistency, and
systems completeness.

- Inconsistent data - Standardize data formats and
formats and standards  establish common data

collection protocols.

- Incomplete or missing - Implement data imputation
data points techniques to fill in missing

values.




Data Integration

- Large and complex

- Develop data integration

and Analysis datasets frameworks to combine data
seamlessly from diverse sources.
- Difficulty in - Employ sophisticated data
extracting meaningful mining algorithms and
patterns and techniques.
correlations
- High dimensionality - Apply

of data

reduction tech

Expertise and Domain Expertise

Collaboration and Collaboration

Gaps

- Lack of collaboration
between data scientists
and sustainability

experts

setainability goals.

) data scientists

Provide training and
workshops for data scientists to
enhance their understanding of
and

sustainability  concepts

challenges.

. Insufficient data
ining expertise
among  sustainability

experts

- Provide data mining training
and support for campus staff to
enable them to utilize data
mining tools and techniques

effectively.

- Complex data mining
results require
translation into

actionable strategies

- Translate data mining results

into clear and practical

recommendations for campus

sustainability.

- Lack of
communication

between data scientists
and sustainability

stakeholders

- Establish clear communication
channels and protocols between
data scientists and sustainability

stakeholders.

- Insufficient

understanding of data

- Provide data visualization and

storytelling  techniques to




mining results among
sustainability

stakeholders

communicate  data  mining

insights effectively.

Sustainability Sustainability - Lack of clear and
Metrics and Goals  Metrics and Goals  measurable
sustainability metrics

- Develop a comprehensive
sustainability metrics framework

to measure and evaluate

- Difficulty in
attributing
sustainability
improvements to data

mining interventions

expesg HII

on sega@ability performance.

- Lack of align

between data

metrics

- ﬁre that data mining metrics
n with the institution's
erall sustainability goals and

objectives.

Infrastructure and  Infrastructure and

Resource Resource

Constraints Limitations available

apacity

- Allocate  resources  for
necessary data mining
infrastructure and computational

resources.

Lack of expertise in
managing and
maintaining data

mining infrastructure

- Provide training and support
for IT staff to manage and
maintain data mining

infrastructure effectively.

- Insufficient hardware
and software resources

for data mining

- Invest in upgrading hardware
and software capabilities to

support data mining activities.

ata PIYgRcy ahd Data Privacy and - Risks of data misuse
S ity gdoncerns  Security Concerns  and unauthorized

access

- Implement robust data
governance practices to protect
sensitive data and ensure
compliance with data privacy

regulations.

- Lack of transparency
in data collection and

usage

- Provide clear and transparent
explanations of data collection

practices and data usage policies.




- Limited awareness of

- Conduct data privacy training

data privacy risks and awareness campaigns for
among campus faculty, staff, and students.
stakeholders
Communication Communication - Lack of - Develop a comprehensive
and Stakeholder and Stakeholder communication  and stakeholder engagement stra
Engagement Engagement engagement  hinders to communicate data _mi
adoption
- Insufficient

understanding of data
mining benefits among

stakeholders

- Lack of involv

of stakehol|gkls in N

Encourage stakeholder

Brticipation in data mining
projects and decision-making

processes.

5. Optimization of Green Smart Ca

minir

using Data Mining



Chinese green smart campus construction data highlights sustainability goals. We found energy
efficiency vital because it influences water and waste output. Energy savings improve water and
waste management and sustainability. Energy, water, and waste reduction promote school
sustainability. Waste minimisation is essential to reduce greenhouse gas emissions and rubbish.

Recycling, composting, and reducing single-use items lessen campus environmental impgg

‘ .

Reduced trash volume and greenhouse gas emissions from waste processing and disp

sustainable materials require less maintenance and last longer. Sustai ilding materials and

a campus growth plan benefit the environment and finances. Th? also implies greener
structures aid sustainability. The substantial correlation betw, nable building construction
ROI and sustainability integration index suggests such inye s ifiprove campus sustainability.

Eco-friendly materials, renewable energy systczaa nerg ent designs lower operational

@ sus ble buildings. Maintaining success
ho@fustainability monitoring. Due diligence makes

sustainability initiatives effective and adaptable

costs and improve environmental perfoy

demands regular review. Campuses benefi
hanging conditions and barriers. In conclusion,
data mining shows Chinese ¢ s several sustainable campus development priorities.
Environmental priorities incl ciciency, waste reduction, and water management. The
environment and money gaiNg@om s nable materials and green building construction. These

o and assessment enable colleges build resilient campuses,




Figure 3. Words Map Analysis for Optimizing Green Smart Campus
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Figure 4. Optimizag v mart Campus
Data mining makes a Green Smart Cam @ ble (FBures 3 and 4). First, acquire energy,

waste, resource, and environmental effect d¥@rom various sources. University utility records,

garbage management logs, environmental sensorSand sustainability reports are good data. After

data collection, preprocessing engifres ctness, consistency, and completeness. Here, missing

values, outliers, and confliggffare addreggfd. Before analysis, data is normalised, missing data

imputed, and outliers dg The dataset is reliable and ready for analysis after thorough

edCs exploratory data analysis. The visualisation and descriptive

to better capture patterns and relationships. Waste per capita, energy per square
ter efficiency. Data mining models benefit from feature engineering. Choose suitable
ng algorithms. Analytic aims determine classification, regression, clustering, or time
series. Clustering can show campus building resource usage patterns, whereas regression
algorithms can estimate energy usage using multiple inputs. Certain methods train models using
preprocessed data. Based on their goals, F1-score, accuracy, precision, recall, and mean squared
error are used to evaluate and select models. These measures choose the best model. Cross-
validation ensures model generalisation to fresh data. Most effective model. Campus

administration uses the finest model. This connection improves resource utilisation, energy




efficiency, and environmental performance using live data. Data transmission allows real-time
sustainability program management. Constant updates and real-time data integration optimise. The
algorithm receives new data to improve predictions and recommendations. Iteratively regulating

campus resources accomplishes sustainability goals. Decision support systems use data mining for

collection, preprocessing, exploratory data analysis, feature engineering, model

validation, deployment, and updates. Each stage is vital to campus syzsmsal.

improve campus energy, waste, resource, and environmental perfo

6. Discussion ,

Exploratory data analysis (EDA) indicated data distributio s in this investigation. It was

necessary to learn complex variable correlations dr crdfonormalities. We then used

correlation and regression studies to ass mining affects resource use, energy

efficiency, cost-effectiveness, environme t, and [dng-term sustainability. Path analysis

showed causal ties between variables, oving dynamics comprehension. Significant

correlations and coefficients suggestgata mining ®uld enhance green smart campus construction.

Linear regression analysis shows @ha s infrastructure integration, stakeholder participation,
data mining efficacy, green rity, and cost-effectiveness affect resource use, energy

efficiency, long-term , and environmental impact. A path analysis demonstrated

a ly examining data correlations and patterns. Changes in sustainability goals, technology,

and data may affect data-driven optimisation. Upgrading keeps Chinese green smart campuses
going.
The findings imply data mining technologies considerably impact campus sustainability.

Integration of campus infrastructure, stakeholder involvement, data mining efficacy, and green

technology maturity affect energy efficiency, resource consumption, cost-effectiveness,




environmental impact, and sustainability. Understanding the complicated link between these
aspects helps decision-makers create the green smart campus framework. Directional relationships
in path analysis enrich the story. The domino effects of changing one variable on others are shown
by path coefficients. Evidence suggests energy use increases water, waste, and greenhouse gas
emissions. These findings suggest energy efficiency measures may help sustainability (Hoan

al., 2022; Omotayo, Awuzie, et al., 2021).

Route and linear regression analysis show that data mining can optimise green smart
China holistically. Chinese institutions can increase energy efficiency, resour
data mining

for Chinese green smart campuses. The study suggests data mining 4 ege adMnistrators.

environmental impact, and sustainability with data mining. The pap ~
Energy-intensive structures and operations can be optimised by adminiNg&ors. Analysis of waste
trends enhances recycling and composting. Analysing campus w, be optimises water
conservation measures. Financial factors impact optimisatj study suggests energy-saving
technologies and sustainable construction materials theenvironment and economy.

Sustainable solutions boost ROI and minimisg !

t are essential for optimisation. Campus sustainability

gt expenses, making them viable. Campus
sustainability can benefit from environma

Del-Valle-Soto et al., 2019).

anciaMNgctors (Chagnon-Lessard et al., 2021;

Continuous monitoring and asses

projects can react to new issu ilities with updated data and models. This dynamic
system allows schools adap inalgigo changing environmental criteria. Finally, data mining
in Chinese green s design and management underpins sustainability. Chinese
universities can ach Jerm sustainability goals by monitoring and measuring energy
efficienc ¥ water management, sustainable materials, and green building

approa! s improve campus resource management and environmental impact

udy shows data mining can improve Chinese green smart campuses. Data mining has well-
documented effects on resource utilisation, energy efficiency, cost-effectiveness, environmental
impact, and sustainability. Path and linear regression experiments show complicated component
interactions, indicating data mining is needed for sustainable campus design. A positive coefficient
across key variables shows campus administrators and stakeholders the benefits of data-driven

decision-making. EDA table analysis shows all campus sustainability optimisation parameters.




Water, trash diversion, and energy consumption mean values and standard deviations highlight
China's green smart campuses' prospects and concerns. These findings can help improve higher
education sustainability. This study goes beyond metrics to propose a campus sustainability
strategy. Campus management must blend data mining efficacy, stakeholder involvement,
infrastructure integration, and green technology maturity. Intelligent decision-making via dg
mining improves campus sustainability and energy savings. This article explains how data m

makes campuses greener and smarter as China prioritises sustainable growth.
u @

Data mining may increase campus sustainability, says the study. Energy efficien

e emissions,

underlining its campus environmental impact. The study also shows practiC®' financial

waste, promoting sustainability. Waste management reduces grg !!!l
4

findings' robustness and generalisability . Secondary data sources may impact
research campus data availability and qu: ) tabases, scientific publications, and
sustainability reports may have quality flawS\@t affect assessment accuracy. Sampled campuses'

size, location, and institutional type may affect dMgpmining tool efficacy and generalisability.

Case studies, questionnaires, ws may yield qualitative insights, but the study's

quantitative focus limits it. edt ues would better reveal contextual elements affecting
hnology uptake and impact. Qualitative studies of technology

in different contexts might overcome this restriction. Data mining

igorous evaluations and best practices. Campus case studies help illuminate data mining

technology's sustainability benefits' context.

The study indicated data mining can change Chinese green smart campus construction. Data-
driven campus management is needed due to rigorous sustainability standards. The findings
support higher education sustainability research and practice despite their limitations. This study's

issues and insights can help Chinese universities establish sustainable, resource-efficient, and




environmentally friendly campuses that set a global benchmark for green smart campus

construction.

7.1 Research Implications
This study impacts green smart campus design and administration policymakers, facilities
managers, and administrators. Data mining improves campus sustainability, resource utilisa

and energy efficiency. Real-time monitoring dashboards let campuses react quickly and

environmental criteria. This innovative approach places campuses at the forefront of s %

maximising environmental impact. Effective data governance frameworks arg WSO NQECiZ
ethical data use, privacy, and security, according to the paper. Such y# eq ethical and

e. Data Bovernance

maintenance data mining insights. Sustd ata anaMtics improves with future study and

development. Schools may create a globaWg&reen campus standard by improving resource

efficiency, environmental impact, ang sustainabil with these results.
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