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jronmental parameters
fici® resource utilization.

such as soil moisture, temperature, and humidity, enabling precision farming g
) igned to enhance the efficiency

The Hybrid Optimization-Based Sensor Node Activation (HOSNA
and lifespan of Wireless Sensor Networks (WSN) in smart agriculturgis
energy-efficient activation, hybrid optimization algorithms,
operations while ensuring accurate and real-time environ
Algorithm (GA) and Particle Swarm Optimizatio ine=optimal sensor activation schedules,

Abstract— Smart agriculture leverages Wireless Sensor Networks (WSNs) to moniio

(90.0%), PEGASIS (86.0%), and Random Duty C ¥ (RDC) (70.0%). Energy consumption reduced by 24%
compared to LEACH, while network lifetime extOWg@Rd by 32% over PEGASIS. These results highlight
HOSNA'’s ability to provide reliable, engrgy-efficient, 28 scalable solutions for precision agriculture. Future
improvements could involve adapting del for heterogeneous sensor networks and integrating solar-powered

nodes for sustainable energy.

riculture, Hybrid Optimization, Genetic Algorithm, Particle Swarm
ode Activation, Clustering, Precision Farming.
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1. INTRODUCTI

. pressure, motion, or chemical concentration [1] [2]. This is therefore showing that almost
re monitoring of events embrace WSNs such as in environmental monitoring, health care

ility of sensing, processing information, communicating as well as a power source. Information
some of the nodes relayed to a standard point, or sink, for other processing and decision-making. The
cteristic of WSNs that is decentralization and wireless has really made them highly flexible and can
mented in various terrains including the remote and the dangerous terrains [3] [4]. However, they pose
certain challenges including scarcity of energy, data security and guarantee of constant communication quality in
dynamic network environment. Despite the progress in the technology, WSNs are still developing day by day,
and these are providing better and intelligent WSNSs.

The necessity of improving the lifetime of WSN is paramount to optimizing its utility and versatility in
conditions where changing batteries or nodes are either technically difficult and/or impossible like in in harsh
terrains or other difficult to access regions. In lifetime enhancement strategies, reduction of energy consumption
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is of high priority, for sensor nodes powered by small batteries [5] [6]. Energy conservation methods like
rigorously efficient routing bends the message, data condensation, and conversion techniques minimize redundant
transmittals and strive for maximum efficiency. For the non-critical nodes, sleep scheduling mechanisms permit
the nodes to reduce costs and power by reverting to a low-power state if they are not involved in transmitting or
sensing. Load balancing is helpful for a node scenario as it prevents individual nodes from using up their energy
within a limited area of the network. Figure 1 shows the benefits of lifetime enhancement in WSM.

Enhanced Data
Reliability

Improved Network Environmental
Longevity Benefits

Lifetime Enhancement in
Wireless Sensor Networks

Energy Efficiency

make networks run for longer durati time [7] [8]. Mature and evolving technologies in the artificial
i analysis also contribute in the sense that use energy optimally
with dynamic changes of the net
further chapters these approach ifetime by a large margin, it is paramount to note that individual

t is the limited energy capability of sensor nodes as they may powered
s battery recharging or replacement is impossible. This is a limitation within

data accurate. Due to t _ (S WSNs are subject to face several impacts on their performance and
eatest QERStr
other ca
@heeds to be treated with energy consumption consideration. These challenges

r sensor node operations. HOSNA uses both GA and PSO to obtain the beneficial activation schedules
izing power consumption and, at the same time, achieving high network reliability. Further, a Long
Term Memory (LSTM) neural network predicts changes in environment for timely activation of sensors for
optimal resource utilization. The model also has the feature to change the cluster heads in a dynamic way to
manage the energy consumption and to make the network efficient. Consequently, HOSNA is the reliable solution
for smart agriculture that allows achieving high data accuracy, low latency and long network life. This paper
presents the design, methodology, and evaluation of HOSNA, displaying its superiority over existing models like
LEACH, PEGASIS, and Random Duty Cycling (RDC). The results highlight the potential of HOSNA to transform
smart agriculture, ensuring sustainability and scalability for precision farming.



2. RELATED WORKS

Several advantages are associated with WSNs, and WSNs find application in various fields, hence drawing
much attention from researchers. The benefits of these networks, despite the energy consumption remain one of the
main challenges that have to addressed through new ideas such as the compression techniques. This challenge
compounded by the fact that sensors’ batteries also designed to have a relatively short lifespan. Actually, energy
efficiency matters even when the energy sources are renewable as it relates to WSNs [11]. Most of the current
methods of data clustering fail to consider the spatial correlation that is necessary for efficient modeling and placing
of the event sources. In order to meet these challenges, we put forward an energy-efficient lifetime-aware cluste
based routing (EELCR) technique. A changed giant trevally optimization (MGTO) algorithm practiced in
clustering process of EELCR, and it lowers power usage. In addition, the optimal squirrel search (OSS) algorifgs
to select better CH nodes for prolonging the network lifespan. These CH nodes incorporate best selectivg 3

compression rate of the network and its lifetime.

in various scenarios.
es. That all nodes should

WSNs are comprised of a large number of sensors that are optimal in data
However, its functionality is constrained by the amount of energy available in sensor'
use energy optimally and at the same time can help to increase the life cycle of networkSg@Rattery exhaustion, leads
to network breakdown, as recharging batteries in all the nodes say thousands of s It practicable [12]. In
this respect, the low energy adaptive clustering hierarchical (LEACH) pigimagl consider as a worthy candidate
for clustering WSNs among all the proposed solutions. However, thg of CHs in the protocol is random
and it does not converge with similar results. This paper addresses theiis izing a genetic algorithm, which
have modeled by chromosomes,
while forming clusters and at the same time identifyigssies . . Ot improving the clustering quality,
the approach prolongs the lifetime of the networksd¥ } . Compared to LEACH and its variants, the

lenges; scalability of devices, dependability in service
provision, and quality of service (QoS). Some major c[%g@&s of WSN, which lies at the heart of 10T, must optimized
for reliability and energy consumption. The proposed ag@ach builds on a heterogeneous network suitable for
long-term operation with high system t put and low energy utilization. Factors considered are area, nodes,
sink location, and data aggregation as and energetic characteristics considered when choosing the CH
[13]. The pattern enhances the co as well as reliability of the autonomous cellular networks for
transportation of information in ment. Experimental results show that ADEEC has more levels
of throughput and longer networ ing existing methods. It also has 19% better throughput compared
to LEACH, and has notablcd ainst MODLEACH and DEEC. Regarding the network’s lifetime, ADEEC
seems to outperform LE, DLEACH by 17% and DEEC by 13% proving its efficiency of a power
conservation network.

d small batteries to execute their tasks, and therefore have to be energy efficient.
g to pointless radio operations, majorly when in the idle listening mode. The
Algorithm (EECA) comes as a solution for this by increasing WSN lifespan by

it for a cluster formation. SDN devices close to an event transmit data to the CH only, thereby
e number of messages. Furthermore, CHs scan for transmissions for a small period at the beginning

Wireless sensor networks have emerged as significant in such areas as smart cities, environment and smart
industries especially where sensor node is very significant because of its non-rechargeable battery. Clustering is a
fundamental paradigm for energy minima in WSNSs, and there exists considerable importance in selecting the best
clusters. Change of clustering strategies can go a long way in improving the lifespan of a network, which is getting
a handle of the conflicting forces that define clustering. A MADM approach presented to CH selection to achieve
an appropriate balance of factors in clustering [15]. Hence, the received APRO algorithm synchronizes a number
of attributes and formative assesses the alternatives; and the comparison shows it as advantageous with respect to
LEACH, LEACH-C, EECS, HEED, HEEC, and DEECET. Analytical work proves that APRO improvement leads



to acquisition of better CH selections enhancing energy utilization and the longevity of the network. Due to the
emerging nature of technologies, the consideration of multi-parameter modalities become important in defining
clustering strategies for warrant enhanced WSN.

3. PROPOSED METHODOLOGY

3.1 System Design and Architecture

Strategic system design is an important aspect that determines the effective functionality of WSN in s
agriculture. This section outlines some key aspects of the system, which include the distribution, clustering
integration of the system components in order to create energy efficiency in the network while at the s i
accessing the maximum lifespan of the network.

3.1.1 Sensor Network Layout

In smart agriculture, a large number of low-powered WSNs are used deplo
constantly used to perform important parameters like moisture of soil, temperat
light. These parameters are very important to diagnose the health of plants, foreCY
and efficient use of the resources. Now, selection and location of the sensors who3 Dse is to capture images
of the agricultural field, covering all the field area without over lapping much. EveXgeensor incorporates low-

energy transceivers, and durable sensing units that can provide high-quality dat?
ed on the zones that need the most

The design helps optimize the energy usage and priorities of the scg#
attention, such as the zones that are susceptible to diseases, drought
feature of overlapping in specific spots so that even if some por;
be lines connecting them. Sensors storing data and confijgure

The hierarchical three-tier architecture reduces eng
the base station. Figure 2 shows the workflow o @

3.1.2 Cluster Formation

dreover, the network also has the

¥ are unusable, there will always
dlrec on with CHs and the base station:
m , While avoiding direct communication with

To improve the power consumption, the sensor nodeSg@ided into cluster heads based on their spatial position
and the similarity of the collected data. ring is effeclive in lowering the amount of overhead since directly
transmitted messages to the base stati Every cluster run by the Cluster Head (CH), a sensor node that
can selected dynamically based o s node energy, geographical location relative to other nodes in
the cluster, and communication cts data from its cluster members; signal processes it and then
sends the processed data to the cluster head energy model:

1)

ing in response to moments of failure or fluctuations in data churning. The clustering algorithm
e optimal result with fair distribution of communication load between CH and maintaining the
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3.1.3 Base Station (BS)

The CBR also employs the
Sited closely within or alg s
faculties. It include da
sensors. The base statio
and high accuracCy '

statio accumulate data aggregated from the CHs of different clusters.
Itural field, the BS well endowed with enhanced processing and storage

NcH Nnodes

Erorar = Z Ecy + Z Ernode (2)
=1 k=1

Where N the number of cluster heads, and N,,, 4.5 iS the total number of sensor nodes.

3.2 Hybrid Optimization Framework

An application of a hybrid optimization framework aimed at improving the efficiency of the network and
thereby the operational life. The system uses the advantages of the GA system together with the benefits of PSO
to create the foundation of a powerful system that optimizes the various schedules for sensor activations. The
major goal of the proposed framework is to increase the schedules of activation of the sensor nodes. The sensors



activated only when required and predictions of the surroundings define which sensors must be ON hence saving
energy. This optimization directly helps in increasing the longevity of the network and ensures that the monitoring
performed consistently.

3.2.1 Genetic Algorithm (GA)

The Genetic Algorithm employed to provide a wide range of solutions with regard to sensor activation
schedules. It starts by generating a population of using prototypes, each associated with active and inactive
configuration of the sensors. Through crossover and mutation operations of the GA algorithms, these schedule
evolve through generations. Fitness function:

_ Etotal
F=w;-(1- E +tw; - Ccoverage +ws - Cconnectivity (3)
initial
Where wy, w,, ws are Weights, Ejpieiq; is the initial energy, Ceoperage IS the area cov g 3

Ceonnectivity 1 the network connectivity metric.

The fitness of each schedule evaluated based on multiple factors, including;

e  Energy Consumption: High-energy consumption schedules were less a pr

o Coverage: Those shift schedules that can cover as much area as possible are

e Network Connectivity: Schedules that provide strong communicatio
fitness scores provided.

based on the higher

The GA works well in searching the solution space by genergain erff@ming schedules that can used to
make better solutions.

3.2.2 Particle Swarm Optimization (PSO)

The Particle Swarm Optimization then modi
approach, each sensor is treated a particle in the
most suitable active sensors considering the energy re
the performance.

ivation schedules, which produced by the GA. In this
dimension search space, where the PSO determines the
d for the operation while at the same time improving

i —x{) + (g — xf) 4)

Where v{ the velocity of p j at i nt, w is the inertia weight, ¢, c, are learning factors, ry, 7, are
random numbers, p, is the gartic est position, and g is the global best position. Each particle moves in the
space change the positig based on experience of itself along with experience of the neighbor
particles and then reac inimum use of energy. The fact that in PSO, solutions can be refined quickly

) akes the integration of PSO with GA in this hybrid structure variant effective.

odel uses GA and PSO in a sequence to take benefit from each of these optimization
a wide range of solutions, searches the solution space widely, while PSO updates the
the detail measurements. It also guarantees that the last activation schedules are great and

ergy efficiency is one of HOSNA model fundamental principles as it takes into consideration optimization
of power in the plant. The system uses Duty Cycling Algorithm that synchronizes between the nodes, put them in
active, and sleep mode alternatively. Thus, the algorithm minimizes energy consumption by tuning activity levels
in response to monitoring needs without sacrificing data quality. Duty cycle adjustment:

DC = Tactive (5)

Ttotal



Where T,.+ive the time a sensor is active, and Ty,.,; IS the total monitoring period. Such a system attempts to
choose the nodes with more power to bring them into action while the nodes with lesser energy left inactive. This
approach ensures that only critical zones constantly monitored at the same time as extending the operational
lifetime of this network. The duty cycling mechanism is equally flexible meaning that it can alter its operation
based on environmental conditions or the performance of the sensors.

3.4 Dynamic Clustering and Role Rotation

Due to potential energy depletion in individual nodes, the system periodically changes the identities of selecteg
nodes to CHs. This dynamic clustering mechanism is helpful to make sure that no node overloaded
communication tasks. According to the usage of the clustering system, the energy consumed by nodes sh
equally to avoid exhausting the battery of nodes. Dynamic clustering also further makes a network deg

clusters are self-organized. This versatility makes it possible to achieve uniformity in difficult circu

3.5 Data Aggregation and Compression

evel stem uses
ber of réPeated data

An efficient control of data use is relevant to energy usage reduction. At the
data compression in order to reduce the size of the data to transmit. The CH reQ
from multiple sensors and forwards to the base station only useful information.

Conventional routing protocols employing low energy adaptive clusterinwar LEACH) or power-

efficient gathering in every two-hop distance (PEGASIS) to send the a at ta. These protocols minimize
in enhancing the best channel with low energy and time in doing it 1on. That is why the decision on
data accumulation with their subsequent proper sorting can significal 0@ the energy characteristics of the
network.

3.6 Environmental Prediction with Machine Leg

The system also has an LSTM based predic
based on data of earlier years. Examining pattern
as changes of weather, the model forecasts further
sensor activation so that the most energy conserved at tf

analyze (¥fferent environments and make predictions
hange in moisture and temperature of the soil, as well
aoes. These predictions will allow for the preemption of
Qost analytically necessary times.

For instance, given that the systo@ can lyze the trends of soil moisture then appropriate sensors for
irrigation will triggered. This pregigt increase the network effectiveness and helps the practice of
precision agriculture services.

3.7 Energy Profiling ang

Monitoring of resici luring and after the completion of radiotherapy is a key component of the
HOSNA model. N Moors the power consumption of each node and adapts the activation pattern to
@0 le resources towards important sensors. This real time profiling also guarantees
ed increase the life of the network.

s: Sensor Node Parameters:
N: Number of sensor nodes
Eno0aqe: Initial energy of each sensor node
R omm: Communication range of each node
Einresn: Threshold energy level for activation and role rotation

Environmental Parameters:




Soil moisture, temperature, humidity, light intensity data.

Historical environmental data for LSTM prediction.
Base Station Parameters:

Energy constants (Ejec, €55, Emp)

Weight Parameters: w;, w,, wy: Weights for energy, coverage and connectivity metrics

Clustering and Optimization Parameters:
K: Number of clusters
Outputs: Optimized sensor activation schedules S
Cluster configurations
Predicted environmental changes
Energy consumption and network lifespan:
E¢otqr: Total energy consumed
E,0qe (t): Residual energy of each node
Initialization
Deploy N sensor nodes and initialize:
Energy levels E,,, 4. for all nodes
Communication range R omm
Base station coordinates
Historical environmental data for LSTM modg \
Clustering and CH Selection
Cr = {nild(ny, CHy) < Reomm}

For each node:

1

+

Scn = Wi+ Enoge + W2 - dps T
Assign the highest scoring no each clustcgs the CH.
Data Aggregation and Transmi
For each node:

Epe(Ld) =1 Egiec

Etotal
T B + Wy - Ceoverage T W3 * Ceonnectivity
initial

+1) t)

=wv P+, (pi—x) +c, 1 (9 —xP)
Deploy refined schedules
Duty Cycling

For each sensor

DC = Tactive

Ttotal

Adjust activity levels to prioritize high-energy nodes.

Y4

// Divide nodes into K clusters

/Il Calculate CH score S.y

// Compute transmission energy

/I CH compresses redundant data

/I CH transmits aggregated data

/! Generate activation schedules

/I Fitness Evaluation

/I Update particle velocity and position

/I Compute the duty cycle



Role Rotation and Dynamic Clustering
Spew > ggeurrent I/ Rotate CH roles
If Enoge < Ethresn
Re-cluster nodes
Environmental Prediction with LSTM
Peyr = f(Pe, Peegy oo, Peon) /l Train LSTM model
Real-Time Monitoring and Profiling
Erode () = Enoge (t — 1) — Econsumea () /I Continuously monitor residual ener
Dynamically update activation schedules and clustering
End Algorithm

4. RESULTS AND DISCUSSION

The working principle of the Hybrid Optimization-Based Sensor Node Actival
on efficiently controlling the Wireless Sensor Networks (WSNs) to increase th jife span without any
compromise on the quality of captured environmental data. To realize its‘fctiv HOSNA uses such
approaches as hierarchical network structuring, dynamic clustering, ptWPization, and machine learning-
based prediction. The system begins initiating clusters of the sensor pending on its neighboring and the
closeness of data where each one controlled by a CH, which is ted. These CHs are involved in
data collection, and transmission of the collected data to a co eliminating direct node-to-node
communication overhead.

OSNA) model focuses

The essence of HOSNA is its Hybrid Optig

Particle Swarm Optimization (PSO). The GA prG Ititude of possibilities for the activation of the sensors
in order to assess the maximum energy efficiency a ¢ coverage range. These schedules fine-tuned at PSO that

activation patterns deployed.

The system also has a duty cy;
active and sleep modes depen
because high-energy nodes 3 sks for which they should use most of their energy while low energy nodes
save their energy for casgg#te
Short-Term Memory)
moisture or temperaturé
launched gaake i
node.

sed'to estimate in advance climate shifts such as, for instance, changes in soil
essary sensors are initiated in advance by the system. Real energy profiling
n schedules that ever adjusted to reflect leftover power do not overwork one

TABLEl. NETWORK LIFETIME ANALYSIS

HOSNA LEACH PEGASIS RDC

(Rounds) (Rounds) (Rounds) (Rounds)
100 100 80 85 60
200 195 160 170 125
300 290 240 250 180
400 380 320 330 250
500 470 400 420 310
600 550 480 500 360
700 620 550 570 400
800 690 620 640 450
900 760 680 700 490
1000 830 740 760 530
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Fig 3. Network Lifetime Analysis
The average network lifetime shown in the Table 1 and the Figure Igfact that the HOSNA model
has a better performance compared to the other conventional technj ¥ LEACH, PEGASIS and Random
Duty Cycling (RDC) in terms of network lifespan. Meanwhile 4O I functionality in 830 rounds at
1000 rounds while LEACH was successful in 740 rounds, PE ds and RDC only in 530 rounds
out of 1000 rounds. This explained by the hybrid g VL) frameW®™, which defines an optimal energy
3 i naging their activation schedules. Although

The poor performance by RDC shows why random
wastage of energy. HOSNA effectively distributes th
re-clustering approach, the cluster heads
will lead to early death of nodes and th
when applied to agricultural enviro
advantages of a longer lifespan o

which eliminates the need for r r chan

ation is very inefficient since it results into unnecessary
A kload of sensor nodes, and in a periodically executed
ged so that no node will be continuously loaded and
etwork lifetime will be increased. This result is especially significant
re significant monitoring is required for productivity. The
the continuous examination of the environmental conditions,
aintenance or sensors and thereby cutting on costs of operations.

TABLE Il. ENERGY CONSUMPTION

HOSNA (J) LEACH (J) | PEGASIS (J) RDC (J)
125 15 14.8 20
24.7 30.2 298 40
365 45 442 59
47.8 59.8 58.3 77

59 75 73 95

71.2 89.7 875 113

823 105 102 130

945 119.2 116.3 147

106 135 130.5 164

1000 1178 150.3 145 181




HOSNA Energy Consumption LEACH Energy Consumption
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PEGASIS Energy Consumption RDC Energy Copnsum:
1401 —* PEGASIS 180
120
__ 100
=
o 80
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=
w
60
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Rounds

represent that amount of energy used
Therefore, when the 1000th round rea
taken by LEACH, PEGASIS and
result corroborates the duty-cy
between operational and dorma

re, 150.3 Joules, 145 Joules and 181 Joules respectively. This
rformed by HOSNA where sensor nodes managed to switch

and PSO used effectively g g the efficiency of the system in this regard. GA locates large unseen
activation schedules, N yzed to a lower energy consumption by PSO. Although LEACH and
PEGASIS apply clust ergy-efficient routing, they do not include these flexible optimization

approaches, whic
accounti

smart
chang
the en

rgy consumption. RDC on the other hand was the most energy consumptive
ematic activation and multiple instances within short intervals. In the case of
er consumption means the WSN can sustain for a longer time before batteries need to
farms. This avoidance in energy consumption impacts credited to sustainability and
calability of the system.




Rounds

600

400 300 200 100

500

900 800 700

1000

LEACH

Data Accuracy

Algorithms

PEGASIS

CY
AcCcu
Rounds PE?);:)SIS RDC (%)

100 95.8 92
200 94.7 90
300 94.8 935 88
94 92.3 85

935 91.8 83

92.8 90.5 81

92 89.3 78

91.3 88 75

90.8 87.3 72

1000 90 86 70

-75

-70

ults of the data accuracy (Table 3 and Figure 5) once again underline the advantage of HOSNA in
of maintaining high-quality monitoring. At 1000 rounds, HOSNA s still more accurate having a data
accuracy of 94.0% in contrast to other algorithms such as LEACH 90.0%, PEGASIS 86.0% and RDC 70.0%. The
continued good performance of HOSNA mainly attributed to the use of a structured deep-learning algorithm that
based on LSTM for its predictive models that allows the system to predict potential future changes in the
environment and only use the most relevant sensors. Compared to other algorithms, LEACH and PEGASIS have
fallen out from inaccuracies accruing over clusters that do not consider dynamic data as well as relying in constant
scheduling. The problem of its random activation makes its performance drastically decrease during the time,
because it does not guarantee constant surveillance of the critical zones, which results in data lose and inaccuracy.
In agricultural applications, data precision is crucial, for example, in cases where decisions must made about



irrigation or using pesticides. The appropriateness of the data collected by HOSNA helps farmers and automated
systems to gain accurate information, which, in turn, enhances the use of resources and boosts crop health.

Latency (ms)

TABLE IV. LATENCY ANALYSIS

Rounds HOSNA LEACH PEGASIS RDC (ms)
(ms) (ms) (ms)

100 25 35 30 50
200 26.5 37 315 53
300 27.8 39 33 55.5
400 29 41.5 35 58
500 30.2
600 315
700 32.8
800 34
900 35.2
1000 36.5

—e— HOSNA I

-= LEACH
PEGASIS o

701 .4~ RDC

60

50

200

400 600 800 1000
Rounds

Fig 6. Latency Analysis

Its (Table 4 and Figure 6) show that HOSNA offers better data transmission latency than other
hieving the average latency of 36.5ms in 1000 rounds than the average latency of 57.0ms for LEACH,
GASIS, and 75.0ms for RDC. This enhancement was due to HOSNA’s good mechanism in
nd routing whereby the number of hops and the number of relaying of the information reduced as
possible. Although LEACH and PEGASIS follow the hierarchical routing strategy, they cannot adapt to
proved optimization in congested network. However, due to RDC random activation and unstructured
communication pattern, it has the highest latency compared to the other ones. The plasticity of the clusters and

implementing energy-efficient protocols like the LEACH variants or optimization of PEGASIS, HOSNA provides
faster and data that are reliable transfer. Latency-bounds are significant in smart agriculture most especially when
it comes to real time services such as intelligent watering or pest control systems. Instant transfer of data makes
it easier to provide a response to the changed environment and enhances the efficiency of the agriculture industry.

TABLE V. ENERGY EFFICIENCY IMPROVEMENT OVER LEACH



Metric HOSNA LEACH Improvement
(%)
Network Lifetime (Rounds) 830 740 12.16%
Energy Consumption (1000 Rounds, J) 117.8 150.3 21.61%
Data Accuracy (%) 94 90 4.44%

Table 5 and Figure 7 shows comparative improvements of HOSNA model over LEACH protocol in terms
energy efficiency enhancement along with specific enhancements in various parameters. HOSNA exhibi
network lifetimes improvement of 12.16% as compared to LEACH and operate for 830 rounds instea
LEACH’s 740 thereby guaranteeing long monitoring duration for modelling of smart agricultural a )

I3

efficient energy consumptions, 117.8 Joules for 1000 operational rounds, 21.61% less than L
energy consumption was 150.3 Joules. This energy saving increases the sustainability of

enviro

immensely important for precise farming in light of facts that correct and r
decision-making. These outcomes demonstrate HOSNA’s benefits in achievind
energy consumption and system reliability and performance.

Energy Efficiency Improvement Over LEACH

eous improvement in

12.16%

mmm HOSNA
LEACH

NS

Q‘\D
®
Metrics
Fig 7. Latency Analysis
TABLE VI. RESOURCE UTILIZATION METRICS
1

e Value Description
 ©rage ) y Cycle 65 Percentage of time sensors remain active.

r Coverage (%) 95 Field area effectively covered by sensors.
Redundancy (%) 10 Overlapping sensor areas for reliability.
32.5 (vs. LEACH at 1000 Energy conserved due to duty cycling and

Energy Saved (J)

Rounds) optimization.




Resource Utilization Metrics

Value

Table 6 and Figure 8 shows some of the resource usage i
model to complete key assessments of the networks’ giaative

ato co shed by the use of the HOSNA
and e cy. The average duty cycle of 0.65
their functions while minimizing energy
ified field area, HOSNA manages a 95%
% redundancy, providing comprehensive coverage of
aved when using HOSNA is considerable; it saves 32.5
Joules when it is compared to LEACH over 1000 oper@al rounds. This energy conservation is attributed to the
excellent mechanism of duty cycling and enhanced optin¥gtion methods. These metrics emphasis the efficiency
of the resource control of HOSNA, t extending the network life and an overall performance in smart
agricultural environments.

sensor coverage level; however, this design alld
the critical zones as well. The amount of energy th®

COMPARISON OF SCALABILITY ACROSS MODELS

Nul\rl\:)l()j%rs of (;Eﬁﬁj:‘) ?gguAnil)S RDC (Rounds)
870 910 620
740 760 530
590 610 420
450 480 310
280 300 200




Scalability Comparison Across Models

—e— HOSNA
LEACH

—a— PEGASIS

-4 RDC

1000

8004

600 4

Lifetime (Rounds)
»>

400+

2001

100 200 300
Number of Nodes

Fig 9. Scalability Comparison across Models

Table 7 and Figure 9 gives the relative performance of the HOSNA, LEA’EG BIS and RDC models
with regards to scalability and again the table also shows that as of nodes increases HOSNA
e,0f 1020 rounds while consuming
M rounds. As the number of nodes

ed HOSNA protocol has shorter
EACH manages to complete 740,
80 and 300 rounds. RDC results in lowest
This scalability advantage also supports
control and performance independence from the size
¥ large-scale applications in smart agriculture.

increases to 100, 200, 300, and 500, there is a clear |nd|cat|
lifetimes of 830, 670, 540, and 350 respectively. Hovyg
590, 450 and 280 rounds for PEGASIS performg
efficiency rates with the lifetime of 530, 420
evidence of the efficiency of HOSNA in terms
of the network, making HOSNA suitable and reliab

5. CONCLUSION AND FUTURE ScC

The HOSNA model delivers i advgements in WSN performance for smart agriculture, achieving
a 94.0% data accuracy comp to L (90.0%), PEGASIS (86.0%), and RDC (70.0%). Its hybrid
optimization framework en energy consumption and extended network lifetime, critical for large-scale
and remote agricultura em’s predictive capabilities, powered by LSTM, further enhance its
efficiency by enabling g pNSOT activation. By reducing energy usage by 24% compared to LEACH,
HOSNA supports SUS d cost-effective operations. The improved accuracy ensures precise

n new opportunities. Real-world deployments across diverse agricultural scenarios can
NA's reliability and adaptability.
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