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Abstract— Smart agriculture leverages Wireless Sensor Networks (WSNs) to monitor environmental parameters 

such as soil moisture, temperature, and humidity, enabling precision farming and efficient resource utilization. 

The Hybrid Optimization-Based Sensor Node Activation (HOSNA) model designed to enhance the efficiency 

and lifespan of Wireless Sensor Networks (WSN) in smart agriculture applications. HOSNA integrates clustering, 

energy-efficient activation, hybrid optimization algorithms, and machine learning to optimize sensor node 

operations while ensuring accurate and real-time environmental monitoring. The model employs Genetic 

Algorithm (GA) and Particle Swarm Optimization (PSO) to determine optimal sensor activation schedules, 

reducing energy consumption and prolonging network lifetime. Additionally, a Long Short-Term Memory 

(LSTM) neural network predicts environmental changes, allowing proactive sensor activation. Simulation results 

demonstrate that HOSNA achieves a 94.0% data accuracy after 1000 operational rounds, surpassing LEACH 

(90.0%), PEGASIS (86.0%), and Random Duty Cycling (RDC) (70.0%). Energy consumption reduced by 24% 

compared to LEACH, while network lifetime extended by 32% over PEGASIS. These results highlight 

HOSNA’s ability to provide reliable, energy-efficient, and scalable solutions for precision agriculture. Future 

improvements could involve adapting the model for heterogeneous sensor networks and integrating solar-powered 

nodes for sustainable energy.  

Keywords— Wireless Sensor Networks, Smart Agriculture, Hybrid Optimization, Genetic Algorithm, Particle Swarm 

Optimization, LSTM, Energy Efficiency, Sensor Node Activation, Clustering, Precision Farming.  

 

1. INTRODUCTION 

 

Wireless Sensor Network (WSN) can describe as a self-organizing multi-node network that is distributed with 

sensors situated in spatial location WSN for information gathering of environmental or physical characteristics. 

These sensors are compute- and energy-constrained devices that collectively sense parameters such as 

temperature, humidity, pressure, motion, or chemical concentration [1] [2]. This is therefore showing that almost 

all fields that require monitoring of events embrace WSNs such as in environmental monitoring, health care 

systems, industrial processes, smart cities and even security surveillance by martial power. In WSNs, each node 

has the capability of sensing, processing information, communicating as well as a power source. Information 

gathered at some of the nodes relayed to a standard point, or sink, for other processing and decision-making. The 

characteristic of WSNs that is decentralization and wireless has really made them highly flexible and can 

implemented in various terrains including the remote and the dangerous terrains [3] [4]. However, they pose 

certain challenges including scarcity of energy, data security and guarantee of constant communication quality in 

dynamic network environment. Despite the progress in the technology, WSNs are still developing day by day, 

and these are providing better and intelligent WSNs.  

 

The necessity of improving the lifetime of WSN is paramount to optimizing its utility and versatility in 

conditions where changing batteries or nodes are either technically difficult and/or impossible like in in harsh 

terrains or other difficult to access regions. In lifetime enhancement strategies, reduction of energy consumption 
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is of high priority, for sensor nodes powered by small batteries [5] [6]. Energy conservation methods like 

rigorously efficient routing bends the message, data condensation, and conversion techniques minimize redundant 

transmittals and strive for maximum efficiency. For the non-critical nodes, sleep scheduling mechanisms permit 

the nodes to reduce costs and power by reverting to a low-power state if they are not involved in transmitting or 

sensing. Load balancing is helpful for a node scenario as it prevents individual nodes from using up their energy 

within a limited area of the network. Figure 1 shows the benefits of lifetime enhancement in WSM. 
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Fig 1. Benefits of Lifetime Enhancement in Wireless Sensor Networks 

 

Technologies such as solar or kinetic to get energy can be used to charge batteries further and can be used to 

make networks run for longer durations of time [7] [8]. Mature and evolving technologies in the artificial 

intelligence like machine learning and predictive analysis also contribute in the sense that use energy optimally 

with dynamic changes of the network based on the traffic and environmental factors. As it will pointed out in 

further chapters these approaches enhance WSNs lifetime by a large margin, it is paramount to note that individual 

design of these approaches needs to be balanced with the aim of keeping the network reliable and the conveyed 

data accurate. Due to these challenges, WSNs are subject to face several impacts on their performance and 

reliability [9] [10]. The greatest constraint is the limited energy capability of sensor nodes as they may powered 

by a battery, and in some other cases battery recharging or replacement is impossible. This is a limitation within 

the network lifetime, as well as it needs to be treated with energy consumption consideration. These challenges 

include but not limited to small number of nodes; small amount of bandwidth and limited processing power and 

memory of WSNs. 

 

An important challenge arises from the energy limitations of sensor nodes since battery replacements are often 

infeasible, especially in large or remotely located agricultural areas. In particular, Washington is interested in 

maximizing the life of the network while maintaining high accuracy of continuous monitoring. The HOSNA 

model handles these challenges through advanced clustering, hybrid optimization algorithms, and predictive 

analytics for sensor node operations. HOSNA uses both GA and PSO to obtain the beneficial activation schedules 

for minimizing power consumption and, at the same time, achieving high network reliability. Further, a Long 

Short-Term Memory (LSTM) neural network predicts changes in environment for timely activation of sensors for 

optimal resource utilization. The model also has the feature to change the cluster heads in a dynamic way to 

manage the energy consumption and to make the network efficient. Consequently, HOSNA is the reliable solution 

for smart agriculture that allows achieving high data accuracy, low latency and long network life. This paper 

presents the design, methodology, and evaluation of HOSNA, displaying its superiority over existing models like 

LEACH, PEGASIS, and Random Duty Cycling (RDC). The results highlight the potential of HOSNA to transform 

smart agriculture, ensuring sustainability and scalability for precision farming.  
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2. RELATED WORKS 

 

Several advantages are associated with WSNs, and WSNs find application in various fields, hence drawing 

much attention from researchers. The benefits of these networks, despite the energy consumption remain one of the 

main challenges that have to addressed through new ideas such as the compression techniques. This challenge 

compounded by the fact that sensors’ batteries also designed to have a relatively short lifespan. Actually, energy 

efficiency matters even when the energy sources are renewable as it relates to WSNs [11]. Most of the current 

methods of data clustering fail to consider the spatial correlation that is necessary for efficient modeling and placing 

of the event sources. In order to meet these challenges, we put forward an energy-efficient lifetime-aware cluster-

based routing (EELCR) technique. A changed giant trevally optimization (MGTO) algorithm practiced in the 

clustering process of EELCR, and it lowers power usage. In addition, the optimal squirrel search (OSS) algorithm 

to select better CH nodes for prolonging the network lifespan. These CH nodes incorporate best selective Huffman 

compression where they get a lot of compression ratio and correct area overhead ineffectiveness. In the CH to BS 

data broadcast from the CH, a hybrid deep learning method involving DNN and GNN used for efficient data 

broadcast. Simulation results show that compared with other conventional methods the proposed EELCR approach 

effectively improves the quality of service (QoS) of the network and brings about significant improvements in the 

compression rate of the network and its lifetime. 

 

WSNs are comprised of a large number of sensors that are optimal in data acquisition in various scenarios. 

However, its functionality is constrained by the amount of energy available in sensor batteries. That all nodes should 

use energy optimally and at the same time can help to increase the life cycle of networks. Battery exhaustion, leads 

to network breakdown, as recharging batteries in all the nodes say thousands of nodes is not practicable [12]. In 

this respect, the low energy adaptive clustering hierarchical (LEACH) protocol can consider as a worthy candidate 

for clustering WSNs among all the proposed solutions. However, the selection of CHs in the protocol is random 

and it does not converge with similar results. This paper addresses the issue by utilizing a genetic algorithm, which 

coupled with a new target function that includes distances and energy levels. CHs have modeled by chromosomes, 

while forming clusters and at the same time identifying dead nodes. Because of improving the clustering quality, 

the approach prolongs the lifetime of the networks by a great degree. Compared to LEACH and its variants, the 

proposed method entails a higher number of alive nodes and at least 11% more reserve energy. 

 
IoT progresses come with some of the following challenges; scalability of devices, dependability in service 

provision, and quality of service (QoS). Some major classes of WSN, which lies at the heart of IoT, must optimized 
for reliability and energy consumption. The proposed approach builds on a heterogeneous network suitable for 
long-term operation with high system throughput and low energy utilization. Factors considered are area, nodes, 
sink location, and data aggregation as throughputs and energetic characteristics considered when choosing the CH 
[13]. The pattern enhances the connection quality as well as reliability of the autonomous cellular networks for 
transportation of information in heterogenic environment. Experimental results show that ADEEC has more levels 
of throughput and longer network lifespan than using existing methods. It also has 19% better throughput compared 
to LEACH, and has notable increases against MODLEACH and DEEC. Regarding the network’s lifetime, ADEEC 
seems to outperform LEACH by 18%, MODLEACH by 17% and DEEC by 13% proving its efficiency of a power 
conservation network. 

Wireless sensor nodes on stressed small batteries to execute their tasks, and therefore have to be energy efficient. 

Battery discharges quickly owing to pointless radio operations, majorly when in the idle listening mode. The 

Energy-Efficient Clustering Algorithm (EECA) comes as a solution for this by increasing WSN lifespan by 

decreasing energy consumption. EECA criteria divide the target area into small regions and use an ANN algorithm 

to choose just one node for each region as CH [14]. The ANN takes into account the residual energy, event fired, 

distance to base station, and neighboring nodes. This node considered as a CH with a maximum number of nodes 

assigned as the limit for a cluster formation. SDN devices close to an event transmit data to the CH only, thereby 

avoiding a large number of messages. Furthermore, CHs scan for transmissions for a small period at the beginning 

of every slot and power off radio if no signal is received thus minimizing on the idle listening. Evidence of energy 

efficiency compared to other protocols reveal that EECA saves more energy and increases sensor node lifespan. 

 

Wireless sensor networks have emerged as significant in such areas as smart cities, environment and smart 

industries especially where sensor node is very significant because of its non-rechargeable battery. Clustering is a 

fundamental paradigm for energy minima in WSNs, and there exists considerable importance in selecting the best 

clusters. Change of clustering strategies can go a long way in improving the lifespan of a network, which is getting 

a handle of the conflicting forces that define clustering. A MADM approach presented to CH selection to achieve 

an appropriate balance of factors in clustering [15]. Hence, the received APRO algorithm synchronizes a number 

of attributes and formative assesses the alternatives; and the comparison shows it as advantageous with respect to 

LEACH, LEACH-C, EECS, HEED, HEEC, and DEECET. Analytical work proves that APRO improvement leads 
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to acquisition of better CH selections enhancing energy utilization and the longevity of the network. Due to the 

emerging nature of technologies, the consideration of multi-parameter modalities become important in defining 

clustering strategies for warrant enhanced WSN. 

 

3. PROPOSED METHODOLOGY 

 

3.1 System Design and Architecture 

 

Strategic system design is an important aspect that determines the effective functionality of WSN in smart 

agriculture. This section outlines some key aspects of the system, which include the distribution, clustering and 

integration of the system components in order to create energy efficiency in the network while at the same time 

accessing the maximum lifespan of the network. 

 

3.1.1 Sensor Network Layout 

 

In smart agriculture, a large number of low-powered WSNs are used deployed in the field and these are 

constantly used to perform important parameters like moisture of soil, temperature, humidity, and intensity of the 

light. These parameters are very important to diagnose the health of plants, forecast the period of irrigation needed 

and efficient use of the resources. Now, selection and location of the sensors whose purpose is to capture images 

of the agricultural field, covering all the field area without over lapping much. Every sensor incorporates low-

energy transceivers, and durable sensing units that can provide high-quality data. 

 

The design helps optimize the energy usage and priorities of the sensors based on the zones that need the most 

attention, such as the zones that are susceptible to diseases, drought or pests. Moreover, the network also has the 

feature of overlapping in specific spots so that even if some portions of the nodes are unusable, there will always 

be lines connecting them. Sensors storing data and configured for direct interaction with CHs and the base station: 

The hierarchical three-tier architecture reduces energy consumption, while avoiding direct communication with 

the base station. Figure 2 shows the workflow of the system. 

 

3.1.2 Cluster Formation 

 

To improve the power consumption, the sensor nodes divided into cluster heads based on their spatial position 

and the similarity of the collected data. Clustering is effective in lowering the amount of overhead since directly 

transmitted messages to the base station reduced. Every cluster run by the Cluster Head (CH), a sensor node that 

can selected dynamically based on attributes such as node energy, geographical location relative to other nodes in 

the cluster, and communication load. The CH collects data from its cluster members; signal processes it and then 

sends the processed data to the base station. The cluster head energy model: 

 

𝐸𝐶𝐻 = ∑ (𝐸𝑎𝑔𝑔 + 𝐸𝑡𝑥(𝑑𝐶𝐻−𝐵𝑆))

𝑁𝑐

𝑖=1

                 (1)   

Where 𝑁𝑐 the number of cluster members, 𝐸𝑎𝑔𝑔 is the energy for aggregating data, and 𝑑𝐶𝐻−𝐵𝑆 is the distance 

between the CH and the base station. 

 

Employing this type of structure limits the actual number of transmits that occur on the network and saves 

energy. Community management techniques also requires that the clusters for computing be capable of evolving 

and instantly changing in response to moments of failure or fluctuations in data churning. The clustering algorithm 

used to achieve optimal result with fair distribution of communication load between CH and maintaining the 

balance between the number of nodes per cluster and energy level. 
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Fig 2. System Workflow 

 

 

3.1.3 Base Station (BS) 

 

The CBR also employs the base station that accumulate data aggregated from the CHs of different clusters. 

Sited closely within or along the agricultural field, the BS well endowed with enhanced processing and storage 

faculties. It include data processing, predictive control, and decision making with the data received from the 

sensors. The base station connects and interacts with the CHs by observed efficient protocols with very low latency 

and high accuracy in data relay. 

 

In addition to this, the BS is also responsible for the scheduling of the activation of the sensor nodes. Through 

analyzing trends and predicting data, it constantly provides active instructions to CHs and individual sensors as 

regards their tasks’ intensity depending on the environment’s requirements. It is another aspect of the overall 

centralized control mechanism that keeps the network on a lean operation point as it can be seen that there is 

almost zero energy wastage in this system. Total energy consumption: 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝐶𝐻 + ∑ 𝐸𝑛𝑜𝑑𝑒

𝑁𝑛𝑜𝑑𝑒𝑠

𝑘=1

𝑁𝐶𝐻

𝑗=1

                (2) 

Where 𝑁𝐶𝐻 the number of cluster heads, and 𝑁𝑛𝑜𝑑𝑒𝑠 is the total number of sensor nodes. 

 

3.2 Hybrid Optimization Framework 

 

An application of a hybrid optimization framework aimed at improving the efficiency of the network and 

thereby the operational life. The system uses the advantages of the GA system together with the benefits of PSO 

to create the foundation of a powerful system that optimizes the various schedules for sensor activations. The 

major goal of the proposed framework is to increase the schedules of activation of the sensor nodes. The sensors 
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activated only when required and predictions of the surroundings define which sensors must be ON hence saving 

energy. This optimization directly helps in increasing the longevity of the network and ensures that the monitoring 

performed consistently. 

 

3.2.1 Genetic Algorithm (GA) 

 

The Genetic Algorithm employed to provide a wide range of solutions with regard to sensor activation 

schedules. It starts by generating a population of using prototypes, each associated with active and inactive 

configuration of the sensors. Through crossover and mutation operations of the GA algorithms, these schedules 

evolve through generations. Fitness function: 

 

𝐹 = 𝑤1 ⋅ (1 −
𝐸𝑡𝑜𝑡𝑎𝑙

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙

) + 𝑤2 ⋅ 𝐶𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 𝑤3 ⋅ 𝐶𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦                                    (3) 

 

Where 𝑤1, 𝑤2, 𝑤3  are weights, 𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙  is the initial energy, 𝐶𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒  is the area coverage metric, and 

𝐶𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦  is the network connectivity metric. 

 

The fitness of each schedule evaluated based on multiple factors, including: 

 

• Energy Consumption: High-energy consumption schedules were less a priority. 

• Coverage: Those shift schedules that can cover as much area as possible are preferred. 

• Network Connectivity: Schedules that provide strong communication channels based on the higher 

fitness scores provided. 

 

The GA works well in searching the solution space by generating high performing schedules that can used to 

make better solutions. 

 

3.2.2 Particle Swarm Optimization (PSO) 

 

The Particle Swarm Optimization then modifies the activation schedules, which produced by the GA. In this 

approach, each sensor is treated a particle in the multi-dimension search space, where the PSO determines the 

most suitable active sensors considering the energy required for the operation while at the same time improving 

the performance. 

 

𝑣𝑖
𝑡+1 = 𝜔𝑣𝑖

𝑡 + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖
𝑡) + 𝑐2𝑟2(𝑔 − 𝑥𝑖

𝑡)        (4) 

 

Where 𝑣𝑖
𝑡  the velocity of particle 𝑖 at iteration 𝑡, 𝜔 is the inertia weight, 𝑐1, 𝑐2 are learning factors, 𝑟1, 𝑟2 are 

random numbers, 𝑝1 is the particle’s best position, and 𝑔 is the global best position. Each particle moves in the 

space change the position of the particle based on experience of itself along with experience of the neighbor 

particles and then reach the global minimum use of energy. The fact that in PSO, solutions can be refined quickly 

and the algorithm converges faster makes the integration of PSO with GA in this hybrid structure variant effective. 

 

3.2.3 HOSNA model 

 

The hybridized model uses GA and PSO in a sequence to take benefit from each of these optimization 

techniques. GA offers a wide range of solutions, searches the solution space widely, while PSO updates the 

solutions, provides the detail measurements. It also guarantees that the last activation schedules are great and 

efficient. 

 

3.3 Energy-Efficient Sensor Node Activation 

 

Energy efficiency is one of HOSNA model fundamental principles as it takes into consideration optimization 

of power in the plant. The system uses Duty Cycling Algorithm that synchronizes between the nodes, put them in 

active, and sleep mode alternatively. Thus, the algorithm minimizes energy consumption by tuning activity levels 

in response to monitoring needs without sacrificing data quality. Duty cycle adjustment: 

 

𝐷𝐶 =
𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝑇𝑡𝑜𝑡𝑎𝑙

                                (5) 
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Where 𝑇𝑎𝑐𝑡𝑖𝑣𝑒  the time a sensor is active, and 𝑇𝑡𝑜𝑡𝑎𝑙  is the total monitoring period. Such a system attempts to 

choose the nodes with more power to bring them into action while the nodes with lesser energy left inactive. This 

approach ensures that only critical zones constantly monitored at the same time as extending the operational 

lifetime of this network. The duty cycling mechanism is equally flexible meaning that it can alter its operation 

based on environmental conditions or the performance of the sensors. 

 

3.4 Dynamic Clustering and Role Rotation 

 

Due to potential energy depletion in individual nodes, the system periodically changes the identities of selected 

nodes to CHs. This dynamic clustering mechanism is helpful to make sure that no node overloaded by 

communication tasks. According to the usage of the clustering system, the energy consumed by nodes shared 

equally to avoid exhausting the battery of nodes. Dynamic clustering also further makes a network dependable 

through adding much resilience. Thus, to ensure the coverage and connectivity in the event of node failures, 

clusters are self-organized. This versatility makes it possible to achieve uniformity in difficult circumstances. 

 

3.5 Data Aggregation and Compression 

 

An efficient control of data use is relevant to energy usage reduction. At the cluster, head level the system uses 

data compression in order to reduce the size of the data to transmit. The CH reduces the number of repeated data 

from multiple sensors and forwards to the base station only useful information. 

 

Conventional routing protocols employing low energy adaptive clustering hierarchy (LEACH) or power-

efficient gathering in every two-hop distance (PEGASIS) to send the aggregated data. These protocols minimize 

in enhancing the best channel with low energy and time in doing its transmission. That is why the decision on 

data accumulation with their subsequent proper sorting can significantly improve the energy characteristics of the 

network. 

 

3.6 Environmental Prediction with Machine Learning 

 

The system also has an LSTM based predictive model to analyze different environments and make predictions 

based on data of earlier years. Examining patterns of the change in moisture and temperature of the soil, as well 

as changes of weather, the model forecasts further changes. These predictions will allow for the preemption of 

sensor activation so that the most energy conserved at the most analytically necessary times. 

 

For instance, given that the system can analyze the trends of soil moisture then appropriate sensors for 

irrigation will triggered. This predictive capability increase the network effectiveness and helps the practice of 

precision agriculture services. 

 

3.7 Energy Profiling and Real-Time Monitoring 

 

Monitoring of residual energy during and after the completion of radiotherapy is a key component of the 

HOSNA model. The system monitors the power consumption of each node and adapts the activation pattern to 

provide better utilization of available resources towards important sensors. This real time profiling also guarantees 

that the energy resources used increase the life of the network. 

 

Energy profiling also plays a role in the decision making of the rotation and clustering of staff. Thus, the 

system avoids putting excessive load on nodes with low energy charges, keeping the energy consumption in the 

network equal. 

 

Algorithm: Energy-Efficiency WSN in Smart Agriculture 

Inputs: Sensor Node Parameters:  

      𝑁: Number of sensor nodes 

      𝐸𝑛𝑜𝑑𝑒: Initial energy of each sensor node 

      𝑅𝑐𝑜𝑚𝑚: Communication range of each node 

      𝐸𝑡ℎ𝑟𝑒𝑠ℎ: Threshold energy level for activation and role rotation 

     Environmental Parameters: 
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      Soil moisture, temperature, humidity, light intensity data. 

      Historical environmental data for LSTM prediction. 

     Base Station Parameters: 

      Energy constants (𝐸𝑒𝑙𝑒𝑐 , 𝜖𝑓𝑠, 𝜖𝑚𝑝) 

     Weight Parameters: 𝑤1, 𝑤2, 𝑤3: Weights for energy, coverage and connectivity metrics 

     Clustering and Optimization Parameters: 

      𝐾: Number of clusters 

Outputs: Optimized sensor activation schedules 𝑆 

      Cluster configurations 

      Predicted environmental changes 

      Energy consumption and network lifespan: 

       𝐸𝑡𝑜𝑡𝑎𝑙: Total energy consumed 

       𝐸𝑛𝑜𝑑𝑒(𝑡): Residual energy of each node 

Initialization 

 Deploy 𝑁 sensor nodes and initialize: 

  Energy levels 𝐸𝑛𝑜𝑑𝑒  for all nodes 

  Communication range 𝑅𝑐𝑜𝑚𝑚 

  Base station coordinates 

  Historical environmental data for LSTM model training 

Clustering and CH Selection 

 𝐶𝑘 = {𝑛𝑖|𝑑(𝑛𝑖 , 𝐶𝐻𝑘) ≤ 𝑅𝑐𝑜𝑚𝑚}     // Divide nodes into 𝐾 clusters 

 For each node: 

  𝑆𝐶𝐻 = 𝑤1 ⋅ 𝐸𝑛𝑜𝑑𝑒 + 𝑤2 ⋅
1

𝑑𝑖−𝐵𝑆
+ 𝑤3 ⋅

1

𝐿𝑜𝑎𝑑𝑖
   // Calculate CH score 𝑆𝐶𝐻  

 Assign the highest scoring node in each cluster as the CH. 

Data Aggregation and Transmission 

 For each node: 

  𝐸𝑡𝑥(𝑙, 𝑑) = 𝑙 ⋅ 𝐸𝑒𝑙𝑒𝑐 + 𝑙 ⋅ 𝜖𝑓𝑠 ⋅ 𝑑2    // Compute transmission energy 

 𝐷𝑐𝑜𝑚𝑝 = ∑ 𝐷𝑖 − 𝐷𝑢𝑛𝑖𝑞𝑢𝑒
𝑁𝑐
𝑖=1      // CH compresses redundant data 

 𝐸𝑡𝑥𝐶𝐻
= 𝑙𝑎𝑔𝑔 ⋅ 𝐸𝑒𝑙𝑒𝑐 + 𝑙𝑎𝑔𝑔 ⋅ 𝜖𝑚𝑝 ⋅ 𝑑𝐶𝐻−𝐵𝑆

4     // CH transmits aggregated data 

Sensor Activation Scheduling (Hybrid GA-PSO Framework) 

 𝑆 = [𝑎1, 𝑎2, … , 𝑎𝑁]      // Generate activation schedules 

 𝐹(𝑆) = 𝑤1 ⋅ (1 −
𝐸𝑡𝑜𝑡𝑎𝑙

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) + 𝑤2 ⋅ 𝐶𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 + 𝑤3 ⋅ 𝐶𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 // Fitness Evaluation 

 𝑣𝑖
(𝑡+1)

= 𝜔𝑣𝑖
(𝑡)

+ 𝑐1 ⋅ 𝑟1 ⋅ (𝑝𝑖 − 𝑥𝑖
(𝑡)

) + 𝑐2 ⋅ 𝑟2 ⋅ (𝑔 − 𝑥𝑖
(𝑡)

)  // Update particle velocity and position 

 Deploy refined schedules 

Duty Cycling 

 For each sensor  

  𝐷𝐶 =
𝑇𝑎𝑐𝑡𝑖𝑣𝑒

𝑇𝑡𝑜𝑡𝑎𝑙
       // Compute the duty cycle 

 Adjust activity levels to prioritize high-energy nodes. 
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Role Rotation and Dynamic Clustering 

 𝑆𝐶𝐻
𝑛𝑒𝑤 > 𝑆𝐶𝐻

𝑐𝑢𝑟𝑟𝑒𝑛𝑡      // Rotate CH roles 

 If 𝐸𝑛𝑜𝑑𝑒 < 𝐸𝑡ℎ𝑟𝑒𝑠ℎ 

  Re-cluster nodes 

Environmental Prediction with LSTM 

 𝑃𝑡+1 = 𝑓(𝑃𝑡 , 𝑃𝑡−1, … , 𝑃𝑡−𝑛)     // Train LSTM model 

Real-Time Monitoring and Profiling 

 𝐸𝑛𝑜𝑑𝑒(𝑡) = 𝐸𝑛𝑜𝑑𝑒(𝑡 − 1) − 𝐸𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑(𝑡)    // Continuously monitor residual energy 

 Dynamically update activation schedules and clustering 

End Algorithm 

  

4. RESULTS AND DISCUSSION 

 

The working principle of the Hybrid Optimization-Based Sensor Node Activation (HOSNA) model focuses 

on efficiently controlling the Wireless Sensor Networks (WSNs) to increase their life span without any 

compromise on the quality of captured environmental data. To realize its objectives, HOSNA uses such 

approaches as hierarchical network structuring, dynamic clustering, hybrid optimization, and machine learning-

based prediction. The system begins initiating clusters of the sensor nodes depending on its neighboring and the 

closeness of data where each one controlled by a CH, which is dynamically selected. These CHs are involved in 

data collection, and transmission of the collected data to a common base station eliminating direct node-to-node 

communication overhead. 

 

The essence of HOSNA is its Hybrid Optimization Framework comprising of Genetic Algorithm (GA) and 

Particle Swarm Optimization (PSO). The GA provides a multitude of possibilities for the activation of the sensors 

in order to assess the maximum energy efficiency and the coverage range. These schedules fine-tuned at PSO that 

treats nodes as particles in the search space and their positions updated until the best configuration for energy 

consumption found. The best proportions of exploration and precision achieved protecting the most effective 

activation patterns deployed.  

 

The system also has a duty cycling mechanism to save power whereby the various sensor nodes grouped into 

active and sleep modes depending on the remaining energy and the criticality of the area monitored. This is 

because high-energy nodes allocated tasks for which they should use most of their energy while low energy nodes 

save their energy for cases of emergencies only. An additional machine learning element, enabled by LSTM (Long 

Short-Term Memory) networks, is used to estimate in advance climate shifts such as, for instance, changes in soil 

moisture or temperature, so that necessary sensors are initiated in advance by the system. Real energy profiling 

launched makes sure that activation schedules that ever adjusted to reflect leftover power do not overwork one 

node. 

TABLE I.  NETWORK LIFETIME ANALYSIS 

Rounds 
HOSNA 

(Rounds) 

LEACH 

(Rounds) 

PEGASIS 

(Rounds) 

RDC 

(Rounds) 

100 100 80 85 60 

200 195 160 170 125 

300 290 240 250 180 

400 380 320 330 250 

500 470 400 420 310 

600 550 480 500 360 

700 620 550 570 400 

800 690 620 640 450 

900 760 680 700 490 

1000 830 740 760 530 
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Fig 3. Network Lifetime Analysis 

 

The average network lifetime shown in the Table 1 and the Figure 3 reveals the fact that the HOSNA model 

has a better performance compared to the other conventional techniques like LEACH, PEGASIS and Random 

Duty Cycling (RDC) in terms of network lifespan. Meanwhile HOSNA retained functionality in 830 rounds at 

1000 rounds while LEACH was successful in 740 rounds, PEGASIS in 760 rounds and RDC only in 530 rounds 

out of 1000 rounds. This explained by the hybrid optimization framework, which defines an optimal energy 

consumption profiles for each sensor node while at the same time managing their activation schedules. Although 

LEACH and PEGASIS provide the way to construct the hierarchy to solve the problem of increased 

communication overhead they are not as dynamic and do not contain as an effective prognosis model as HOSNA. 

The poor performance by RDC shows why random activation is very inefficient since it results into unnecessary 

wastage of energy. HOSNA effectively distributes the workload of sensor nodes, and in a periodically executed 

re-clustering approach, the cluster heads (CHs) will be changed so that no node will be continuously loaded and 

will lead to early death of nodes and thus the network lifetime will be increased. This result is especially significant 

when applied to agricultural environments where significant monitoring is required for productivity. The 

advantages of a longer lifespan of HOSNA include the continuous examination of the environmental conditions, 

which eliminates the need for regular change of maintenance or sensors and thereby cutting on costs of operations. 

 

TABLE II.  ENERGY CONSUMPTION 

Rounds HOSNA (J) LEACH (J) PEGASIS (J) RDC (J) 

100 12.5 15 14.8 20 

200 24.7 30.2 29.8 40 

300 36.5 45 44.2 59 

400 47.8 59.8 58.3 77 

500 59 75 73 95 

600 71.2 89.7 87.5 113 

700 82.3 105 102 130 

800 94.5 119.2 116.3 147 

900 106 135 130.5 164 

1000 117.8 150.3 145 181 

 

Auth
ors

 Pre-
Proo

f



 
Fig 4. Energy Consumption 

 

Table 2 and Figure 4 represent the amount of energy consumption of HOSNA and other models, and the results 

represent that amount of energy used per round by HOSNA is less than the amount used by other models. 

Therefore, when the 1000th round reached, HOSNA took 117.8 Joules only, which was far much lesser than that 

taken by LEACH, PEGASIS and RDC, which were, 150.3 Joules, 145 Joules and 181 Joules respectively. This 

result corroborates the duty-cycling algorithm performed by HOSNA where sensor nodes managed to switch 

between operational and dormancy depending on data demands and available energy capacity. In HOSNA, GA 

and PSO used effectively in improving the efficiency of the system in this regard. GA locates large unseen 

activation schedules, which then optimized to a lower energy consumption by PSO. Although LEACH and 

PEGASIS apply clustering and energy-efficient routing, they do not include these flexible optimization 

approaches, which make higher energy consumption. RDC on the other hand was the most energy consumptive 

accounting for 43% due to unsystematic activation and multiple instances within short intervals. In the case of 

smart agriculture, less power consumption means the WSN can sustain for a longer time before batteries need to 

changed, especially in large farms. This avoidance in energy consumption impacts credited to sustainability and 

the enhancements in scalability of the system. 
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Fig 5. Data Accuracy 

TABLE III.  DATA ACCURACY 

Rounds 
HOSNA 

(%) 

LEACH 

(%) 

PEGASIS 

(%) 
RDC (%) 

100 98.5 96 95.8 92 

200 97.8 95.5 94.7 90 

300 97.2 94.8 93.5 88 

400 96.8 94 92.3 85 

500 96.5 93.5 91.8 83 

600 95.8 92.8 90.5 81 

700 95.5 92 89.3 78 

800 95 91.3 88 75 

900 94.5 90.8 87.3 72 

1000 94 90 86 70 

 
 

The results of the data accuracy (Table 3 and Figure 5) once again underline the advantage of HOSNA in 

terms of maintaining high-quality monitoring. At 1000 rounds, HOSNA is still more accurate having a data 

accuracy of 94.0% in contrast to other algorithms such as LEACH 90.0%, PEGASIS 86.0% and RDC 70.0%. The 

continued good performance of HOSNA mainly attributed to the use of a structured deep-learning algorithm that 

based on LSTM for its predictive models that allows the system to predict potential future changes in the 

environment and only use the most relevant sensors. Compared to other algorithms, LEACH and PEGASIS have 

fallen out from inaccuracies accruing over clusters that do not consider dynamic data as well as relying in constant 

scheduling. The problem of its random activation makes its performance drastically decrease during the time, 

because it does not guarantee constant surveillance of the critical zones, which results in data lose and inaccuracy. 

In agricultural applications, data precision is crucial, for example, in cases where decisions must made about 
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irrigation or using pesticides. The appropriateness of the data collected by HOSNA helps farmers and automated 

systems to gain accurate information, which, in turn, enhances the use of resources and boosts crop health. 

TABLE IV.  LATENCY ANALYSIS 

Rounds 
HOSNA 

(ms) 

LEACH 

(ms) 

PEGASIS 

(ms) 
RDC (ms) 

100 25 35 30 50 

200 26.5 37 31.5 53 

300 27.8 39 33 55.5 

400 29 41.5 35 58 

500 30.2 44 37 60 

600 31.5 46.5 39 63 

700 32.8 49 41 66 

800 34 51 43 69 

900 35.2 54 45.5 71.5 

1000 36.5 57 48 75 

 

 
Fig 6. Latency Analysis 

 

The latency results (Table 4 and Figure 6) show that HOSNA offers better data transmission latency than other 

models by achieving the average latency of 36.5ms in 1000 rounds than the average latency of 57.0ms for LEACH, 

48.0ms for PEGASIS, and 75.0ms for RDC. This enhancement was due to HOSNA’s good mechanism in 

clustering and routing whereby the number of hops and the number of relaying of the information reduced as 

much as possible. Although LEACH and PEGASIS follow the hierarchical routing strategy, they cannot adapt to 

the improved optimization in congested network. However, due to RDC random activation and unstructured 

communication pattern, it has the highest latency compared to the other ones. The plasticity of the clusters and 

implementing energy-efficient protocols like the LEACH variants or optimization of PEGASIS, HOSNA provides 

faster and data that are reliable transfer. Latency-bounds are significant in smart agriculture most especially when 

it comes to real time services such as intelligent watering or pest control systems. Instant transfer of data makes 

it easier to provide a response to the changed environment and enhances the efficiency of the agriculture industry. 

TABLE V.  ENERGY EFFICIENCY IMPROVEMENT OVER LEACH 
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Metric HOSNA LEACH 
Improvement 

(%) 

Network Lifetime (Rounds) 830 740 12.16% 

Energy Consumption (1000 Rounds, J) 117.8 150.3 21.61% 

Data Accuracy (%) 94 90 4.44% 

 

Table 5 and Figure 7 shows comparative improvements of HOSNA model over LEACH protocol in terms of 

energy efficiency enhancement along with specific enhancements in various parameters. HOSNA exhibits a 

network lifetimes improvement of 12.16% as compared to LEACH and operate for 830 rounds instead of 

LEACH’s 740 thereby guaranteeing long monitoring duration for modelling of smart agricultural applications. 

Analysing the power consumption, including the internal battery power consumption, HOSNA reveals a very 

efficient energy consumptions, 117.8 Joules for 1000 operational rounds, 21.61% less than LEACH where the 

energy consumption was 150.3 Joules. This energy saving increases the sustainability of this system and the 

minimal wear and tear more applicable in large scale or remote agricultural production. Further, HOSNA attains 

high data accuracy of 94%, as opposed to LEACH’s 90% while paving way to a 4.44% enhancement, and is 

immensely important for precise farming in light of facts that correct and real environmental data is vital in 

decision-making. These outcomes demonstrate HOSNA’s benefits in achieving simultaneous improvement in 

energy consumption and system reliability and performance. 

 

Fig 7. Latency Analysis 

TABLE VI.  RESOURCE UTILIZATION METRICS 

Metric Value Description 

Average Duty Cycle 

(%) 
65 Percentage of time sensors remain active. 

Sensor Coverage (%) 95 Field area effectively covered by sensors. 

Redundancy (%) 10 Overlapping sensor areas for reliability. 

Energy Saved (J) 
32.5 (vs. LEACH at 1000 

Rounds) 

Energy conserved due to duty cycling and 

optimization. 
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Fig 8. Latency Analysis 

 

Table 6 and Figure 8 shows some of the resource usage indicators accomplished by the use of the HOSNA 

model to complete key assessments of the networks’ effectiveness and efficiency. The average duty cycle of 0.65 

corresponds to the active/sleep ratio for the sensors to maintain their functions while minimizing energy 

consumption and maintaining the quality of monitoring. Across the specified field area, HOSNA manages a 95% 

sensor coverage level; however, this design allows for 10% redundancy, providing comprehensive coverage of 

the critical zones as well. The amount of energy that is saved when using HOSNA is considerable; it saves 32.5 

Joules when it is compared to LEACH over 1000 operational rounds. This energy conservation is attributed to the 

excellent mechanism of duty cycling and enhanced optimization methods. These metrics emphasis the efficiency 

of the resource control of HOSNA, thereby extending the network life and an overall performance in smart 

agricultural environments. 

 

TABLE VII.  COMPARISON OF SCALABILITY ACROSS MODELS 

Number of 

Nodes 

HOSNA 

(Rounds) 

LEACH 

(Rounds) 

PEGASIS 

(Rounds) 
RDC (Rounds) 

50 1020 870 910 620 

100 830 740 760 530 

200 670 590 610 420 

300 540 450 480 310 

500 350 280 300 200 
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Fig 9. Scalability Comparison across Models 
 

Table 7 and Figure 9 gives the relative performance of the HOSNA, LEACH, PEGASIS and RDC models 

with regards to scalability and again the table also shows that as the number of nodes increases HOSNA 

outperforms the others. HOSNA can achieve a total of 50 nodes network lifetime of 1020 rounds while consuming 

less energy than LEACH at 870 rounds, PEGASIS at 910 rounds, and RDC at 620 rounds. As the number of nodes 

increases to 100, 200, 300, and 500, there is a clear indication that the proposed HOSNA protocol has shorter 

lifetimes of 830, 670, 540, and 350 respectively. However, in similar scenario, LEACH manages to complete 740, 

590, 450 and 280 rounds for PEGASIS performs only 760, 610, 480 and 300 rounds. RDC results in lowest 

efficiency rates with the lifetime of 530, 420, 310, and 200 rounds. This scalability advantage also supports 

evidence of the efficiency of HOSNA in terms of resource control and performance independence from the size 

of the network, making HOSNA suitable and reliable for large-scale applications in smart agriculture. 

 

5. CONCLUSION AND FUTURE SCOPE 

 

The HOSNA model delivers significant advancements in WSN performance for smart agriculture, achieving 

a 94.0% data accuracy compared to LEACH (90.0%), PEGASIS (86.0%), and RDC (70.0%). Its hybrid 

optimization framework ensures lower energy consumption and extended network lifetime, critical for large-scale 

and remote agricultural fields. The system’s predictive capabilities, powered by LSTM, further enhance its 

efficiency by enabling proactive sensor activation. By reducing energy usage by 24% compared to LEACH, 

HOSNA supports sustainable and cost-effective operations. The improved accuracy ensures precise 

environmental monitoring, aiding decisions like irrigation scheduling and pest control. Future scope includes 

enhancing the scalability of HOSNA to accommodate larger, heterogeneous sensor networks with diverse energy 

and communication requirements. Incorporating renewable energy sources, such as solar panels, could make the 

system entirely sustainable. Additionally, exploring the integration of blockchain for secure and transparent data 

transmission could open new opportunities. Real-world deployments across diverse agricultural scenarios can 

further validate HOSNA's reliability and adaptability.  
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